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100 J.-M. DE KÖNINCK ET J. GRAH

la fonction / sur ces ensembles de diviseurs de n. Certains des résultats établis
dans cette section donnent d'ailleurs lieu à plusieurs identités surprenantes.

Les auteurs remercient le rapporteur dont les nombreuses suggestions leur
ont été utiles pour la version définitive de ce travail.

2. Propriétés arithmétiques de /, / et /
On définit sur F les opérateurs T, T et T par T(f) \= /, T(f) : f et

T(f):=f.
Du prochain résultat, il découle en particulier que toute fonction arithmétique

est elle-même la «moyenne» d'une autre fonction arithmétique.

Théorème 2.1. L'opérateur T établit une bijection de F sur F.

Il en est de même pour l'opérateur T.

Démonstration. Pour chaque / e F,

T(f) / =i (1 * /) si et seulement si / \i * t/T

1

et T(f) / — (1 *uf) si et seulement si / (- l)w *w 2e0/
2«

d'où le résultat.

Exemples. Ainsi il est intéressant de se demander quelles sont les images

par l'opérateur T~l ou par l'opérateur T-1 de certaines fonctions
arithmétiques classiques, soit par exemple les fonctions co, A, X(n) et E(n). On

vérifie successivement que

p\\n
co {n) (co + k)(n), où k(n) =* £ 1,

A (n) g(n), où g(n)
0 si n 1,

P I r,(_l)œ(n)£ Jogi si 1,

X{n) X(n)x(n2),

E(n) \i{n) jü(w).

L'opérateur T n'est pas injectif. En effet, si on pose g\(n) i(n)/n,
g2(«) 2Cû(")/fl et g3(fl) «= 2alors

êi(«) =ft(/i) 2-J](l+ 2/p)

1

n e += 0<")

ô(«)2®(") pin ô(n)
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Les opérateurs T, T et T préservent la multiplicativité et 1 additivité.

On a en effet le résultat suivant.

Théorème 2.2. Si f est dans sd (respectivement dans Jd), alors

les fonctions f•> f f sont chacune dans sd (respectivement

dans d/).
Avant de donner la démonstration du théorème, voyons par des exemples

les allures que prennent /, f et / pour des fonctions / additives et

multiplicatives.

Exemples

1) On démontre facilement avec le théorème 2.2 que

1 si n m2,
X(n) X(n)x(n) *

[O autrement,

soit la fonction caractéristique de l'ensemble des carrés parfaits.

2) Parfois, il arrive que f{n) f(n)\ ainsi on a

i(„) n (1 + a/2)
2t0<") pa|| „

et

Q(n)
Q(n) Q(n)

Démonstration du théorème 2.2. Si f e <.//, la démonstration est presque
immédiate. Nous allons établir la preuve uniquement pour /, dans le cas

A ~
oil f e sd\ les cas des fonctions / et /, avec f e sd, sont presque identiques.
Soit donc / e sd et soit n et m deux entiers positifs relativement premiers,
alors

f(mn)
1

E fid) —f— E
x{mn) d\mn T(m)x(n) dt\n

d 2
I m

1

T(m)T(n) d i \ n

d 2
I m

E (/(*) +/(rf2))

E f{d\) + ——-——— E 2)
x(m)x(n)dt\n x(m)x(n) </,|n

d2\m d2\m

]
E /<<*>> E 1 +

*
E /(rf2) E 1

x(m)x(n)rf;rf2|m

fin) + /(/w)
Le résultat est ainsi démontré pour
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Remarque. La réciproque du théorème 2.2, comme nous Lavons

montré dans l'introduction, est vraie pour / et pour /. Montrons par un
exemple que ce n'est pas le cas de la fonction /. Soit / la fonction
définie par

fin)
2QW si p11 n,

co {n) sinon

Il est clair que / n'est pas additive; or il est facile de voir que fin)
à in) e s-/, puisque fin) est indépendante des valeurs de fid)

où d \ n avec p(<i) — 0. C'est pourquoi f e s/ f e •?/.

Il est intéressant de signaler qu'en général fin) ^ fin). En effet, il est

facile de démontrer que, quelle que soit la fonction arithmétique /,
fin) fin) pour tout ne N ^ / c, pour une certaine constante c

La même affirmation est valable dans le cas des fonctions f et /. Une
observation plus générale sera faite à la section 5.

Par ailleurs, si / e s/,

/(«)= I —L- t
pa\\n CL + 1 m \

An) \ S f(p) 1/(8(«))
2 P|„ 2

et /(/i) \fin)
2

Si / e W sd, alors fin) /(«) fin)/2. Mentionnons également que
lorsque / e

/(«) I 7—— /(p) /(«) - I 7^— /(p) ;

p"\\n 1 + a pa\\n 1 + a

en particulier, si / est à valeurs positives, on a les inégalités \fin) ^ /(«)
< fin), ce qui est équivalent à fin)< fin) ^2/(«).

Par ailleurs si / e alors

/(«) -7— n f1 + z
T in) pa\\ n y m 1 J

/(«)— n d+/(/»))
Z P I «

et n (i+/(po)).
Z v ' pa II n
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Lorsque / e JO#,

fin) —— n (1+
t in) ||n

et fin)fin) —L R (1 •

2®{n) p\n

Enfin si fe W Jé,alors fin) n^«||«(l +fiP)a)-
Il découle donc de ces observations que T préserve le caractère tota-

A

lement additif alors que T applique les ensembles sé et respectivement

sur et sur JC#. En particulier 2Fsrf et JO# sont des ensembles

invariants par rapport à l'opérateur T en ce sens que pour chaque / e JLjaf,

T(f) e -frs/, et que pour chaque / e FF/, T(f) e FJt. Par ailleurs,

l'opérateur T préserve les caractères totalement additif, fortement additif
et fortement multiplicatif des fonctions arithmétiques qui ont ces propriétés
avec la particularité que T - T sur Fsd ainsi que sur

Le prochain résultat précise que si f e J/l alors f(8(n)) est le quotient
de deux fonctions chacune d'elles étant une moyenne sur les diviseurs libres
de carrés.

Théorème 2.3. Soit f e .£ telle que f(n)^0, et posons
g 1 //, alors

Sous les mêmes hypothèses, on obtient l'équivalent de (2.1) pour f à

savoir

fin) fin) gin)

Démonstration. Soit f e // telle que 0, V« ^ 1, alors avec
la notation g1 //, on obtient

(2.1) fin) fi&in)) gin) •

I V2 id) g id) f(S in)) gin)
2W(/7) d\n

Exemple. Si on pose fin) alors gin) et fin)
suit immédiatement de (2.1). Comme ici fin) e S/i//, on a également
fin) fin) g in).
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Remarque. Vu que si f(n) ^ alors f(n) f(n)j(n) et comme
l'opérateur T est bijectif, il existe une fonction h e Jé telle que h (ri)

\/[j}(n). On établit facilement (par la formule d'inversion sur les

diviseurs unitaires mentionnée ci-dessus) que h(n) -2/2p— 1)).

C'est donc dire que s'écrit comme le produit de deux moyennes sur les

diviseurs unitaires, puisque, dans ce cas, f(n)h(n). De façon
générale, grâce à la bijectivité de T, on peut exprimer toute fonction

/ e Jé comme produit de deux moyennes sur les diviseurs unitaires, l'une
d'elles étant /.

Désignons maintenant par o l'opérateur classique de composition des

applications. On peut facilement vérifier que (To r)(p) (f o r)(|i).
Ce constat n'est pas exclusif à la fonction p, comme l'indique le résultat
suivant.

Théorème 2.4. Soit gei u alors (f o f) (g) (f o f) (g),
i.e. g g. En particulier T et T commutent sur Tensemble des
combinaisons linéaires des fonctions g e sd u .Jé.

Démonstration. Nous allons maintenant établir la preuve dans le cas

g e Jt. Le cas g e ja/ se traite de manière analogue et utilise le fait que les

opérateurs T et T sont linéaires. Soit donc g e .Jé, alors T(g) —g e Jï et

T(g) g e Jé, avec

T(g)(pa) g(pa) g(pm)
1

a + 1 m 0

et T(g)(pa g(pa) =-(\ + g(pa))

d'où

(2.2)

(T o T){g)(n) T[f(g)](n) T(g)(n) Ü ^ 0 +
pa II n 2

2-«(«)
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D'autre part,

/ 1 a

(fof)(g)(n)=T(g)(n)= II 7 X S(P'
pa\\n \ OC "h" 1 m 0

(2.3) =JL [] / £ 2 - 1 (1 + g)/?"1))]
T (ri) P*\\n \ m 0 J

2~(o(n) / j*— n (i + a+ d )•
T (/?) /?a II /î \ m 0

L'égalité entre (2.2) et (2.3) équivaut à g g. Et le théorème est

démontré.

Exemples

t(H2)
1) On a vu dans l'introduction que si f(n) 2Cû(") alors f(n)

t (n)
d'où

fin) — n i + ^2) n i+—-—) •

2«<">A\ t(P«)/ Al 2(a + 1)/

fin)

D'autre part,

(2P" « ,-L n (u'.U'1*».^2/ t (n)\Or d'après le théorème 2.4 on a l'égalité fin) donc en particulier

-t(n35 (nj)„/
|

a

2a>("H(n)p«\\„\ +2(a+l)J
2) Comme

1 si n m2,
X(n) X(n)T(n)

il suit du théorème 2.4 que lin
0 autrement,

M«) —L L+—I—\
2W(") M \ a + 1
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