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EMPILEMENTS DE CERCLES
ET REPRESENTATIONS CONFORMES:

une nouvelle preuve du théoréme de Rodin-Sullivan

par Frédéric MATHEUS

I. INTRODUCTION

Répondant & une question posée par W. Thurston en 1985 (voir [Th2]),
Burt Rodin et Dennis Sullivan ([R-S]) ont montré comment les empi-
lements de cercles permettaient de construire des approximations quasi-
conformes de uniformisation de Riemann d’un ouvert simplement connexe
borné de C. Leur méthode repose sur un résultat de rigidité, la rigidite de
I’empilement hexagonal standard (voir [R-S]) dont la preuve a été simplifiée
par B. Rodin et Z.X. He (voir [R]).

Dans [CV-M], nous utilisons, avec Yves Colin de Verdiere, les empilements
de cercles pour construire une méthode générale d’approximation, sur un
compact, des fonctions holomorphes dont la dérivée ne s’annule pas. Le but
de ce travail est de comprendre comment les idées développées dans [CV-M]
permettent de retrouver le théoréme d’approximation de Rodin-Sullivan grace
a une estimation quantitative du comportement asymptotique des rayons
énoncée a la fin de la section II.

En particulier, une méthode d’homotopie analogue a celle développée dans
[CV-M] permet d’étendre simplement le lemme de Schwarz-Pick aux empi-
lements immergés dans le plan hyperbolique (section III), lemme qui est
essentiel pour obtenir un contrdle a priori des rayons (section IV). Quant
aux fonctions harmoniques positives qui apparaissent naturellement, elles
vérifient une version discréte de I’inégalité de Harnack (section VI) que nous

eétablissons par voie probabiliste, et qui donne l’estimation des rayons
cherchée.
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[I. LE THEOREME DE RODIN-SULLIVAN:
ENONCE ET SCHEMA DE LA PREUVE

Soit # un ouvert simplement connexe borné de C et z,, z; deux points
de . Notons 7 .(C) la triangulation de C par des triangles équilatéraux
de cOté 2¢ dont ’ensemble des sommets est zo + 2eZ + 2ee™3Z, et 7 (%)
’ensemble des triangles de 7 .(C) contenus dans %. Notons 7 (%) la
composante connexe de la triangulation 7.(%) contenant z,. Si 72 S(%)
est disconnectée par la suppression de certains sommets, on supprime toutes
les composantes ne contenant pas z, ainsi obtenues. La sous-triangulation
de 7 (%) fournie par ce procédé!), notée 7, est une triangulation d’un
disque topologique. On note 77, ’ensemble des cercles du plan de rayon ¢
et centrés sur les sommets de 7 .. On observera que les cercles de 77, ne sont
pas forcément contenus dans %.

Koebe ([Ko]) puis Andreev ([An]) et Thurston ([Thl], [Ma-R]) ont
démontré qu’il existe alors une famille j/g de cercles bordant des disques
d’intérieurs deux a deux disjoints, contenus dans le disque unité D de C,
et vérifiant:

i) 2%, est en bijection avec 7#%;

ii) deux cercles de 97/8 sont tangents si et seulement si les cercles
correspondants dans 7 le sont;

iii) les cercles de 74 correspondants aux cercles du bord de 77, sont
tangents au cercle unité.
Une telle famille (cf. fig. 1) s’appelle un empilement de cercles d’Andreev de
combinatoire 7! ou 7| désigne le 1-squelette de 7Z,. Elle est unique a
transformation de Mobius prés. Elle sera donc parfaitement déterminée si
on demande que soit vérifiée une condition de normalisation que nous
formulons ci-apres.

Soit f. I’application définie de la maniere suivante:

— si z est le centre d’un cercle de 77, alors f.(z) est le centre du cercle
correspondant de 777;

— on prolonge f, a chaque triangle de 7. en une application affine.

La condition de normalisation est alors:
iV) fs(ZO) =0 et fa(zl) > 0.

1) Voici une autre facon de la définir: on ne conserve que les triangles T de
7 9(%) pour lesquels il existe une suite de triangles de 7 (%) telle que chacun ait une
aréte commune avec le suivant, et reliant 7 a4 un triangle contenant zg.
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Enfin, notons f: # — D Puniformisation de Riemann de % normalisée
par f(zo) = 0 et f(z;) > 0. Rodin et Sullivan ont montré le

THEOREME. Lorsque ¢ tend vers 0, f; converge vers f unifor-
mément sur les compacts de .

C’est ce théoréme que nous nous proposons de redémontrer Icl. La
premiere étape est la

PROPOSITION. I/ existe une constante K > 1 telle que chaque [, soit
K-quasiconforme. De plus, si une sous-suite (f,) converge uniformément
sur les compacts de 7 vers une fonctiorg g, alors g est un homéo-
morphisme K-quasiconforme de < sur D.

La preuve utilise les arguments de [R-S] qui sont désormais classiques et
que nous reproduisons ici. Ils reposent sur les deux lemmes géometriques
suivants:

LEMME DE L’ANNEAU («Ring Lemma» dans [R-S]). Soit ¢ un cercle de
rayon p et ci,...,C, n cercles tangents extérieurement a c, d’intérieurs
deux a deux disjoints, tels que c; soit tangent a c;,, et ¢, tangent

N

a C;.

Il existe une constante T, > 0 ne dépendant que de n telle que chaque
cercle ¢;(1 <i<n) ait un rayon au moins égal a 71,p.

Preuve du lemme de ’lanneau. Fixons n. Tout d’abord, le rayon du plus
grand cercle extérieur, par exemple c;, est minoré par une constante ne
dépendant que de n (obtenue lorsque tous les cercles extérieurs ont méme
rayon). Le rayon d’un cercle ¢, tangent a c; est également minoré universel-
lement, car si il était trop petit, une chaine de n — 1 cercles partant de ¢, ne
pourrait pas s’échapper de l'interstice entre c; et ¢. On achéve la preuve en
répétant le raisonnement pour le cercle ¢; tangent a ¢, et ainsi de suite. [ ]

Le lecteur poura consulter [Ha] pour des estimations de la constante t,,.

Une suite de cercles ¢y, ..., ¢, deux a deux distincts de (’?;”8 est une chaine
lorsque c; et c¢;,; sont tangents si 1 <i< n — 1, ainsi que ¢, et ¢; si ces
derniers ne sont pas tangents au cercle unité. Le second lemme est le

LEMME DES CHAINES SEPARANTES («Length-area lemma» dans [R-S]).

Soit ¢ un cercle de 7, et si,...,S; kK chaines disjointes qui séparent
chacune c¢ de [l'origine et d’un point du cercle unité. Notons n,, ..., Ny
les longueurs combinatoires de ces chaines. Alors on a:

1

rayon(c) <
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FIGURE 1
(aimablement fournie par Ken Stephenson):

trois empilements 7 dans # et les trois empilements d’Andreev associés 7, dans D
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Preuve du lemme des chaines séparantes. Notons p; j, 1 << n;, les
rayons des cercles de la chaine S;. D’aprés l'inégalité de Schwarz, on a:

nj 2 nj 5
(E pj,i) < A E Pji-

i=1 i=1

nj
Soit [; =2 Y p;,; la longueur géométrique de la chaine S;. On a donc

i=1

/2 B ko ]? koono
< <4V pl;, donec ¥ 4 <4y ¥ opji<4
n; i=1 i=1 1 j=1i=1
de sorte que / = min{/,, ..., [y} vérifie:
|
2y — 4.
j=1 nj

A cause de I’hypothése de séparation, / est plus grand que le diametre de c,
d’ou le résultat. [

Preuve de la proposition. Notons & . la triangulation obtenue a partir
de 2#.. Le lemme de I’anneau appliqué avec #n = 6 montre que les angles des
triangles de %, sont minorés par une constante > 0, de sorte que ’appli-
cation f. envoie des triangles équilatéraux sur des triangles dont la distorsion
est bornée par une constante indépendante de €. Ceci assure 1’existence d’une
constante K telle que pour tout €, f, est K-quasiconforme.

Notons %, (resp. D;) le domaine de définition (resp. I’image) de f;.
% (resp. Dg) n’est rien d’autre que la réunion des triangles de 27, (resp.
9’;”8). Il est clair que tout compact de % est contenu dans %, pour &
assez petit.

Comme les f, sont K-quasiconformes, et que f:(zo) = 0, Ve, elles
forment une famille équicontinue sur les compacts de %, et donc une famille
normale pour la topologie de la convergence uniforme sur les compacts
de % (voir [Ahl], théoréme 1, p. 51). Examinons les propriétés de n’importe
quelle fonction g limite d’une sous-suite { f¢,}. Déja, g est définie sur % et
est K-quasiconforme; g est injective car chaque f;,, ’est. Montrons main-
tenant que 1’image de g est D tout entier.

Il suffit pour cela de montrer que d_(8D.;dD) tend vers 0 avec
& (d » désigne la distance de Hausdorff). Or, lorsque € — 0, chaque cercle ¢
du bord est séparé de I’origine et d’un point du cercle unité par de plus
en plus de chaines de longueurs < 6, 12, 18... Le lemme des chaines séparantes
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et la divergence de la série harmonique prouvent que le rayon de ¢ tend
vers 0 avec g, d’ou le résultat.

Toute fonction g limite de f., est donc un homéomorphisme K-quasi-
conforme de % sur D. [J

Le but des sections qui suivent est de prouver le résultat crucial suivant:

LEMME-CLE. Soit C un compact de %,c et c¢' deux cercles
tangents de ¢, centrés dans C et c,c’ les cercles de 27, qui leur
correspondent.

rayon(c)
Alors

tend vers 1 lorsque € — 0, uniformément sur C.

rayon(c"’)

Signalons que c’est dans la preuve de ce lemme-clé donnée par Rodin
et Sullivan qu’intervient leur résultat de rigidité de ’empilement hexagonal
standard, argument que nous nous proposons justement de contourner.
La méthode que nous allons suivre permet d’ailleurs d’obtenir un résultat
plus fort:

VERSION QUANTITATIVE DU LEMME-CLE. Avec les mémes notations, il
existe une constante M ne dépendant que de C telle que

rayon(c) Jupds M

rayon(c”’) £ )V — Loge
uniformément sur C.

Nous terminons cette section en montrant comment le lemme-clé permet
de conclure. Ce lemme montre que la restriction a C de chaque f. envoie
des triangles équilatéraux sur des triangles dont les angles tendent vers
7 lorsque € — 0, de sorte que toute limite g des f. est 1-conforme,
c’est-a-dire holomorphe sur % (voir [Ahl], théoréme 2, p. 23).

Récapitulons: la famille { .} posséde au moins une sous-suite convergeant
uniformément sur les compacts de %, et la limite de toute telle sous-suite est
une bijection holomorphe de % sur lo) envoyant z, sur 0 et z; sur I’axe réel
positif, ¢’est-a-dire est ’'uniformisation de Riemann f de % ainsi normalisée.
Le théoréme en résulte aussitot.

III. DEFORMATIONS D’EMPILEMENTS DE CERCLES

On va construire une famille continue d’empilements de cercles
{2} eron telle que 70 = 2#, et #°! = #, et on va étudier la facon
dont varient, en fonction de 7, les rayons des cercles de 77 ;.
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Comme P’ouvert % est borné, il est tout a fait licite de supposer que
% est contenu dans lo) et que z0=0 et z; >0, de sorte que tous les
empilements que 1’on va considérer seront contenus dans le disque unité D.

A partir de maintenant nous adoptons le point de vue de la géomzétrie
hyperbolique: D est muni de la métrique hyperbolique ds? = (—li_l—‘(—;l—z);
courbure — 1. Tout cercle hyperbolique est un cercle euclidien (mais les centres
ne sont pas les mémes). En particulier, les cercles du bord d’un empilement
d’Andreev sont des horocycles. C’est ce dernier fait qui motive ’emploi de la
géométrie hyperbolique.

I faut maintenant généraliser la notion d’empilement de cercles.
Soit & une triangulation (finie ou infinie) d’un disque topologique et S
I’ensemble des sommets de @. Soit r = (r5)s;cs € (R*)S. On munit chaque
triangle de @ de la métrique hyperbolique a courbure — 1 qui au coté ss’
affecte la longueur r; + ;. On obtient ainsi une variété riemanienne a
courbure — 1 a singularités coniques, notée ©,. Soit s un sommet d’un
triangle 7 de @. Si a(s, T) désigne I’angle en s dans le triangle 7 et si s
est un sommet intérieur, alors la courbure en s est:

Ki(r)y=2n- Y a(s,T).
seT

La famille de cercles ¥ = {C,;s € S}, ou C, est le cercle de &, de
centre s de rayon rs, posseéde la propriété suivante: les cercles C; et C,. sont
tangents si et seulement si ’aréte ss’ appartient au 1-squelette @! de la
triangulation @.

Si, pour tout sommet intérieur s, on a K,(r) = 0, alors la variété @, est
immergée isométriquement dans le disque de Poincaré Dy,, (mais non
plongée a priori). On dit alors que % est un empilement de cercles de
combinatoire ©!. De plus, % est un empilement d’Andreev si et seulement
si pour tout sommet s du bord de 7, r, = + .

REMARQUE. Un empilement d’Andreev est plongé dans le disque de
Poincaré. En effet, la variété immergée &, est alors 4 bord convexe, donc
plongée d’aprés le théoréme du §3 de [CV].

Le résultat suivant, démontré par Yves Colin de Verdiére dans [CV]§5,
est aussi le théoréme 3 de [B-St2]:

THEOREME. Soit & une triangulation finie d’un disque topologique,
S (resp. B, I) I’ensemble de ses sommets (resp. sommets du bord; sommets
intérieurs).

Alors pour tout (ry)scp€l0, + |8, il existe un unique (rg)se;
€ R¥)" tel que la variété 7, soit immergée Isométriquement dans Dpy, -
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On notera que le théoréme d’Andreev-Thurston est un cas particulier de
ce théoreme (faire r, = + o, Vs € B).

Soit ®@:[0,1[ > [1, + oo, ¢ ®(¢) un difféomorphisme prolongé par
®(1) = + . Nous reprenons maintenant les notations de la section II.
Pour ¢ € [0, 1], 27 2 est défini par les trois conditions suivantes:

i) la combinatoire de 27! est &, ;

ii) si r; est le rayon d’un cercle du bord de 57, le rayon du cercle
correspondant de 27! est r, (1) = ®(¢)r,;

iii) la condition de normalisation est la méme que pour j/a.

Notons S, (resp. B, I.) I’ensemble des sommets (resp. sommets du bord,
sommets intérieurs) de @.. Pour s € S, on pose:

+ oo s
doc r.
= — Logtanh 5

s sinh o

ul =) = s
re

(c’est la variable utilisée par Yves Colin de Verdiere dans [CV]). On va

interpréter la famille {% uz(t)}sesg comme solution d’un probléme de

Schrodinger discret.

Notons u? = (ul)scp, € [0, + o [B: (resp. u.= (Ul)scr, € [0, + o0 [le)
une famille de réels indexée par B, (resp. I;). Dans [CV], Yves Colin
de Verdiére construit une fonctionnelle F :Rl_’;E X R’f—> R qui possede la
propriété suivante: si d;F désigne la différentielle partielle de F par rapport
aux variables indexées par I, alors on a d;F(u’Z, ul) = 0 si et seulement
si la collection des rayons {¥ ~!(u;)}ses, définit un empilement de cercles
de combinatoire & | .

Signalons que c’est ce choix de variable u; qui confére a la fonc-
tionnelle F certaines propriétés — convexité, ... — lui assurant I’existence d’un
point critique.

Explicitons la dérivée d;F. Pour ce faire, a tout vecteur u; = (#;)ses,
€ R‘ff on associe la variété hyperbolique @, a courbure — 1 a singularités
coniques définie plus haut avec r. = (ry)ses, ou ry =¥ !(u;). Notant
K (ug) la courbure en s on a:

diF(u;) = Y, Kg(u;)du’ .

selg

Dans le cas présent, pour tout ¢ e [0,1], la collection des rayons
{r;(#)}ses, définit un empilement de cercles de combinatoire #. de sorte
que ’on a, en posant u; () = P (ri(z)),

Vte[0,1], d;F[ul@),ul(®)]=0.
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Par dérivation, il vient:
dI]F[ugB(t)3 Ué(t)] ’ ué(f) + dBIF[uf(t)’ Ué(t)] ’ ugB(t) =0,
d’ou:

vielo, 11, ¥ ) Mu

s
selg s"e S, Bus
dq(s,s") <1

J(0)) dui =0

(d. désigne la distance combinatoire dans le graphe ©.). On rappelle que
d’aprés la formule de Gauss-Bonnet, 1’aire d’un triangle hyperbolique T
d’angles a, B,y est A(T) =n — a — B — v, de sorte que, pour tout sommet

intérieur s, on a:
0K, (u,) 0K, 0K, 0A(T)
) =—+ X =

s 4 s
s'eS; auz aui s'~s aui Tss OU,

(on note s’ ~ s pour s’ voisin de s). Pour alléger les notations, on pose,
pour s € I, et s" € S; voisin de s,

0K N 0A(T) 0K,

-
ou,

Cs =

- ¢ Cosr =
BUZ T>s GUZ

Soit b: B, — R une fonction numérique. A toute fonction ¢ € R’: prolongée

par b sur B, on associe les fonctions Ay ¢ = A, ¢ € Rz et Vo e R/s définie

respectivement par: pour tout s € I,

(Ap®)(8) = C;0(8) + Y Cor@(s)

s’ ~s

QA(T
et (Vo) (s) = V(s)o(s) = (— ) D

Tss auz

)(p(S)-

Les relations suivantes:

Cs + Z Cssr = Os Cssr < O, Cs > Oa Css' = Cyrs
s ~s
font de A un laplacien discret sur I, c’est-a-dire un endomorphisme symé-
trique défini positif de R’:. Le fait que V(s) soit > 0 fait de Ay + V un
operateur de Schrodinger discret sur I, (comparer avec [CV-M], section V).

En résumé, le vecteur u.(¢) = (u3(¢))scs, est solution de I’équation
de Schrodinger suivante:

{ Ayug + Vig =0
Uy (1) = b(s) = @'(t) - ¥ [ri(t)] - r5(0) si seB,.
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En particulier, u$(¢) <0 si s € B; (car ®' > 0 et ¥’ < 0). Or on dispose
d’un principe du maximum pour les opérateurs de Schrodinger discrets:

LEMME. Soit pour tout sel, et s €S8, voisin de I, un réel
bss» €]0, 1] tel que Y by < 1,Vs.

s'~s

Soit @ € RS une fonction telle que Vsel,, p(s) = Y b o(s).

s’ ~s
Alors, si. ¢ est <0 sur By, ¢ estégalement <0 sur I,. Si
de plus ¢ s’annule sur 1., alors ¢ est nulle sur S;.

Preuve du lemme. On observe tout d’abord que si ¢(s) > 0 pour un
s € I, alors 1l existe s” ~ s tel que ¢(s’) > ¢(s), car, dans le cas contraire,
on a
Q(s) = Z b @(s) < ( Z bssf) @ (s) < @(s) qui est absurde.

s’ ~s s’ ~s

De proche en proche on aboutit a un sommet s; € B, tel que ¢@(s;)
> @(s) > 0, de sorte que ¢ <0 sur B, implique ¢ <0 sur ;. Sachant
maintenant que ¢ est <0 sur S., supposons qu’il existe s € I tel que
@(s) = 0. Il est clair que ¢(s’) =0, Vs" ~s. De proche en proche, on
montre que ¢ est nulle sur S,. [

Css’

On applique le lemme aux coefficients by, = — e 0 et on déduit
que pour tout s € I, ul(f) < 0. Comme u:(¢) = ri(t) x P'[ri(¢)] et que
¥’ est < 0 on déduit que ri(z) est >0, Vs € I, V¢ € [0, 1]. En résumé,
lorsque ¢ croit de 0 & 1, les rayons hyperboliques de tous les cercles de 77|

augmentent strictement.

Le fait que nous venons de mettre en évidence est 1’aspect essentiel d’un
résultat, le lemme de Schwarz-Pick discret, qui mérite d’&tre formulé
— et démontré — de facon autonome. Outre le fait que nous utiliserons ces
résultats dans la prochaine section, signalons qu’il a fait I’objet de travaux
d’Alan Beardon et Kenneth Stephenson (voir [B-St2]).

Soit S ’ensemble des sommets d’une triangulation ©~ d’un disque topo-
logique. Soient r = (ry)ses €t r' = (r))ses € R*) et @,, O, les variétés
hyperboliques a courbure — 1 a singularités coniques définies comme
précédemment a partir de &, r et r’.

On note C; (resp. C)) le cercle de &, (resp. 7,.) de centre s et de rayon
rs (resp. r7). On suppose que les familles € = {Cs}scset € = {C.}; s sont
des empilements de cercles, c’est-a-dire que 72, et @, sont immergées
isométriquement dans le disque de Poincaré. Rappelons que € et ¥’ ne
sont pas supposés plonges (comparer a [B-St2]). )

On a la
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PROPOSITION (Lemme de Schwarz-Pick discret dans [B-St2]).

7

i) (monotonie). Si ry<r. pour tout sommet frontiere S, alors

! pour tout sommet intérieur s. De plus, si 15 = rs’0 pour un

sommet intérieur s, alors Vse€S,rg=r.;

re S r

ii) (lemme de Schwarz discret). Si ' est un empilement d’Andreev

’

(ie. rl= 4o pour se€B) alors ry<r,,VseS;

S
iii) (lemme de Pick discret). Si ¥’ est un empilement d’Andreev
alors la distance entre deux sommets s, et s, dans O, est inférieure
a la distance entre les deux sommets correspondants dans O, .

Preuve de la proposition. Prouvons le point i). On réalise la variété
Z,, comme le temps 1 d’une déformation {@,(¢); € [0,1]} de la
variété @, comme ci-avant, a ceci prés que les rayons frontiéres de @, ()
sont définis par

us (1) = U(rs(2)) = (L = )P (rs) + 1¥(ry) .

Pour tout ¢, il existe un opérateur de Schrodinger discret A + V' sur &'
(Ie 1-squelette de @) tel que:

{Afz;(r) + Via(t) =0
us(t) = P(r) — ¥(r;) siseB.

Comme ¥ est décroissante, on a u,(¢) < 0, Vs € B. D’aprés le principe du
maximum pour les opérateurs de Schrodinger on a également u,(¢) <O
pour tout sommet intérieur s, donc W(r;) < W(ry) donc r. > r; pour ces
sommets. De plus, r;y=r; pour un sommet intérieur s, implique
us, (1) = 0, V¢ € [0, 1] donc, d’aprés le méme lemme, w,(¢) = 0, V£, Vs € S
et donc ry=r., Vs e S.

Les points ii) et iii) résultent de (i). [

IV. ESTIMATIONS A PRIORI DES RAYONS

Soit K un compact d’intérieur non vide contenu dans %, et SX ’ensemble
des sommets de @, contenus dans K. On~note re = (r;)ses, la collection

des rayons de I’empilement d’Andreev 27°.. Le but de cette section est
de démontrer la
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PROPOSITION. I existe trois constantes c,,c,,c; ne dépendant que
de K et % telles que, si & est assez petit, alors, pour s et
s'eSK, et telo,1],

iii) 033 < ri(t) € cse.

Cette proposition a été mise en évidence par Kenneth Stephenson: c’est
le lemme 3 de [St1] et le lemme de comparaison 8.4.1 de [St2]. Voir aussi
le lemme 8.3.1 de [St3]. Nous en reproduisons ici la démonstration, en
suivant [St2]. Celle-ci est assez technique, et utilise a plusieurs reprises le lemme
de Schwarz-Pick discret de la section précédente. Il faut tout d’abord un

LEMME DE DISTORSION («Distortion Lemma» 8.3.1 de [St2]). Soif
a€l0,1[ et e€]0,5[. Soit A le disque ouvert de centre ( et de
rayon a supposé contenu dans le disque unité. Soit ¢ [’ensemble des
cercles de rayon ¢ contenus dans A et centrés sur ( + 2eZ + 2ee 7.
Soit C, le cercle de ¢ entré en { et (:’0 le cercle de I’empilement
d’Andreev % de ¥ dans D correspondant a C, et supposé centré
en 0.

Alorsona p < =%, ou p désigne le rayon euclidien du cercle éo.

Preuve du lemme de distorsion. 11 suffit de traiter le cas ou { = 0 et
a =1, le cas général s’en déduisant aussitdt. Notons 0% (resp. 6(5)
I’ensemble des cercles du bord de ¥ (resp. & ). Soit vé I’homothétique
de ¥ dans I’homothétie (euchdlenne) de centre 0 et de rapport v. Soit
C, un cercle de 8% et CS, C les cercles qui lui correspondent dans les
empilements % et v%. Notons p, le rayon euclidien de C,. Les rayons
euclidiens de C; et C. sont respectivement € et vp;. On note enfin 7, et
r. les rayons hyperboliques de C; et C; (le rayon hyperbolique de (:‘S
vaut + o). Nous allons démontrer que, lorsque v = 1 — 64¢, alors r, < rs.

Commencons par minorer r,. On observe que 8% est contenu dans

’anneau {1 — 8¢ < |z| < 1} sur lequel la densité de Poincaré est minorée
2

par ;T de sorte que I’on a:
2¢€ 2¢€ 1 1 1
rs 2 = = — > -,
1—-(1-8¢)?2 16e—64e2 8 1 —4g 8

A présent, majorons r.. Comme 8% est contenu dans l’anneau
{1 -8e<]|z|<1}, il en est de méme pour d% d’aprés le lemme de

[ A
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Schwarz-Pick discret, de sorte que p, < 4¢, donc le rayon euclidien de C;
vérifie v, < 4ev. Par ailleurs, C’ est contenu dans le disque {|z| < v} sur
lequel la densité de Poincaré est majoree par 1_2v2' On en déduit que
2 2 8¢ \Y 8¢ 1
< X Vps S—— X 4gv = X < = —

1 —v? 1 —v2 l1-v 14v 1-v 8

siv=1-64e.

Nous pouvons conclure: si v =1 — 64¢g, alors pour tout sommet fron-
tiere s, on a r.<r,. D’aprés le principe de monotonie du lemme de
Schwarz-Pick discret, on a rj < ro ou rg et ro désignent les rayons hyper-
boliques des cercles C; et C,. Ces cercles étant centrés en 0, on a la

méme inégalité pour leurs rayons euclidiens, a savoir vp, < g, d’ou

N

r

’
N

€

S
POST gae

qui est bien I’inégalité annoncée. [

Le lemme que voici, qui peut paraitre surprenant au premier abord, est
vraiment spécifique a la géométrie hyperbolique (voir [B-St2]):

LEMME. Soit, dans le disque de Poincaré, un cercle C de rayon r,
et Cy,...,C,, n cercles tangents extérieurement a C, d’intérieurs deux
a deux disjoints, tels que C; soit tangenta C;., et C, a C.

Alors on a r<|)/n.

Preuve du lemme. Le cercle C est contenu dans un polygone géodé-
sique P a n cotés dont les sommets sont les centres des cercles Cy, ..., C,,
donc:

aire(C) < aire(P) < (n —2)m ,

et le résultat découle de la formule donnant I’aire d’un disque hyperbolique
en fonction de son rayon: aire(C) = 4n sinh? (g) de sorte que

r 2
nr:=4n (5) < 47 sinh? (%) <(n-2mn<nr. U

REMARQUE. L’inégalité optimale est r < — Logsin - (cf. [B-St3], p. 34
et [M], p. 75).

Preuve de la proposition. Prouvons i). D’aprés le principe de monotonie
du lemme de Schwarz-Pick, on a V¢ € [0, 1], r; < ri(z) < 72 de sorte qu’il
suffit de comparer les rayons hyperboliques des cercles de &7, et %&.
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Posons 6 = dist (K; C\ %). On applique le lemme de distorsion au disque
A ={|z—5s|<8} ol s est un sommet fixé de S.. L’ensemble ¥ défini
dans I’énoncé du lemme est un sous-empilement de 77, le cercle C, est ici
le cercle C; et le cercle 60 est noté C.5. Le rayon euclidien p, de ce dernier
cercle vérifie donc

[\

s 1 )
< — << —désquee<—.
€ S — 648 ) 128

Revenons aux empilements 57, et j/g. Quitte a appliquer une transfor-
mation de Mdbius & &7,, on peut toujours supposer que C . est centré a
I’origine. Notons p, le rayon euclidien de éz. Comme % est un sous-
empilement de ’empilement 277, il résulte du lemme de Schwarz-Pick i)
et ii) que le rayon hyperbolique de 62 est inférieur au rayon hyperbolique de
C.*. Comme ces cercles sont centrés en 1’origine, ceci reste vrai pour leurs
rayons euclidiens. On en déduit:

Comme C; est centré en 0 et que 75 < /6 d’aprés le dernier lemme, on
265 \ e]/6 -1 . s

; ou o ="7=—". Par ailleurs, comme € <r; on a
- a eV "+ 1

déduit que r; <]
e 2 P

S 10?2 s TN (1 - g2)

de % et K.

ce qui fournit une constante c¢; ne dépendant que

Prouvons ii). Soit s et s’ eSf, tef0;1] et b= 1_—(5—_—6-)—2- Dans la

succession d’inégalités qui suit, nous utilisons respectivement: le lemme de
Schwarz-Pick discret; le résultat i) ci-dessus; la comparaison des rayons eucli-
diens et hyperboliques de 7, dans la région {|z| < 1 — &8}; le fait que le
rayon euclidien d’un cercle est toujours inférieur a son rayon hyperbolique;
et le principe de monotonie:

ré(t) < ciri<e-b-e<c-b-ri<eb-rl)

€

de sorte que ¢, = ¢; - b convient.

Enfin, prouvons iii). Fixons s € SX, et soit b la constante introduite
ci-avant. On a r; < be. D’aprés Iinégalité i), on a: r.(¢) < ri < c
“r;<c - be. Comme e<r;<r.(t), on a linégalité cherchee avec
cs=c - b(=cy). U
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V. CHANGEMENT DE VARIABLE

L’objet de cette section est de ramener 1’étude de u. € RS qui est

solution d’une équation de Schrodinger discréte, a celle d’une fonction
harmonique sur S;, solution d’un probléme de Dirichlet. Le point de départ

de cette réduction est le

LEMME 1. Soit ¢:S8;—> R une solution d’une équation de Schrodinger
discréte du type (A+V)p=0 ou V:S;—=R, et (Ap)(s) = c,0(5)
+ Y Csr@(s"), Vsel, avec c¢;>0, ¢ <0, ¢ =cC5ry et Vsel,
cs+ Y Cssr=0. Soit @¢:S. = R* une autre fonction vérifiant

s’ ~s

(A + V)opo = 0.

Alors la fonction ¥ = ¢/¢, est solution de AY = 0, ou 'opérateur
A est donné par AY(s) = c;VY(s) + ¥ co¥(s'),; les coefficients c;

s'~s

et cCs Vérifient les mémes propriétés que les ¢, et c,o et sont donnés

par: Cso = 0o(S) Qo(s") Cssr.

Preuve du lemme 1. Elle est élémentaire: sachant que (A + V) (¢oP) = 0,
onaVsel,,

cs00()P(S) + T s o(s)E() + V()0o()¥(s) =0. (%)

s’ ~s

Comme (A + V)py=0, on a
CsPo(s) + V() o(s) = — ) ¢ @o(s”)

s’ ~s

(), ¥ s @o(s)[P(s) —¥(s)] =0, d’ou

s’ ~s

d’ou, en reportant dans

Css' Qo (8) Po(s) et cs= — ¥ Cor @o(s)Po(s), ce

[l

s’ ~s

A¥(s) = 0 avec Cogr =
qui prouve le lemme 1.

Pour appliquer ce lemme & ¢ = u, et a I’opérateur Ay + V obtenu a
la section III, il faut maintenant construire une solution explicite @,. Voici

un proceédé général:

LEMME 2. Soit 2#.(\),\L €] — a,a] une déformation continiiment
dérivable de I’empilement ¢, telle que #'(0)= ¢ b,oet uga(0)
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€ [0, + =[5: la fonction définie sur S, associée aux rayons de [’empi-
lement 27 ()).
d”e A

Alors ona (AS'+ V) ,_,=0.

Preuve du lemme 2. Soit F:R% x R’ — R la fonctionnelle cons-
truite par Yves Colin de Verdiére dans [CV] et évoquée a la section III.
Puisque pour tout A €] — o, a[, 2. (L) est un empilement de cercles, on a
d,F(uf,l, ué,x) = 0. En dérivant par rapport a A, il vient:

ey el — a,a[’ Z ( Z aKs[u;,;,k] ) due’x) duz 0.
d.(s

selg |s) <1 Guz dr
En A =0, on a:
0K, (u, du’
Vsel. (ue) (du;, by 0K, (u ) dug "
auz d;\; A=0 s’ ~5s

C’est-a-dire exactement (A} + V) - (%) w_o= 0.

Il reste maintenant a fabriquer une déformation explicite de I’empi-
lement 777 .

En guise de premier essai, on va examiner I’image de I’empilement 5!
par I’homothétie euclidienne de centre O et de rapport 1 + A. Pour une raison
qui sera expliquée plus loin, ca n’est pas cet exemple que nous retiendrons en
définitive. Néanmoins, on peut en dégager certaines informations qui seront
utiles:

LEMME 3. Soit, dans le disque hyperbolique, un cercle C de rayon r
et dont le centre est a distance hyperbolique d > r de [’origine. Soit r,
le rayon (hyperbolique) de l’image de C par [’homothétie euclidienne de
centre 0 et de rapport 1+ A .

Si u, = — Logtanh2, alors = |, _,= — =24

FIGURE 2
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Preuve du lemme 3. Notons a le demi-angle sous lequel le cercle C est
vu du point 0 (cf. fig. 2). D’aprés les formules de trigonométrie hyperbolique
dans le triangle rectangle (voir [B], p. 148), on a

sinh 7 = sina - sinh d (*)

Notons & la distance euclidienne du centre hyperbolique de C a

’origine. On rappelle que d = Logifg et que & = tanhg. On en déduit

. 25
que sinh d = =53, de sorte que:

B 26 1 + 82
>\=0_1—82 ] — &2

d . d( 2(1 +d)6 )
— (sinh A) =
dh

v—o dh\1—(1+2)282
= sinhd - coshd .

En dérivant (*) par rapport & A en A =0, il vient donc, comme a est
constant,

dr . ad . sinh r .
coshr - — = sina X — (sinh d) = - X sinh d - cosh d,

dh 1x=0 di A=0 sinh d

de sorte
1 dr cosh d
sinhr dAlr=o0 coshr
Comme
r + o do du 1 dr coshd

u= _LOgtanhEZSr sinh o on a Hlo = _sinhr‘a 0 = T coshr-* D

Voici le résultat qui, joint a la section suivante, nous permettra de
conclure:

LEMME 4. Soit K un compact de % et Sy [I’ensemble des
sommets de S. dans K. Alors il existe une fonction ¢.:S;—> R*
vérifiant:

(i) A"+ V7)o, =0

£ ’ K / ; e (s
(ii) Vs,s" €S, telsque s’ ~s, ona lim;., 2e ()

Pg(s")

Preuve du lemme 4. On observe tout d’abord qu’il existe un compact K’
du disque hyperbolique tel que si € est assez petit alors pour tout ¢ € [0, 1],
tous les cercles de 27! correspondant a des sommets dans S¥ sont contenus
dans K. Ceci résulte du point iii) de la proposition de la section IV et du fait
que le diamétre combinatoire de 77 é est < %, la constante C ne dépendant
que de %.

= 1.
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Considérons maintenant une isométrie hyperbolique j telle que j(K’) ne
contienne pas 0. Notons %, ’homothétie euclidienne de centre 0 de rapport
1 + A. On définit "emplacement 2] (A) comme étant ’image de 57! par
I’application j~! o A, o J.

Avec les notations du lemme 2, on pose

_dug (1)

t
S .
¢, (s) a0 -

@ vérifie i) d’aprés ce lemme. De plus, comme j est une isométrie, on a
d’aprés le lemme 3,
cosh d. (s)

t
S) =
0:(5) cosh r; (7)

ol d!(s) est la distance a I’origine du centre du cercle de j(#°.) corres-
pondant au sommet s. Déja, lim,_ o coshr;(¢) = 1 d’apres le point iii) de
la proposition du IV.

Notons & la distance de 0 a j(K’), et o,c" les centres des cercles de
j(&#°!) images par j de deux cercles tangents de 27, correspondants aux
sommets s et s de S¥.

Alors les longueurs c?é (s) et c?é (s") des cOtés 0o et 0o’ du triangle (0cc”’)
sont minorées par 8§ > 0 tandis que la longueur r;(¢) + rj'(z‘) du c6té oo’
tend vers 0 avec € uniformément en 7. On en déduit

cosh d’ (s)

t
S
im = =1, dou lim (pf( ) =1
e—0 COShdS(S’) e—0 (DS(S,)

4

la limite étant uniforme en ¢, ce qui prouve le point ii). [

VI. INEGALITE DE HARNACK

Le but de cette section est de terminer la preuve du théoréme de Rodin-
Sullivan en démontrant la

PROPOSITION (Inégalité de Harnack). Soit K wun compact d’intérieur
non vide contenu dans % et A,B deux réels vérifiant 0 < A < B.

Pour tout compact K d’intérieur non vide contenu dans K, il existe
une constante C = C(K) possédant la propriété suivante:
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Soit A, wun laplacien discret sur Sf de la forme A;@(s) = c.o(s)
+ Y ci..o(s’) et dont les coefficients vérifient: Vs,s’ € Sf, ve > 0,

s’ ~s
coel[A,B] et —ci.€elA,B].

Soit . une fonction définie sur Sf , @ valeurs positives non nulles et
telle que A,y = 0.

Alors pour tous sommets voisins s,s’ € Sf , ona:

' i) I __C®
P, (s) " )/—Loge

Nous différons provisoirement la preuve de cette proposition, et mon-
trons maintenant pourquoi celle-ci implique le lemme-clé de la section II. Soit
donc K un compact d’intérieur non vide de %. Il s’agit de voir que, grace a
la proposition, si s,s” € SX sont voisins, alors

T
11m~—s—,=1
e—~0 I,

et ce uniformément sur S¥. On part de

0
~s ~s’ _ s s’ °s . s’
Uy — U, =u, —u, + | (uy—u;)dt
Jo
N1 Lolsl
=u, —ul + uﬁ(l——,%)dt.
Jo us
On a
S,
, tanh =
u; — ul = Log =2
>
tanh

avec r§~~ ri’ =0 quand &— 0 uniformément par rapport a s et s ~ s
dans Sy, de sorte que uf — u® — 0.

Soit ¢, la fonction définie dans le lemme 4 de la section V avec un
compact K contenu dans % et dont lintérieur contient K.

Soit y; la fonction définie par u(¢) = ¢’ (s) - y!(s). D’aprés le lemme 1
de V, y, est solution d’une équation du type As,twf; = 0. Comme u,(¢) < 0
et que ¢. < 0, on a que w. > 0. De plus, les coefficients de AE,, sont de
la forme ¢G5, = @L(s) 0. (s") ¢ . Il résulte du point ii) de la proposition du
IV, qu’il existe deux constantes A et B > A > 0 telles que 4 < — Cor < B

et A <c;<B. La proposition de la présente section assure alors que
!
Ye(s)

We(s”)

tend vers 1 uniformément sur Sf ¢t par rapport a ¢ € [0, 1]. D’apres
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t

le point ii) du lemme 4 de V, le quotient possede la méme propriété
ua ( )

Uz (1)

0g(s”)
tend vers O lorsque € — 0 uniformément sur

de sorte que sup \ 1 -
tel0,1]

SX. Comme # < 0 on a donc:

1 Z,.{S, ® o7 1
€ € *s
| ( —‘—S)dt < sup ST X 5 (“‘ug)dt
0 ua [0, 1] us 0
et
1 rs c3€
. - tanh —- tanh ==
— | uldt=u’ - u’=Log > < Log——=
€ € € rs X
0 tanh > tanh 2—63

ou c; est la constante fournie par le point iii) de la proposition de IV.
D’apres les propriétés de la fonction tanh au voisinage de 0, cette derniére
quantité est maJoree par une constante ne dependant pas de €. On en déduit

que lim | fo(u —u Ydt | = 0 uniformément sur K. On en déduit donc que
e—0
Log (tanh —/ tanh 5 u’ — u® tend vers 0 avec g, et ce uniformément

sur K, de sorte que le rapport (tanh / tanh 5 ) tend vers 1. Comme les
rayons r; et r: " tendent vers O lorsque e~ 0 (résulte des points i) et iii)

~S

de la proposition du IV), le rapport ; tend lui aussi vers 1 avec € et

uniformément sur k, ce qui est bien I’énoncé du lemme-clé. La version quan-
titative de ce lemme provient de I’estimation donnée dans la proposition.

Le théoréme de Rodin-Sullivan est donc démontré modulo I’inégalité de
Harnack. Nous terminons donc par la

Preuve de la proposition. Comme annoncé dans l’introduction, nous
obtenons 1’inégalité de Harnack par voie probabiliste. Le début de la preuve
que voici s’inspire de [St2], §9.3 et de [Sp], §13-P1.

Introduisons la matrice de transition P, = [p]s s sk associée au
laplacien A et définie par:

€
ss’

Py = — sis~s'etp;,=0sinon .

N

On a p°,. €]0, 1] et Vs € IX (les sommets intérieurs de S¥), ¥ pi. = 1.

s'~s
De plus, il existe deux constantes o et f ne dépendant que de A4 et B
telles que 0 < o < p. <P < 1, Vg, ¥s e IX, Vs’ € ST tel que 5" ~ s.
Sur 'univers Q, = {® = (0o, ®;, ®;3, ...) € (Sf)N} on consideére la tribu
cylindrique X, engendrée par les événements {w; = si,..., ®;, = s,} ou
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peN* i, .,i,eN, 1 << < ip, € S, ...s8p € Sf. On note X, la
variable aléatoire sur (Q., X.) a valeurs dans Sf et définie par Vo € Q.,
X, (o) = w,.

Fixons un sommet s € Sf . On définit la probabilité Ps sur (Q., X;)
associée a la marche aléatoire partant de s, de la facon suivante:

. K
p,, Stuel;

P.(Xo=s)=1let Ps(X,:1=0|X,=u) = ,
(Xo =) © X ( ) {SM muer

(BX sont les sommets fronti¢res de S¢). En particulier, on décide que les
sommets de BY sont absorbants.

Soit Tpx le premier temps d’atteinte du bord Bf . C’est le temps d’arrét
défini par: T5¢() = inf{n € N tel que X,(w) € Bf}. On a le

LEMME 1. Le temps d’arrét 7tk est fini Ps-presque stirement.

Preuve du lemme 1. Soit h la fonction définie sur Sf par h(s) = Py{tg¥
< +o}. La fonction # est harmonique pour A, et vérifie h(s) =1,
Vs € BX de sorte que, par unicité de la solution du probleme de Dirichlet,
h(s)=1,VseIf. [

Notons maintenant E; I’espérance pour la probabilit¢ P,. Pour toute
fonction harmonique ¥, on a E;¥Y(X,) = ¥Y(s), puis (récurrence):
E,¥Y(X,) = Y(s). Plus généralement, on a le

LEMME 2. Pour toute fonction harmonique Y et pour tout temps
d’arrét 1 vérifiant T <1k, ona: E;¥P(X;)=Y(s).

Preuve du lemme 2. Nous nous contentons ici de résumer la preuve de
J.L. Doob de ce résultat classique (voir [Do], théoreme 2.1, p. 437).

Soit .%#, la tribu sur Q, engendrée par X,,...,X,. On observe que
(P(X:.n); Z,) est une martingale, de sorte que la suite des espérances
E,¥Y(X.,.,) est constante, donc:

EY(X:0n) = EsY(Xonn-1) = -0 = E;W(Xo00) = E; Y (X)) = ¥(s) .

D’autre part, comme Sf est fini, la suite de fonctions W(X.,.,) est bornée,
de sorte que le théoréme de convergence dominée assure que

n— +o

lim E;W(X:.,) = 5 Y (X.)dP;.
{T< + =}

Comme T < Tk qui est presque slrement fini, on en déduit

Y(s)=E¥Y(X,). U
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Terminons la preuve de la proposition. Soit v € Sf un sommet voisin
de s, et 1, le temps d’arrét défini par:

T,(®) = inf{n € N tel que X,(w) = v}.

On applique le lemme 2 au temps d’arrét T = 7,A 1% et a la fonction y, de
I’énoncé de la proposition. Il vient:
Ve (s) = § Ve (X.)dP; = S WE(XTU)dPS+ WS(XTB{;()dPS'

Q {t=1,} {r=15K}

€

Comme . est positive et que X;, = v, on en déduit:

we(S) P WS(U) X PS{T = Tu} ,

Il reste donc a mesurer 1’écart a 1 de P,{t = 1,} lorsque € — 0.

Fixons le sommet v e/ f , et considérons la fonction ® donnée par
®(s) = P;{1 = 1,}: c’est la probabilité qu’une marche aléatoire partant de s
atteigne v avant le bord. On observe que ®(@) =1, que ®(s) =0 si
s € s e B et que ® est harmonique sur S sauf en v et sur B,

Nous allons donner une interprétation électrique de ®. Considérons un
circuit électrique de combinatoire 7 f (i.e. la trace de 7, sur K) tel que la
conductance de I’aréte ss’ soit — c®,,. Si on branche tous les sommets de B
au potentiel 0 et le sommet v au potentiel 1 alors le potentiel au sommet s n’est
autre que @ (s) (voir [D-S], p. 47). En égalant la puissance dissipée par le circuit

et la puissance fournie par le générateur (voir [D-S], p. 61), on a:

1 ;
= L Te[o@s) - ()2 = CUl [00) ~ OB =—
2 5-s R ot

ou C%” (resp. RY%’) désigne la conductance effective (resp. résistance
effective) du circuit entre v et le bord B = BY.

Il reste & évaluer RY;”. C’est I’objet du

LEMME 3. [/ existe une constante c; (K) ne dépendant que de K telle
a —Loge
que VYveS¥ R > TR
Ce lemme termine la preuve de la proposition. En effet, pour tous sommets

ve SXetseSKvoisin de v, on a:

Cl(]?)
R%E = —Loge

C — . .
avec ¢ =1 /2¢,(K), ce qui est bien
[/~ Loge A

1
5 A0 @) - @(5)]2 <

de sorte que 1 — P{t =1,} <

I’estimation annoncée.
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Preuve du lemme 3. On compare le circuit électrique étudié au circuit

standard de combinatoire % X pour lequel les résistances de toutes les arétes

sont égales & 1. On note R’Z la résistance effective du circuit standard

entre v et B = Bf. D’aprés le principe de Dirichlet (voir [D-S], p. 63-64)

on a:
1

v, B
Reff

= min {% Y - o) —o@s)]2 o eRS, 0 =0 sur BX, o(v) = 1}

s~s’

et

~ . B
RU 25~s'

eff

— = min {-1- ) [@(S)—w(S’)]ZimeRS§,®=OsurBf,<P(U)=1}-

Compte tenu des estimations 0 < 4 < — Ci,, < B, on a:

N

Iéu,B
K eff
Vvel,, A< 5 <B.
Reff
La fin de la preuve du lemme 3 repose sur les deux lemmes suivants. On

commence par évaluer R’ dans un cas particulier.

LEMME 4. Si © f est isomorphe a la triangulation d’un hexagone
régulier de c6té N par des triangles équilatéraux unités et si v est le
centre de Z X, alors on a:

DU, B 1
Ry > E LogN .

FIGURE 3

La triangulation % f avec N =3
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Preuve du lemme 4. D’aprés la loi de monotonie de Rayleigh ([D-S],
p. 67),~si I’une des résistances du circuit standard diminue, alors la résis-
tance RY; diminue. Remplagons toute résistance joignant deux sommets
a méme distance combinatoire de v par la résistance nulle, de sorte que, pour
tout k € {1, 2, ..., N}, les sommets a distance combinatoire ¥ de v sont au

méme potentiel. Le circuit standard ainsi diminué est équivalent au circuit
suivant (cf. fig. 4):

2N -6

résistances résistances

résistances

FiGURE 4
Le circuit standard diminué

Comme n résistances de 1 Ohm en paralléle sont €quivalentes a une

résistance de ~ Ohm, la résistance du circuit ci-dessus entre ses deux extré-
N
. 4 4 Y 1 - r »
mités est égale & ) pr—¢ carily a 12k — 6 résistances entre la k& — 1¢ et
k=1

la k¢ génération.
La résistance effective du circuit non modifié vérifie donc:
N 1 1

RuE > ——— > —LogN.
fr ,El 12k -6 12

LEMME 5. Soit d(v) le rayon de la plus grande boule combinatoire
de centre v et contenu dans SX.

Alors on a R%F > - Logd ().

Preuve du lemme 5. @ X contient une sous-triangulation, isomorphe a
la triangulation d’un hexagone régulier de coté d(v) par des triangles équi-
latéraux unités, dont le centre est v, et dont le bord est noté B’. En remplacant
toutes les résistances en dehors de ce sous-circuit par des résistances nulles,
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on améne le bord B’ au potentiel 0. Toujours d’aprés la loi de monotonie
de Rayleigh, on a alors:

1
R4 > R4F > — Logd(v) ,
12
la derniére inégalité résultant du lemme 4. [
Fin de la preuve du lemme 3. Soit K le compact de I’énoncé de la propo-
sition. Rappelons qu ’il est contenu dans I’intérieur de K. Notons 6 la dlstance

hyperbohque de K a D2\K. Pour tout sommet v € S on a d(v) =
donc Reff Z — i Log Se, ce qui est bien le résultat cherche. L]

VII. COMMENTAIRES

1. SUR L’INEGALITE DE HARNACK

L’estimation obtenue ici en n’est ni optimale, ni propre aux

|/~ Loge
réseaux récurrents, comme la preuve peut le laisser penser. Les résultats les

plus significatifs ont été obtenu par Gregory Lawler (voir [Lal] et [La2]).
Soit # une fonction de Z<¢ dans R. On pose

1
Aou(x) = u(x) — > Y u(s)

S~ X

(Ia somme est étendue a tous les voisins de x dans le réseau Z9).

THEOREME 1. [l existe une constante C telle que si u est une fonction

harmonique (pour Ay) positive sur la boule combinatoire de 79 de
centre 0 de rayon N, alors

u(0)
u(l)
Dans le cas de la dimension 3, ce théoréme avait déja été démontré par

R.J. Duffin ([Du]) dans les années cinquante. Dans [L1], G.Lawler étudie
également les opérateurs a coefficients variables:

|C
& —

N

THEOREME 2. Soit A,B deux réels vérifiant 0 < A < B. 1l existe

alors deux réels C et a,a €]0, 1], qui ne dépendent quede A,B et d,
et possédant la propriété suivante:
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Soit L un opérateur de la forme Lu(s) = c,u(s)+ ¥ Css U(S")

s’ ~s
opérant sur les fonctions numériques définies sur Z.9 et dont les coefficients
vérifient: A <c; < B, A —Cso KB, ¢+ ¥ Cor=0 et Cyyr = Cyorr

s’ ~s
rs

ou s" est le symétrique de s’ par rapport @ s. Alors si u est
une fonction définie sur la boule combinatoire de 7.9 de centre 0 de
rayon N, telle que

Lu=0 e u=0,
on a

u(l)

On notera que la condition de symétrie sur les coefficients n’est pas celle
d’un laplacien discret (& savoir ¢y = Cyy).

< —.
N¢

u(0) { | C

2. SUR LE THEOREME DE RODIN-SULLIVAN

Nous citons ici deux généralisations du théoreme de Rodin-Sullivan. Soit
©! le 1-squelette d’une triangulation @ d’un disque topologique et & un
empilement de cercles de combinatoire @ ! plongé isométriquement dans %.
Notons & I’empilement d’Andreev associé a & normalisé comme au début
de II. On note @, (resp. &) la réalisation géométrique de & définie
par & (resp. ?/;), et f#: ©yp — ©4 Papplication affine par morceaux qui
envoie de manic¢re affine chaque triangle de © 4 sur son correspondant
dans @ 5.

Soit € > 0 et supposons que la distance de Hausdorff d.(0 24,0 %)
soit < € ainsi que tous les rayons des cercles de Z2. On a le

THEOREME 1. S§’il existe une constante C telle que pour tous
cercles c,c’ de 2,

1 rayon(c

1 orayon(@

C rayon(c’)
Alors [ converge uniformément sur les compacts de % vers 'uniformi-
sation de Riemann f de %, lorsque ¢ tend vers O.

Ce théoréme a été obtenu en premier par Kenneth Stephenson en 1991
(voir [Stl1] et [St2]). Sa preuve repose sur le lemme de Schwarz-Pick discret
de [B-St2] et le théoréme de récurrence de Polya.
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En 1993, Zheng-Xu He et Burt Rodin ont montré comme le résultat de
rigidité de Rodin-Sullivan permettait de prouver le théoréme 1 (voir [He-R]).
Ils obtiennent également la méme conclusion sous des hypothéses plus faibles:

THEOREME 2. On suppose que les valences des empilements & sont
bornées par un entier positif k.

Alors f.» converge vers f uniformément sur les compacts de
lorsque € tend vers 0.

Leur méthode repose sur des arguments développés par He dans [He].

Rajouté sur épreuves: Laurent Saloff-Coste a récemment amélioré I'inégalité
de Harnack (voir [Sa]). Quant au théoréme de Rodin-Sullivan, il a été consi-
dérablement généralisé par Zheng-Xu He et Oded Schramm (voir [He-Sc]).

BIBLIOGRAPHIE

[AhI] AHLFORS, L. Lectures on quasi-conformal mappings. Van Nostrand, 1982.

[An] ANDREEV, E.M. On convex polyhedra in Lobacevskii spaces. Mat. USSR
Sbornik 10 (1970), 413-440.

[B] BEARDON, A. The geometry of discrete groups. Springer Verlag, 1983.

[B-St1] BEARDON, A.-F. and K. STEPHENSON. The uniformisation theorem for circle
packings. Indiana University Math. J. 39 (No. 4) (1990), 1383-1425.

[B-St2] BEARDON, A.-F. and K. STEPHENSON. The Schwarz-Pick lemma for circle
packings. Ill. J. of Math. 35 (No. 4) (1991), 577-606.

[B-St3] BEeARrRDON, A.-F. and K. STEPHENSON. Circle packings in different
geometries. Tohoku Math. J. 43 (1991), 27-36.

[CV] CoOLIN DE VERDIERE, Y. Un principe variationnel pour les empilements de
cercles. Invent. Math. 104 (1991), 655-669.

[CV-M] CoLIN DE VERDIERE, Y. et F. MATHEUS. Empilements de cercles et approxi-
mations conformes. A paraitre dans les Actes de la Table Ronde de
Géométrie Riemannienne en I’honneur de Marcel Berger, Arthur
L. Besse (éditeur), Collection SMF Séminaires et Congrés N° 1, 1996.

[Do] Doos, J. L. Discrete potential theory and boundaries. Journal of Math. and
Mech. 8 (1959), 433-458.

[D-S] DovYLE, P.-G. and J.-L. SNELL. Random walks and electrical networks. The
Carus Math. Monographs, Math. Assoc. of America, 1984.

[Du] DurrIN, R.-J. Discrete potential theory. Duke Math. Journal 20 (1953),
233-251.

[Ha] HANSEN, L.-J. On the Rodin and Sullivan ring lemma. Complex variables,
Theory and applications 10 (1988), 23-30.

[He] HE, Z.-X. An estimate for hexagonal circle packings. J. of Differential
Geom. 33 (1991), 395-412.

[He-R] HE, Z.X. and B. RoDIN. Convergence of circle packings of finite valence to

Riemann mapping. Communications in Analysis and Geometry 1 (I )
(1993), 31-41.



152

[He-Sc]
[Ko]

[Lal]

[La2]
[M]

[Ma-R]

[St 1]

[St 2]
[St 3]
[Thi]

[Th2]

F. MATHEUS

HEg, Z.X. and O. SCHRAMM. On the convergence of circle packings to the
Riemann map. Preprint, 1995.

KoEBE, P. Kontaktprobleme der konformen Abbildung. Ber. Verh. sdchs.
Akad. Wiss. Leipzig, Math.-Phys. Klasse 88 (1936), 141-164.

LAWLER, G.-F. Estimates for differences and Harnack inequality for
difference operators coming from random walks with symmetric,
spatially inhomogeneous, increments. Proc. London Math. Soc. (3) 63
(1991), 552-568.

—— Interactions of Random Walks. Birkhauser, 1991.

MATHEUS, F. Empilements de cercles: rigidité, discrétisation d’immersions
conformes. These de doctorat de I’Université de Grenoble I, 1994.

MARDEN, A. and B. RobpiN. On Thurston’s formulation and proof of
Andreev’s Theorem. In: Computational Methods and Function theory.
(Ruschewegh, Saff, Salines, Varga, eds.) Lecture Notes in Math.
Springer-Verlag 1435 (1990), 103-115.

RobiN, B. On a problem of A. Beardon and K. Stephenson. Indiana Univ.
Math. Journal 40 (N° 1) (1991), 271-275.

RobpIN, B. and D. SurLivaN. The convergence of circle packings to the
Riemann mapping. J. of Diff. Geometry 26 (1987), 349-360.

SALOFF-COSTE, L. Some inequalities for superharmonic functions on graphs.
Preprint, 1995.

SPITZER, F. Principles of Random Walks. Graduate texts in Math., Springer-
Verlag, 1976.

STEPHENSON, K. Circle packings in the approximation of conformal
mappings. Bull. Amer. Math. Soc. 23 (Oct. 90), Research
Announcements).

—— Thurston’s conjecture on circle packings in the non hexagonal case.
Preprint, University of Tennessee (Knoxville), 1991.

STEPHENSON, K. A probabilistic proof of Thurston’s conjecture on circle
packings. Preprint, 1993.

THURSTON, W. The geometry and topology of 3-manifolds. Princeton notes,
Chap. 13, 1978.

—— The finite Riemann mapping theorem. Invited talk, An international
Symposium at Purdue University on the occasion of the proof of the
Bieberbach Conjecture, March 1985.

(Recu le 2 février 1995)

Frédéric Mathéus

ENS Lyon

UMPA

UMR 128

46, Allée d’Italie

69364 Lyon Cedex 07

E-mail: fmatheus@umpa.ens-lyon.fr




	EMPILEMENTS DE CERCLES ET REPRÉSENTATIONS CONFORMES: une nouvelle preuve du théorème de Rodin-Sullivan
	I. Introduction
	II. Le Théorème de Rodin-Sullivan : ÉNONCÉ ET SCHÉMA DE LA PREUVE
	IV. Estimations à priori des rayons
	V. Changement de variable
	VI. Inégalité de Harnack
	VII. Commentaires
	1. Sur l'inégalité de Harnack
	2. Sur le théorème de Rodin-Sullivan

	...


