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L'Enseignement Mathématique, t. 42 (1996), p. 125-152

EMPILEMENTS DE CERCLES

ET REPRÉSENTATIONS CONFORMES:

une nouvelle preuve du théorème de Rodin-Sullivan

par Frédéric Mathéus

I. Introduction

Répondant à une question posée par W. Thurston en 1985 (voir [Th2]),
Burt Rodin et Dennis Sullivan ([R-S]) ont montré comment les

empilements de cercles permettaient de construire des approximations quasi-

conformes de l'uniformisation de Riemann d'un ouvert simplement connexe

borné de C. Leur méthode repose sur un résultat de rigidité, la rigidité de

l'empilement hexagonal standard (voir [R-S]) dont la preuve a été simplifiée

par B. Rodin et Z.X. He (voir [R]).
Dans [CV-M], nous utilisons, avec Yves Colin de Verdière, les empilements

de cercles pour construire une méthode générale d'approximation, sur un
compact, des fonctions holomorphes dont la dérivée ne s'annule pas. Le but
de ce travail est de comprendre comment les idées développées dans [CV-M]
permettent de retrouver le théorème d'approximation de Rodin-Sullivan grâce
à une estimation quantitative du comportement asymptotique des rayons
énoncée à la fin de la section II.

En particulier, une méthode d'homotopie analogue à celle développée dans

[CV-M] permet d'étendre simplement le lemme de Schwarz-Pick aux
empilements immergés dans le plan hyperbolique (section III), lemme qui est

essentiel pour obtenir un contrôle a priori des rayons (section IV). Quant
aux fonctions harmoniques positives qui apparaissent naturellement, elles

vérifient une version discrète de l'inégalité de Harnack (section VI) que nous
établissons par voie probabiliste, et qui donne l'estimation des rayons
cherchée.
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II. Le Théorème de Rodin-Sullivan:
ÉNONCÉ ET SCHÉMA DE LA PREUVE

Soit ju un ouvert simplement connexe borné de C et zo*Z\ deux points
de %. Notons ^ £(C) la triangulation de C par des triangles équilatéraux
de côté 2s dont l'ensemble des sommets est z0 + 2sZ + 2zein/3Z, et Wz{°à)
l'ensemble des triangles de 2f£(C) contenus dans Notons W\{°U) la

composante connexe de la triangulation ^s(^) contenant Zo- Si ^l(%)
est disconnectée par la suppression de certains sommets, on supprime toutes
les composantes ne contenant pas z0 ainsi obtenues. La sous-triangulation
de f g°( %~) fournie par ce procédéJ), notée ^ £, est une triangulation d'un
disque topologique. On note ^£ l'ensemble des cercles du plan de rayon 8

et centrés sur les sommets de ^ £. On observera que les cercles de ^ ne sont

pas forcément contenus dans y//.

Koebe ([Ko]) puis Andreev ([An]) et Thurston ([Thl], [Ma-R]) ont
démontré qu'il existe alors une famille ^£ de cercles bordant des disques

d'intérieurs deux à deux disjoints, contenus dans le disque unité D de C,
et vérifiant:

i) J^£ est en bijection avec ^£;
ii) deux cercles de %fz sont tangents si et seulement si les cercles

correspondants dans le sont;

Iii) les cercles de correspondants aux cercles du bord de ^ sont

tangents au cercle unité.

Une telle famille (cf. fig. 1) s'appelle un empilement de cercles d'Andreev de

combinatoire où désigne le 1-squelette de ¥e. Elle est unique à

transformation de Möbius près. Elle sera donc parfaitement déterminée si

on demande que soit vérifiée une condition de normalisation que nous
formulons ci-après.

Soit /£ l'application définie de la manière suivante:

— si z est le centre d'un cercle de <^£, alors /£(z) est le centre du cercle

correspondant de ^£;
— on prolonge /E à chaque triangle de ^£ en une application affine.

La condition de normalisation est alors:

iv) Mzo) 0 et fe(zi) > 0.

Voici une autre façon de la définir: on ne conserve que les triangles T de
v/£ (%) pour lesquels il existe une suite de triangles de V £ V/) telle que chacun ait une
arête commune avec le suivant, et reliant T à un triangle contenant zq.
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Enfin, notons / : T/ D l'uniformisation de Riemann de normalisée

par f{zo) 0 et f(zx) > 0. Rodin et Sullivan ont montré le

Théorème. Lorsque s tend vers 0, fe converge vers f
uniformément sur les compacts de %.

C'est ce théorème que nous nous proposons de redémontrer ici. La

première étape est la

Proposition. Il existe une constante K ^ 1 telle que chaque fe soit

K-quasiconforme. De plus, si une sous-suite (/£/) converge uniformément

sur les compacts de % vers une fonction g, alors g est un homéo-

morphisme K-quasiconforme de % sur D.

La preuve utilise les arguments de [R-S] qui sont désormais classiques et

que nous reproduisons ici. Ils reposent sur les deux lemmes géométriques

suivants :

Lemme de l'anneau («Ring Lemma» dans [R-S]). Soit c un cercle de

rayon p et cu...,cnn cercles tangents extérieurement à c, d'intérieurs
deux à deux disjoints, tels que C\ soit tangent à cj+ x et cn tangent
à c i.

Il existe une constante xn > 0 ne dépendant que de n telle que chaque
cercle c,( 1 ^ ^ h) ait un rayon au moins égal à xnç>.

Preuve du lemme de l'anneau. Fixons n. Tout d'abord, le rayon du plus
grand cercle extérieur, par exemple cj, est minoré par une constante ne

dépendant que de n (obtenue lorsque tous les cercles extérieurs ont même

rayon). Le rayon d'un cercle c2 tangent à cq est également minoré universellement,

car si il était trop petit, une chaîne de n - 1 cercles partant de c2 ne

pourrait pas s'échapper de l'interstice entre cx et c. On achève la preuve en

répétant le raisonnement pour le cercle c3 tangent à c2 et ainsi de suite.

Le lecteur poura consulter [Ha] pour des estimations de la constante xn.
Une suite de cercles cq, cn deux à deux distincts de est une chaîne

lorsque c,- et ci+ x sont tangents si 1^/^/7-1, ainsi que c„ et cx si ces

derniers ne sont pas tangents au cercle unité. Le second lemme est le

Lemme des chaînes séparantes («Length-area lemma» dans [R-S]).
Soit c un cercle de et sx, ...,s> k chaînes disjointes qui séparent
chacune c de l'origine et d'un point du cercle unité. Notons nx, ...,nk
les longueurs combinatoires de ces chaînes. Alors on a:

rayon (c) ^ —
Vrt + r2+ + rk
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Figure 1

(aimablement fournie par Ken Stephenson):

trois empilements dans Jâ et les trois empilements d'Andreev associés dans D
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Preuve du lemme des chaînes séparantes. Notons p/j, 1 ^ i < nj9 les

rayons des cercles de la chaîne Sj. D'après l'inégalité de Schwarz, on a:

/ nJ \2 "J
9I Py, / < nJ E Pi, / •

nj
Soit lj-2 £ p/)7 la longueur géométrique de la chaîne Sj. On a donc

/= i

il n j kl2 Ä- nj

- ^4 l p2,, donc S - E E Pi, / ^ 4

nj i= i y=i nJ y i / i

de sorte que / minj/j, 4} vérifie:

* 1

/2 E - < 4

i= i nj

A cause de l'hypothèse de séparation, / est plus grand que le diamètre de c,

d'où le résultat.

Preuve de la proposition. Notons Wz la triangulation obtenue à partir
de ^P8. Le lemme de l'anneau appliqué avec n 6 montre que les angles des

triangles de We sont minorés par une constante > 0, de sorte que l'application

/e envoie des triangles équilatéraux sur des triangles dont la distorsion
est bornée par une constante indépendante de s. Ceci assure l'existence d'une
constante K telle que pour tout s, /£ est iCquasiconforme.

Notons (resp. D&) le domaine de définition (resp. l'image) de /£.
(resp. De) n'est rien d'autre que la réunion des triangles de P^£ (resp.

<^e). Il est clair que tout compact de % est contenu dans ^£ pour s

assez petit.
Comme les /s sont iC-quasiconformes, et que /e(zo) 0, Vs, elles

forment une famille équicontinue sur les compacts de et donc une famille
normale pour la topologie de la convergence uniforme sur les compacts
de (voir [Ahl], théorème 1, p. 51). Examinons les propriétés de n'importe
quelle fonction g limite d'une sous-suite {/e.}. Déjà, g est définie sur % et

est TCquasiconforme; g est injective car chaque /s l l'est. Montrons main-
o

1

tenant que l'image de g est D tout entier.
Il suffit pour cela de montrer que tf^r(öD8 ; 0Z>) tend vers 0 avec

s (d//r désigne la distance de Hausdorff). Or, lorsque s - 0, chaque cercle c
du bord est séparé de l'origine et d'un point du cercle unité par de plus
en plus de chaînes de longueurs ^ 6, 12, 18... Le lemme des chaînes séparantes
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et la divergence de la série harmonique prouvent que le rayon de c tend

vers 0 avec 8, d'où le résultat.
Toute fonction g limite de /e est donc un homéomorphisme A'-quasi-

o
1

conforme de ^ sur D.

Le but des sections qui suivent est de prouver le résultat crucial suivant:

Lemme-clé. Soit C un compact de c et c' deux cercles

tangents de centrés dans C et c, c' les cercles de qui leur

correspondent.

Alors ^yoM^ ten^ vers 1 lorsque 8 - 0, uniformément sur C.

Signalons que c'est dans la preuve de ce lemme-clé donnée par Rodin

et Sullivan qu'intervient leur résultat de rigidité de l'empilement hexagonal

standard, argument que nous nous proposons justement de contourner.
La méthode que nous allons suivre permet d'ailleurs d'obtenir un résultat

plus fort:

Version quantitative du lemme-clé. Avec les mêmes notations, il
existe une constante M ne dépendant que de C telle que

rayon(c)
^

rayon (c')
M

< —-—
y - Loge

uniformément sur C.

Nous terminons cette section en montrant comment le lemme-clé permet
de conclure. Ce lemme montre que la restriction à C de chaque /e envoie

des triangles équilatéraux sur des triangles dont les angles tendent vers

f lorsque 8 - 0, de sorte que toute limite g des /e est 1-conforme,
c'est-à-dire holomorphe sur (voir [Ahl], théorème 2, p. 23).

Récapitulons: la famille {/e} possède au moins une sous-suite convergeant
uniformément sur les compacts de et la limite de toute telle sous-suite est

O

une bijection holomorphe de sur D envoyant Zo sur 0 et Z\ sur l'axe réel

positif, c'est-à-dire est l'uniformisation de Riemann / de ^ ainsi normalisée.

Le théorème en résulte aussitôt.

III. Déformations d'empilements de cercles

On va construire une famille continue d'empilements de cercles

o,i] telle que <^E et et on va étudier la façon
dont varient, en fonction de t, les rayons des cercles de
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Comme l'ouvert % est borné, il est tout à fait licite de supposer que

% est contenu dans D et que Zo 0 et Zi>0, de sorte que tous les

empilements que l'on va considérer seront contenus dans le disque unité D.

A partir de maintenant nous adoptons le point de vue de la géométrie

hyperbolique: D est muni de la métrique hyperbolique ds2 (14_j^[2)2 à

courbure - 1. Tout cercle hyperbolique est un cercle euclidien (mais les centres

ne sont pas les mêmes). En particulier, les cercles du bord d'un empilement
d'Andreev sont des horocycles. C'est ce dernier fait qui motive l'emploi de la

géométrie hyperbolique.
Il faut maintenant généraliser la notion d'empilement de cercles.

Soit W une triangulation (finie ou infinie) d'un disque topologique et S

l'ensemble des sommets de W. Soit r (r5)seSe(RÎ)5, On munit chaque

triangle de g? de la métrique hyperbolique à courbure - 1 qui au côté ss'
affecte la longueur rs + rs>. On obtient ainsi une variété riemanienne à

courbure - 1 à singularités coniques, notée Wr. Soit s un sommet d'un
triangle T de W. Si a (s, T) désigne l'angle en s dans le triangle T et si s

est un sommet intérieur, alors la courbure en s est:

Ks(r)2n~£ a T)
s e T

La famille de cercles & {Cs; s e S}, où Cs est le cercle de Wr de

centre s de rayon rS9 possède la propriété suivante: les cercles Cs et Cs> sont
tangents si et seulement si l'arête ss' appartient au 1-squelette de la
triangulation ïï).

Si, pour tout sommet intérieur s, on a Ks(r) 0, alors la variété Wr est

immergée isométriquement dans le disque de Poincaré Dhyp (mais non
plongée a priori). On dit alors que % est un empilement de cercles de

combinatoire F1. De plus, ^ est un empilement d'Andreev si et seulement
si pour tout sommet s du bord de g?, rs + oo.

Remarque. Un empilement d'Andreev est plongé dans le disque de
Poincaré. En effet, la variété immergée ?or est alors à bord convexe, donc
plongée d'après le théorème du §3 de [CV].

Le résultat suivant, démontré par Yves Colin de Verdière dans [CV] §5,
est aussi le théorème 3 de [B-St2]:

Théorème. Soit W une triangulation finie d'un disque topologique,
S (resp. B, I) l'ensemble de ses sommets (resp. sommets du bord; sommets
intérieurs).

Alors pour tout (rs)s 6 B e]0, + oo]u existe un unique (r?)5e/
e (R*)7 tel que la variété SF, soit immergée isométriquement dans Dhyp.
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On notera que le théorème d'Andreev-Thurston est un cas particulier de

ce théorème (faire rs +00,Vs e B).
Soit O : [0, 1[ [1, + 00 [, t 0(0 un difféomorphisme prolongé par

O(l) +00. Nous reprenons maintenant les notations de la section II.
Pour t e [0, 1], Pf g

est défini par les trois conditions suivantes:

i) la combinatoire de est W\\

il) si rz est le rayon d'un cercle du bord de le rayon du cercle

correspondant de est rz(t) &(t)rz;
iii) la condition de normalisation est la même que pour %fz.

Notons Sz (resp. BZ,IZ) l'ensemble des sommets (resp. sommets du bord,
sommets intérieurs) de Wz. Pour 5 e 5£ on pose :

Î-f
00 ^ ^ 5

- Log tanh ^
r| smh o 2

(c'est la variable utilisée par Yves Colin de Verdière dans [CV]). On va

interpréter la famille {^Wg(0}J65 comme solution d'un problème de

Schrödinger discret.

Notons wf (K)seBee[0, + <»[**(resp. e [0, + oo['s)
une famille de réels indexée par Bz (resp. /8). Dans [CV], Yves Colin
de Verdière construit une fonctionnelle F: R+8 x R7+e R qui possède la

propriété suivante: si djF désigne la différentielle partielle de F par rapport
aux variables indexées par Iz, alors on a <i/F(wf, u[) 0 si et seulement

si la collection des rayons {^_1(Wg)}J6s£ définit un empilement de cercles

de combinatoire g? I.
Signalons que c'est ce choix de variable us& qui confère à la

fonctionnelle F certaines propriétés — convexité, — lui assurant l'existence d'un
point critique.

Explicitons la dérivée d/F. Pour ce faire, à tout vecteur uz (use)seSe

e R+E on associe la variété hyperbolique Wrz à courbure - 1 à singularités

coniques définie plus haut avec rz (rs&)seSz où rsz ¥ ~1 (use). Notant
Ks(ue) la courbure en s on a:

dIF(ue)£
S e h

Dans le cas présent, pour tout t e [0, 1], la collection des rayons
{^e(0}sesE définit un empilement de cercles de combinatoire Wz de sorte

que l'on a, en posant us&(t) ¥(rg(f)),

Vf e [0,1], drF[uf(t)
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Par dérivation, il vient:

duF[ul(t),u[{t)\ ù[(t)+ dBIF[uBz{t), u[(t)] ùf(t) 0

d'où:

We[0, 1], I f I 8^[";(°] 0

sei, 1 sr e S £ OU£ I

\ dc(s, s') ^ 1 /

(dc désigne la distance combinatoire dans le graphe S?E). On rappelle que

d'après la formule de Gauss-Bonnet, l'aire d'un triangle hyperbolique T

d'angles a, ß, y est A(T) n - a - ß - y, de sorte que, pour tout sommet

intérieur 6", on a:

8KM dKs
+ y &Ks_ y SA(T)

s'eSE duSe duse s'~s 8Wg 735 8Wg

(on note s' ~ s pour s' voisin de s). Pour alléger les notations, on pose,

pour s e 7e, et s' e Se voisin de s,

8Ks v dA(T) 8Ks
cs 1- L et css> ;

8 use rts 8 usB 8 u\

Soit b: Be -+ R une fonction numérique. A toute fonction cp e R7e prolongée

par b sur £s on associe les fonctions A^'rcp Aöcp e RL et JAp e RL définie
respectivement par : pour tout s e /8,

(Aft(p) (s) cs(p(5) + Y, C„'Cp(s')
s' ~ s

et (Ftp) (s) F(s)cp(s) (- Y —9(5)
\ 8us

Les relations suivantes:

G + ^ css' — 0, css' < 0; cs > 0; c55/ cS'S
s' ~ s

font de A0 un laplacien discret sur /E, c'est-à-dire un endomorphisme
symétrique défini positif de RA. Le fait que F(,s) soit > 0 fait de A0 + Fun
opérateur de Schrödinger discret sur 7e (comparer avec [CV-M], section V).

En résumé, le vecteur ùs(t)(ME(0Le$s est solution de l'équation
de Schrödinger suivante:

Aj' 'ws + VÛe 0

ùl(t)b(s) ®'(0 • T'[rj(0] • rj(0) si 5 e Bt.
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En particulier, use(t) < 0 si s e Be (car O' > 0 et VFA < 0). Or on dispose
d'un principe du maximum pour les opérateurs de Schrödinger discrets:

Lemme. Soit pour tout s e Ie et s' e S£ voisin de Iz un réel
bSS' e]0, 1[ tel que £ bss> < 1, Vs.

s' ~ s

Soit cp e R5e une fonction telle que Vs e 7e, (p (s) £ bSS'(p(s').
s' ~ s

Alors, si (p est ^ 0 sur Be, (p est également ^0 sur 7e. Si

déplus cp s'annule sur 7e, alors cp est nulle sur Se.

Preuve du lemme. On observe tout d'abord que si (p(5) > 0 pour un
s e Is alors il existe s' — s tel que cp(s') > (p(s), car, dans le cas contraire,
on a

<p(s) E ô„<<p(s') ^ I £ bss' <P(V < <P(X) qui est absurde.
s' ~ s y s' ~ S J

De proche en proche on aboutit à un sommet sx e Bz tel que (p(si)
> cp (.s) > 0, de sorte que cp ^ 0 sur Bz implique cp ^ 0 sur 7e. Sachant

maintenant que cp est ^0 sur Se, supposons qu'il existe s e Ie tel que
(p(s) 0. Il est clair que (p(s') 0, Vs' ~ De proche en proche, on
montre que cp est nulle sur Se.

On applique le lemme aux coefficients bSS' - Cs
> 0 et on déduit

que pour tout s e Iei ùs£(t) < 0. Comme use(t) rse(t) x ^'[^(O] Que

x¥f est < 0 on déduit que rsF(t) est > 0, V5 e 7e, W e [0, 1]. En résumé,

lorsque t croît de 0 à 1, les rayons hyperboliques de tous les cercles de

augmentent strictement.
Le fait que nous venons de mettre en évidence est l'aspect essentiel d'un

résultat, le lemme de Schwarz-Pick discret, qui mérite d'être formulé
— et démontré — de façon autonome. Outre le fait que nous utiliserons ces

résultats dans la prochaine section, signalons qu'il a fait l'objet de travaux
d'Alan Beardon et Kenneth Stephenson (voir [B-St2]).

Soit S l'ensemble des sommets d'une triangulation W d'un disque
topologique. Soient r (rs)seS et r' (r's)seS e (R%) et Wr, Wr> les variétés

hyperboliques à courbure - 1 à singularités coniques définies comme

précédemment à partir de r et r\
On note Cs (resp. C's) le cercle de Wr (resp. §v) de centre s et de rayon

rs (resp. r's). On suppose que les familles 7? {C^}5e5et c£' {C^}56iS sont
des empilements de cercles, c'est-à-dire que Wr et Wr> sont immergées

isométriquement dans le disque de Poincaré. Rappelons que et cë' ne

sont pas supposés plongés (comparer à [B-St2]).
On a la
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Proposition (Lemme de Schwarz-Pick discret dans [B-St2]).

i) (monotonie). Si rs ^ r's pour tout sommet frontière s, alors

rs ^ r's pour tout sommet intérieur s. De plus, si rSQ r'SQ pour un

sommet intérieur s0 alors Vs e S, rs r's;

ii) (lemme de Schwarz discret). Si fP est un empilement d'Andreev

(i.e. r's + oo pour s e B) alors rs ^ r's, Vs e S;

iii) (lemme de Pick discret). Si cé" est un empilement d'Andreev
alors la distance entre deux sommets s0 et s{ dans Wr est inférieure
à la distance entre les deux sommets correspondants dans Wf*.

Preuve de la proposition. Prouvons le point i). On réalise la variété

§V, comme le temps 1 d'une déformation {Wr(t) ; t e [0, 1]} de la

variété Wr comme ci-avant, à ceci près que les rayons frontières de Wr(f)
sont définis par

us(t) V(rs(t)) (1 - t)W(rs) + M(r's)

Pour tout t, il existe un opérateur de Schrödinger discret À' + Vt sur
(le 1-squelette de §?) tel que:

'

A'ii(f) + V'ù(t) 0

ùs(t) *F(r^) - *F(rs) si s e B.

Comme ¥ est décroissante, on a us(t) ^ 0, Vs e B. D'après le principe du
maximum pour les opérateurs de Schrödinger on a également ùs(t) ^ 0

pour tout sommet intérieur 5-, donc ^ *F(rs) donc r's ^ rs pour ces

sommets. De plus, rSQ r'SQ pour un sommet intérieur s0 implique
ùSo(t) 0, Vt e [0, 1] donc, d'après le même lemme, ùs(t) 0, Vt, Vs e S

et donc rs r's, Vs e S.

Les points ii) et iii) résultent de (i).

IV. Estimations à priori des rayons

Soit K un compact d'intérieur non vide contenu dans et Sf l'ensemble
des sommets de contenus dans K. On note re (rsE)seSe la collection
des rayons de l'empilement d'Andreev Le but de cette section est
de démontrer la
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Proposition. Il existe trois constantes c1} c2, c3 ne dépendant que
de K et % telles que, si s est assez petit, alors, pour s et
s' g Sf, et t g [0, 1],

l) 1 ^ Tô ^ Cl '

il) JL ^ C2 >

re (0

iU) 71 < re(0 ^ C3£.

Cette proposition a été mise en évidence par Kenneth Stephenson: c'est

le lemme 3 de [Stl] et le lemme de comparaison 8.4.1 de [St2]. Voir aussi

le lemme 8.3.1 de [St3]. Nous en reproduisons ici la démonstration, en

suivant [St2]. Celle-ci est assez technique, et utilise à plusieurs reprises le lemme

de Schwarz-Pick discret de la section précédente. Il faut tout d'abord un

Lemme de distorsion («Distortion Lemma» 8.3.1 de [St2]). Soit
a g ]0, 1 [ et 8 g]0,^[. Soit A le disque ouvert de centre Ç et de

rayon a supposé contenu dans le disque unité. Soit 77 l'ensemble des
in

cercles de rayon s contenus dans À et centrés sur Ç, + 2sZ + 2se 3 Z.
Soit Co le cercle de 77 entré en Ç et C0 le cercle de l'empilement
d'Andreev 77 de 77 dans D correspondant à C0 et supposé centré

en 0.

Alors on a p ^ a
_s64s, où p désigne le rayon euclidien du cercle C0.

Preuve du lemme de distorsion. Il suffit de traiter le cas où Ç 0 et

a= 1, le cas général s'en déduisant aussitôt. Notons 6 77 (resp. 8^0
l'ensemble des cercles du bord de 77 (resp. 77). Soit v77 l'homothétique
de 77 dans l'homothétie (euclidienne) de centre 0 et de rapport v. Soit
Cs un cercle de 877 et Cs, C's les cercles qui lui correspondent dans les

empilements 77 et v77. Notons p5 le rayon euclidien de Cs. Les rayons
euclidiens de Cs et C's sont respectivement s et vç>s. On note enfin rs et

r's les rayons hyperboliques de Cs et C's (le rayon hyperbolique de Cs

vaut + oo). Nous allons démontrer que, lorsque v 1 - 64s, alors r's ^ rs.

Commençons par minorer rs. On observe que §77 est contenu dans

l'anneau {1 - 8s<|z|< 1} sur lequel la densité de Poincaré est minorée

par i _
(12_8e)2> de sorte que l'on a:

2s 2s 1 1 1

" 1 - (1 - 8B)2
~

16e - 64B2
~

8 1 - 4B 8
'

A présent, majorons r's. Comme 8 77 est contenu dans l'anneau

{1 - 8s < | z | < 1}, il en est de même pour 8^ d'après le lemme de
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Schwarz-Pick discret, de sorte que p5 < 4s, donc le rayon euclidien de C's

vérifie vp5 < 4sv. Par ailleurs, C's est contenu dans le disque {| z \ < v} sur

lequel la densité de Poincaré est majorée par en déduit clue

2 _ 2 8s v 8s 1

r' ^ x vp5 ^ x 4sv x ^ -
l — y2 1— v2 1—v 1 + v 1—v 8

si v 1 — 64b

Nous pouvons conclure: si v 1 — 64s, alors pour tout sommet frontière

5, on a r's^rs. D'après le principe de monotonie du lemme de

Schwarz-Pick discret, on a r'0 ^ r0 ou r'0 et r0 désignent les rayons
hyperboliques des cercles C'0 et C0. Ces cercles étant centrés en 0, on a la

même inégalité pour leurs rayons euclidiens, à savoir vp0 ^ £, d'où

s
Po

"̂1 - 64s

qui est bien l'inégalité annoncée.

Le lemme que voici, qui peut paraître surprenant au premier abord, est

vraiment spécifique à la géométrie hyperbolique (voir [B-St2]):

Lemme. Soit, dans le disque de Poincaré, un cercle C de rayon r,
et C Cn, n cercles tangents extérieurement à C, d'intérieurs deux
à deux disjoints, tels que Cj soit tangent à Cj+ j et Cn à Cx.

Alors on a r < \fn.

Preuve du lemme. Le cercle C est contenu dans un polygone géodé-
sique P à n côtés dont les sommets sont les centres des cercles Cx, C„,
donc:

aire(C) < aire(P) ^ (n - 2) tc

et le résultat découle de la formule donnant l'aire d'un disque hyperbolique
en fonction de son rayon: aire(C) 47isinh2 de sorte que

7ir2 471 |-j ^ 471 sinh2 < (n - 2)n < nn

Remarque. L'inégalité optimale est r ^ - Log sin ^ (cf. [B-St3], p. 34

et [M], p. 75).

Preuve de la proposition. Prouvons i). D'après le principe de monotonie
du lemme de Schwarz-Pick, on a Vf e [0, 1], rs& ^ rse(t) ^ rse de sorte qu'il
suffit de comparer les rayons hyperboliques des cercles de et ^8.
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Posons 8 distCK; C\ ^). On applique le lemme de distorsion au disque
À {| z - s | < ô} où 5 est un sommet fixé de Sf. L'ensemble ^ défini
dans l'énoncé du lemme est un sous-empilement de le cercle C0 est ici
le cercle Cse et le cercle C0 est noté C'ss. Le rayon euclidien p^ de ce dernier
cercle vérifie donc

1 2 ô
— ^ ^ — des que s ^
s 0 - 648 ô 128

Revenons aux empilements et Quitte à appliquer une transformation

de Möbius à on peut toujours supposer que Css est centré à

l'origine. Notons p^ le rayon euclidien de Cs&. Comme ^ est un sous-

empilement de l'empilement il résulte du lemme de Schwarz-Pick i)
et ii) que le rayon hyperbolique de est inférieur au rayon hyperbolique de

Cg5. Comme ces cercles sont centrés en l'origine, ceci reste vrai pour leurs

rayons euclidiens. On en déduit:

2e
Ps ^ Ps ^ •

O

Comme Cse est centré en 0 et que rse ^ ]/6 d'après le dernier lemme, on

déduit que rse ^ où a
~

j Par ailleurs, comme s < rs& on a

77 < ' "7" ^ 5(1
!a2) ce fournit une constante cx ne dépendant que

de °à et K.

Prouvons ii). Soit s et s' e S*, t e [0; 1] et b
l _ ^_ —. Dans la

succession d'inégalités qui suit, nous utilisons respectivement: le lemme de

Schwarz-Pick discret; le résultat i) ci-dessus; la comparaison des rayons euclidiens

et hyperboliques de <^8 dans la région {| z \ < 1 - ô} ; le fait que le

rayon euclidien d'un cercle est toujours inférieur à son rayon hyperbolique;
et le principe de monotonie:

rse(t) ^ rse ^ Ci • rse < cx • b • s ^ cx • b • rf ^ cx • b • rse' (t)

de sorte que c2 cx • b convient.

Enfin, prouvons iii). Fixons s e S*, et soit b la constante introduite
ci-avant. On a rs& ^ b8. D'après l'inégalité i), on a: rsz(t) ^ rse ^ cx

- rse ^ Ci • b&. Comme 8 ^ rse ^ rs&(t), on a l'inégalité cherchée avec

c3 Cl • b(= c2).
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V. Changement de variable

L'objet de cette section est de ramener l'étude de ue e R5* qui est

solution d'une équation de Schrödinger discrète, à celle d'une fonction
harmonique sur Se, solution d'un problème de Dirichlet. Le point de départ
de cette réduction est le

Lemme 1. Soit cp : Se -> R une solution d'une équation de Schrödinger
discrète du type (À + V) (p 0 où V : S& R + et A (p) (s) c5 (p (s)
+ E ^-(pO'), Vs e /£ avec cs > 0, css< < 0, css, cs>s et Vs e Ie,

s' ~ s

cs + £ css> 0. Soit (poiS'g-^R* une autre fonction vérifiant
s' ~ s

(A + K)q>o 0.

Alors la fonction *¥ (p/(p0 est solution de À1^ 0, où l'opérateur
À est donné par Â^O) c^O) + £ Css'^iß')* les coefficients cs

s' ~ s

et cSS' vérifient les mêmes propriétés que les cs et csS* et sont donnés

par: css. (p0(s)(p0(s') css, >

Preuve du lemme 1. Elle est élémentaire: sachant que (A + V) ((po^F) 0,
on a V5e/£,

Cj<Po($)¥($) + X + V0 (*)
s' ~ S

Comme (A + L)(p0 0, on a

cs(po(s) + FO)cp0(s) - Y, <Vs'<PoCO
s' - s

d'où, en reportant dans (*), I cjs.cp0(s') [¥(s')-¥(*)]= 0, d>où
s' ~ S

AV(s) 0 avec <V - <V>'(Pc(.v')(p:,(.v) et cs - £ ç„-(p0(s')<Po(^), ce
S' ~ s

qui prouve le lemme 1.

Pour appliquer ce lemme à cp we et à l'opérateur A^' + obtenu à
la section III, il faut maintenant construire une solution explicite cp0. Voici
un procédé général:

Lemme 2. Soit 't (X), X e] — a, a[ une déformation continûment
dérivable de l'empilement telle que 3tf[, et m8
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e [0, +oo[5e la fonction définie sur Sz associée aux rayons de l'empilement

%f[(X).
Alors on a (A^ ' + V) |x

_ 0
0.

Preuve du lemme 2. Soit FiR^xR^R la fonctionnelle
construite par Yves Colin de Verdière dans [CV] et évoquée à la section III.
Puisque pour tout U]-a,a[, %f[(X) est un empilement de cercles, on a

drF(u^u[ x) 0. En dérivant par rapport à X, il vient:

wi i r v / v &Ks[ue \\ du A
VXe]-a, <x[, L, £ ^ • —^\du\ 0.

selt \ tfc(.s | s) ^ 1 ÖWg dX J

En X 0, on a:

Vï6/ =0
duse \ dX )x o s'~s ô< \ dX /x o

c'est-à-dire exactement (A^ ' + V) • (~yr) X_Q
— 0- D

Il reste maintenant à fabriquer une déformation explicite de l'empilement

En guise de premier essai, on va examiner l'image de l'empilement

par l'homothétie euclidienne de centre 0 et de rapport 1 + X. Pour une raison

qui sera expliquée plus loin, ça n'est pas cet exemple que nous retiendrons en

définitive. Néanmoins, on peut en dégager certaines informations qui seront
utiles :

Lemme 3. Soit, dans le disque hyperbolique, un cercle C de rayon r
et dont le centre est à distance hyperbolique d > r de l'origine. Soit r%

le rayon (hyperbolique) de l'image de C par l'homothétie euclidienne de

centre 0 et de rapport 1 + X.

0. T |_ rl r duX coshd
Si ux- Logtanhy, alors TT k o " •

Figure 2
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Preuve du lemme 3. Notons a le demi-angle sous lequel le cercle C est

vu du point 0 (cf. fig. 2). D'après les formules de trigonométrie hyperbolique

dans le triangle rectangle (voir [B], p. 148), on a

sinh r sin a • sinh d (*)

Notons 8 la distance euclidienne du centre hyperbolique de C à

l'origine. On rappelle que d Logfrf et que 5 tanh^. On en déduit

que sinh d 7^2, de sorte que :

dX
(sinh h)

d / 2(1 + d)S \

x - 0 dX \1 — (1 + X)282]

sinh d - cosh d

25 1 + ô2

x 0 1 - 52 1 - ô2

En dérivant (*) par rapport à X en X -» 0, il vient donc, comme a est

constant,

cosh r •

de sorte

Comme

dr
dX

d
sin a x — (sinh d)

x 0 dX

sinh r
x 0 sinh d

x sinh d • cosh d,

1 dr
sinh r dX

cosh d

cosh r

t 1 r C +00 do du 1

u - Log tanh -2=)r îS on a sl0=" dr_

sinh r dX 10

cosh d
cosh r '

Voici le résultat qui, joint à la section suivante, nous permettra de

conclure :

Lemme 4. Soit K un compact de % et Sf l'ensemble des

sommets de Se dans K. Alors il existe une fonction cp^ : S8- R*
vérifiant:

(i) (A^ + F)(pg 0

(ii) "is, s' e Sf tels que s' ~ s, on a lime
<Pe(s)

_>0 <p£(s')

Preuve du lemme 4. On observe tout d'abord qu'il existe un compact K'
du disque hyperbolique tel que si s est assez petit alors pour tout t e [0, 1],

tous les cercles de correspondant à des sommets dans Sf sont contenus
dans K'. Ceci résulte du point iii) de la proposition de la section IV et du fait
que le diamètre combinatoire de [ est ^ f, la constante C ne dépendant

que de °à.
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Considérons maintenant une isométrie hyperbolique j telle que j(K') ne
contienne pas 0. Notons hx l'homothétie euclidienne de centre 0 de rapport
1 + X. On définit l'emplacement ^A[{X) comme étant l'image de par
l'application j~l o hx ° y.

Avec les notations du lemme 2, on pose

<pUs)
duseJ(t)

dX x o

(Pg vérifie i) d'après ce lemme. De plus, comme j est une isométrie, on a

d'après le lemme 3,

cosh(s)
(p, O)

cosh rl(t)
où d[(s) est la distance à l'origine du centre du cercle de {)
correspondant au sommet s. Déjà, lim8^0 cosh rse (t) 1 d'après le point iii) de

la proposition du IV.
Notons 6 la distance de 0 à j(K'), et o,o' les centres des cercles de

g) images par j de deux cercles tangents de correspondants aux

sommets s et s' de Sf.
Alors les longueurs d[(s) et d[(s') des côtés Oo et Oo' du triangle (Ooo')

sont minorées par 8 > 0 tandis que la longueur rse(t) + rse'(t) du côté gg'
tend vers 0 avec 8 uniformément en t. On en déduit

coshers) (p
lim — s= 1 d ou lim — 1

s^o coshtfeCO 8->o (p8(s')

la limite étant uniforme en t, ce qui prouve le point ii).

VI. Inégalité de Harnack

Le but de cette section est de terminer la preuve du théorème de Rodin-
Sullivan en démontrant la

Proposition (Inégalité de Harnack). Soit K un compact d'intérieur
non vide contenu dans % et A,B deux réels vérifiant 0 < A < B.

~ o
Pour tout compact K d'intérieur non vide contenu dans K, il existe

une constante C C{K) possédant la propriété suivante:
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Soit Ae un laplacien discret sur Sf de la forme AgipOs1) c®(p(5')

+ S et dont les coefficients vérifient: Vs, s'e Sf, Vs > 0,
s' ~ s

c)e[A,B] et - c]s, e[A,B].
Soit \j/E une fonction définie sur Sf, à valeurs positives non nulles et

telle que ÀE vj/e 0.

Alors pour tous sommets voisins s, s' e S?, on a:

^(s)
_ 1

(Sf
C(K)

]/- Loge

Nous différons provisoirement la preuve de cette proposition, et montrons

maintenant pourquoi celle-ci implique le lemme-clé de la section II. Soit
donc K un compact d'intérieur non vide de %. Il s'agit de voir que, grâce à

la proposition, si s, s' e Sf sont voisins, alors

r glim ^ 1

s -* o r p

et ce uniformément sur Sf. On part de

K- ùl' u\wf + | (ùl -

ûl (l
0 \

Ù*'
ui- ut + \ ut 1 —?~\dt

On a

tanh —
Log^v^tanh y

avec rf~ rse - 0 quand s -> 0 uniformément par rapport à s et s' ~ s
dans Sf, de sorte que us& - use' -> 0.

Soit <pg la fonction définie dans le lemme 4 de la section V avec un
compact K contenu dans % et dont l'intérieur contient K.

Soit y* la fonction définie par ùsB(i) cp{e(s) • D'après le lemme 1

de V, \j/g est solution d'une équation du type AE>,i|/g 0. Comme ùe(t) < 0
et que (p^ < 0, on a que > 0. De plus, les coefficients de Äe>, sont de
la forme css, cpe (s) (p le (s )cSS'. Il résulte du point ii) de la proposition du
IV, qu'il existe deux constantes A et B > A > 0 telles que A ^ - c]s, ^ B
et A ^ c s ^ B. La proposition de la présente section assure alors que
v£(j) ~

fff) tend vers 1 uniformément sur Sf et par rapport à e[0, 1], D'après
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le point ii) du lemme 4 de V, le quotient yy- possède la même propriété
9 e (s

tend vers 0 lorsque sde sorte que sup
t e [0, 1]

1 - "e (0
*1(0

0 uniformément sur

Sc Comme ut < 0 on a donc:

/ w g'\ iif'
^ sup 1 - — x

V uj [0,1] J

et

ù\dt u\ - use Log
tanh y
tanh 7

< Log

(- ù9}dt

tanh y
tanh2f;

où c3 est la constante fournie par le point iii) de la proposition de IV.
D'après les propriétés de la fonction tanh au voisinage de 0, cette dernière

quantité est majorée par une constante ne dépendant pas de s. On en déduit

que lim | j0(zis& - ùse')dt \ =0 uniformément sur K. On en déduit donc que
£ -> 0

Log (tanh y/tanh y) üse — wf tend vers 0 avec s, et ce uniformément

sur K, de sorte que le rapport (tanh y /tanh y) tend vers 1. Comme les

rayons rse et rf tendent vers 0 lorsque s -> 0 (résulte des points i) et iii)
rïde la proposition du IV), le rapport — tend lui aussi vers 1 avec s et

__
r £

uniformément sur K, ce qui est bien l'énoncé du lemme-clé. La version
quantitative de ce lemme provient de l'estimation donnée dans la proposition.

Le théorème de Rodin-Sullivan est donc démontré modulo l'inégalité de

Harnack. Nous terminons donc par la

Preuve de la proposition. Comme annoncé dans l'introduction, nous

obtenons l'inégalité de Harnack par voie probabiliste. Le début de la preuve

que voici s'inspire de [St2], §9.3 et de [Sp], § 13-P1.

Introduisons la matrice de transition P& [pBss,]SiS> e associée au

laplacien Às et définie par:

p]s. - -y si s ~ s' et p]s, 0 sinon
C

S

On a p]s,e]0,1[ et V,s e /f (les sommets intérieurs de Sf), £ 1.
s' ~ S

De plus, il existe deux constantes a et ß ne dépendant que de et

telles que 0 < a < p%,<ß < 1, Vs, Vs e/f, Vs' e Sf tel que 5' ~ 5.

Sur l'univers Qs {co (<n0. co2, •••) e (Sf)N} on considère la tribu

cylindrique £s engendrée par les événements {«,,= Si 5P} où
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p e N*, h*C e N, i\ < ii < * * * < h, et Si, Sp e Sf. On note Xn la

variable aléatoire sur (Qe,Ee) à valeurs dans Sf et définie par Vco e Qe,

X„{(o) co„.

Fixons un sommet s e Sf. On définit la probabilité Ps sur (C2E,£E)

associée à la marche aléatoire partant de s, de la façon suivante:

[ si n e /f
Ps(X0— s)1 et Ps(Xn +1 o|X„ j K

[ oW) d SI U G Bg

(i?f sont les sommets frontières de Sf). En particulier, on décide que les

sommets de Bf sont absorbants.

Soit tbk le premier temps d'atteinte du bord C'est le temps d'arrêt

défini par: x5f(co) inf{w e N tel que Xn((ù) e B*}. On a le

Lemme 1. Le temps d'arrêt tb* est fini Ps-presque sûrement.

Preuve du lemme 1. Soit h la fonction définie sur S* par h (s) Ps{tb*

< +oo}. La fonction h est harmonique pour À£ et vérifie h (s) 1,

Vs e B* de sorte que, par unicité de la solution du problème de Dirichlet,
h (s) 1, ys e Iç.

Notons maintenant E5 l'espérance pour la probabilité Ps. Pour toute
fonction harmonique ¥, on a Es ^(A^) ¥(s), puis (récurrence):

E, ¥ (Xn ^(s). Plus généralement, on a le

Lemme 2. Pour toute fonction harmonique ¥ et pour tout temps
d'arrêt t vérifiant i < %B*, on a: Es(XT) ¥(£).

Preuve du lemme 2. Nous nous contentons ici de résumer la preuve de

J.L. Doob de ce résultat classique (voir [Do], théorème 2.1, p. 437).

Soit la tribu sur Qg engendrée par X0, Xn. On observe que

(¥ (XT A „ ; yn est une martingale, de sorte que la suite des espérances

E5A„) est constante, donc:

Es^(XTAn) - E^(Xta(/7_1}) « ••• Esy(XTA0) Esy(X0) V(s)

D'autre part, comme Sf est fini, la suite de fonctions xE(XTAn) est bornée,
de sorte que le théorème de convergence dominée assure que

lim EsV(XXAn) ¥(Xr)dPs.
n^+°° J { T < + 00 }

Comme x ^ iB« qui est presque sûrement fini, on en déduit

¥(*) F./l'(A't)



146 F. MATHÉUS

Terminons la preuve de la proposition. Soit v e Sf un sommet voisin
de s, et le temps d'arrêt défini par:

Tj,(cd) inf{n e N tel que Xn(où) - u}

On applique le lemme 2 au temps d'arrêt t a ibk et à la fonction \j/8 de

l'énoncé de la proposition. Il vient:

Ve(s)« \|Js(XT)dPs= \|je(XTu)dPs+ \|fe(XTBK)dPs.
J Qe J {i TU}

J {t TBK}

Comme \j/e est positive et que XTu u, on en déduit:

VsOO ^ \j/e(ü) x Ps{ t t,}
Il reste donc à mesurer l'écart à 1 de P5{t xu) lorsque s -> 0.

Fixons le sommet v e /f, et considérons la fonction <I> donnée par
0(5) P5{t Ty} : c'est la probabilité qu'une marche aléatoire partant de s

atteigne v avant le bord. On observe que ®(T) 1, que 0(s) 0 si

s e s e B* et que O est harmonique sur Sf sauf en v et sur jBf.
Nous allons donner une interprétation électrique de O. Considérons un

circuit électrique de combinatoire (i.e. la trace de sur K) tel que la
conductance de l'arête ss' soit - c\s,. Si on branche tous les sommets de B*
au potentiel 0 et le sommet v au potentiel 1 alors le potentiel au sommet s n'est
autre que O (5) (voir [D-S], p. 47). En égalant la puissance dissipée par le circuit
et la puissance fournie par le générateur (voir [D-S], p. 61), on a:

2 S~ s' R eff

où Clif (resp. Rdésigne la conductance effective (resp. résistance

effective) du circuit entre u et le bord B B*.
Il reste à évaluer Rue'fîB. C'est l'objet du

Lemme 3. Il existe une constante cx (K) ne dépendant que de K telle

que VueS*9Riï>^.
Ce lemme termine la preuve de la proposition. En effet, pour tous sommets

u e S* et s e Sf voisin de u, on a:

1
r

1 Ci(K)

de sorte que 1 - Ps{i tJ ^ c
avec c i /ic^K), ce qui est bien

h-Logs y A

l'estimation annoncée.



EMPILEMENTS DE CERCLES 147

Preuve du lemme 3. On compare le circuit électrique étudié au circuit
standard de combinatoire W f pour lequel les résistances de toutes les arêtes

sont égales à 1. On note R^f la résistance effective du circuit standard
entre u et B D'après le principe de Dirichlet (voir [D-S], p. 63-64)

on a:

u, B

(1
un < -U

^eff

min { - -<4'[<P(s) - <P(-s' )]2 |<P e Rsscp 0 sur 5f, <p(u) 1

et
1

——- minnv,ß
eff

- ü [<p(s) - cp(s')]21 (P 6 RSS cp 0 sur 5f, <p(u) 1

2 s ~ s'

Compte tenu des estimations 0 < A ^ - CESS, ^ B, on a:

R u, B

Vu e /f, A ^ ~ ^ Bs nii,5
eff

La fin de la preuve du lemme 3 repose sur les deux lemmes suivants. On
commence par évaluer Rujf dans un cas particulier.

Lemme 4. Si est isomorphe à la triangulation d'un hexagone
régulier de côté N par des triangles équilatéraux unités et si u est le
centre de alors on a:

R%B^ Log

Figure 3

La triangulation ^ f avec N 3
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Preuve du lemme 4. D'après la loi de monotonie de Rayleigh ([D-S],
p. 67), si l'une des résistances du circuit standard diminue, alors la
résistance R^f diminue. Remplaçons toute résistance joignant deux sommets
à même distance combinatoire de u par la résistance nulle, de sorte que, pour
tout k e {1,2, ...,7V}, les sommets à distance combinatoire k de u sont au
même potentiel. Le circuit standard ainsi diminué est équivalent au circuit
suivant (cf. fig. 4):

2N - 6

résistances

Figure 4

Le circuit standard diminué

6

résistances

18

résistances

Comme n résistances de 1 Ohm en parallèle sont équivalentes à une

résistance de ~n Ohm, la résistance du circuit ci-dessus entre ses deux extré-
N

î
mités est égale à £ 12^_6 car il y a 12k - 6 résistances entre la k - Ie et

k 1

la ke génération.
La résistance effective du circuit non modifié vérifie donc:

N 1 1

Kif >E îï—Logk-112 k- 6 12

Lemme 5. Soit d(u) le rayon de la plus grande boule combinatoire
de centre u et contenu dans S*.

Alors on a Rve'{fB ^ ^ Logd(u).

Preuve du lemme 5. ffî* contient une sous-triangulation, isomorphe à

la triangulation d'un hexagone régulier de côté d(u) par des triangles équi-
latéraux unités, dont le centre est u, et dont le bord est noté B'. En remplaçant
toutes les résistances en dehors de ce sous-circuit par des résistances nulles,
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on amène le bord B' au potentiel 0. Toujours d'après la loi de monotonie

de Rayleigh, on a alors:

^eff5 ^ ^eff ^ ^2
^Og £/(*>) '

la dernière inégalité résultant du lemme 4. D

Fin de la preuve du lemme 3. Soit K le compact de l'énoncé de la proposition.

Rappelons qu'il est contenu dans l'intérieur de K. Notons ô la distance

hyperbolique de K à D2\^. Pour tout sommet v e Sf on a d(u) ^ -

donc Rlif ^ - j^Logôs, ce qui est bien le résultat cherché.

VII. Commentaires

1. Sur l'inégalité de Harnack

L'estimation obtenue ici en
1

n'est ni optimale, ni propre aux
]/ - Log s

réseaux récurrents, comme la preuve peut le laisser penser. Les résultats les

plus significatifs ont été obtenu par Gregory Lawler (voir [Lal] et [La2]).
Soit u une fonction de Zd dans R. On pose

1 _Aqu(x) u{x) 2, u(s)
2d s~x

(la somme est étendue à tous les voisins de x dans le réseau Zd).

Théorème 1. Il existe une constante C telle que si u est une fonction
harmonique (pour À0) positive sur la boule combinatoire de Zd de

centre 0 de rayon TV, alors

m _ 1

wo)
c

^ —.
TV

Dans le cas de la dimension 3, ce théorème avait déjà été démontré par
R.J. Duffin ([Du]) dans les années cinquante. Dans [Ll], G.Lawler étudie
également les opérateurs à coefficients variables:

Théorème 2. Soit A,B deux réels vérifiant 0 < A < B. Il existe
alors deux réels C et a, a e]0, 1[, qui ne dépendent que de A, B et d,
et possédant la propriété suivante:
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Soit L un opérateur de la forme Lu(s) csu(s) + £ css>u{s')
s' ~ s

opérant sur les fonctions numériques définies sur Z d et dont les coefficients
vérifient: A <: cs f B, A f - css, < + £ c„, 0 c„,

s' ~ S

où s" est le symétrique de s' par rapport à s. Alors si u est
une fonction définie sur la boule combinatoire de Zd de centre 0 de

rayon N, telle que

on a
Lu 0 et u ^ 0

CK(0)

u(1)
1

Na

On notera que la condition de symétrie sur les coefficients n'est pas celle
d'un laplacien discret (à savoir cSS' cS'S).

2. Sur le théorème de Rodin-Sullivan

Nous citons ici deux généralisations du théorème de Rodin-Sullivan. Soit
le 1-squelette d'une triangulation W d'un disque topologique et & un

empilement de cercles de combinatoire plongé isométriquement dans %.

Notons l'empilement d'Andreev associé à & normalisé comme au début
de II. On note W#> (resp. §?.#) la réalisation géométrique de W définie

par g? (resp. #), et f#> : W#> -> W& l'application affine par morceaux qui
envoie de manière affine chaque triangle de sur son correspondant
dans W&.

Soit s > 0 et supposons que la distance de Hausdorff d%»{dë?<?9à%)

soit < 8 ainsi que tous les rayons des cercles de On a le

Théorème 1. S'il existe une constante C telle que pour tous
cercles c, c' de

1

^ rayon (c) ^ ^^ ^ c
C rayon (c')

Alors f converge uniformément sur les compacts de °à vers l'uniformisation

de Riemann f de lorsque 8 tend vers 0.

Ce théorème a été obtenu en premier par Kenneth Stephenson en 1991

(voir [Stl] et [St2]). Sa preuve repose sur le lemme de Schwarz-Pick discret
de [B-St2] et le théorème de récurrence de Polya.
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En 1993, Zheng-Xu He et Burt Rodin ont montré comme le résultat de

rigidité de Rodin-Sullivan permettait de prouver le théorème 1 (voir [He-R]).

Ils obtiennent également la même conclusion sous des hypothèses plus faibles :

Théorème 2. On suppose que les valences des empilements sont

bornées par un entier positif k0.

Alors /> converge vers f uniformément sur les compacts de %

lorsque s tend vers 0.

Leur méthode repose sur des arguments développés par He dans [He].

Rajouté sur épreuves: Laurent Saloff-Coste a récemment amélioré l'inégalité
de Harnack (voir [Sa]). Quant au théorème de Rodin-Sullivan, il a été

considérablement généralisé par Zheng-Xu He et Oded Schramm (voir [He-Sc]).
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