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THE ZERO-IN-THE-SPECTRUM QUESTION

by John LOTT

ABSTRACT. This is an expository article on the question of whether zero lies
in the spectrum of the Laplace-Beltrami operator acting on differential forms on a
manifold.

1. INTRODUCTION

Let M be a complete connected oriented Riemannian manifold. The
Laplace-Beltrami operator A\, acts on the square-integrable p-forms on M.
We asked the following question in 1991 :

ZERO-IN-THE-SPECTRUM QUESTION. Is zero always in the spectrum of A,
for some p ?

To our knowledge, nobody has found a counterexample. The question was
also raised by Gromov in the case of a contractible manifold with a discrete
cocompact group of isometries ([15], p. 21).

Being able to answer the above question is a first step toward understanding
the spectrum of the Laplace-Beltrami operator. We would also like to be able
to say whether or not zero is in the spectrum of A, for a given p. This
problem is partly topological in nature and partly geometric, in a sense which
will be made precise later. In fact, it is equivalent to knowing the (unreduced)
L?-cohomology of M. The study of L?-cohomology touches on many branches
of mathematics, including combinatorial group theory, topology, differential
geometry and algebraic geometry. It is most commonly considered when M
is the universal cover of a compact manifold or when M is a finite-volume
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342 J. LOTT

Hermitian locally symmetric space. We refer to [22, 26] and [30] for surveys
of these two cases. In this article we will instead emphasize general complete
Riemannian manifolds and give some partial positive answers to the zero-in-
the-spectrum question.

The sections of the article are :
1. Introduction
2. Definition of L?-Cohomology
3. General Properties of L?- Cohomology
4.  Very Low Dimensions
4.1. One Dimension
4.2. Two Dimensions
5. Universal Covers
5.1. Big and Small Groups
5.2. Two and Three Dimensions
5.3. Four Dimensions
5.4. More Dimensions

6. Topologically Tame Manifolds

In what follows, all manifolds will be smooth, connected, oriented and
of positive dimension. All maps between manifolds will be orientation-
preserving. Unless otherwise indicated, all Riemannian manifolds will be
complete.

We have tried to give as many complete proofs as reasonably possible. All
unattributed results are of unknown origin or are due to the author. I thank
Wolfgang Liick for conversations on some of the topics discussed herein. I
thank Marie-Claude Vergne for making the figures. This article is based on
lectures given at the Troisieme Cycle Romand “On the Conjecture of the
Zero in the Spectrum” held at Les Diablerets, Switzerland, March, 1996.
I warmly thank Alain Valette and the other organizers and participants of the
meeting.
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2. DEFINITION OF L?-COHOMOLOGY

Let M be as above. Let AP(M) denote the Hilbert space of square-integrable
p-forms on M. The completeness of M enters in one crucial way, in allowing
us to integrate by parts on M in the sense of the following lemma.

LEMMA 1 (Gaffney [13]). Suppose that w, n, dw and dn are smooth
square-integrable differential forms on M. Then

(2.1) /dw/\n + (—l)deg(“’)/w/\dn:O.
M M

Proof. 'We claim that there is a sequence {¢;}2°, of compactly-supported
functions on M with the properties that

1. There is a constant C > 0 such that for all { and almost all m € M,
|¢p;(m)| < C and |d¢;(m)| < C.
2. For almost all m € M, lim;_,o, ¢;(m) = 1 and lim;_, |do;(m)] =0 .
To construct the sequence {¢;}>°,, let my be a basepoint in M. Let
f e CGg° ([O,oo)) be a nonincreasing function such that if x € [0,1] then
f(x) = 1. Put ¢(m) = f (+d(mp,m)). This gives the desired sequence. The
completeness of M ensures that ¢; is compactly-supported. Note that ¢; is
a priori only a Lipschitz function, but this 1s good enough for our purposes.
Using Lebesgue Dominated Convergence and the fact that we can integrate
by parts for compactly-supported forms, we have

/dw/\77+(~l)deg(“)/w/\dn:/d(w/\n)
M M M

(2.2) = lim | ¢:d(w An)
M

i—00

=—1lim [ dp; A\wAn=0.

[—00 M

This proves the lemma. [

Let d* be the formal adjoint to d. Using Lemma 1, one can construct a
self-adjoint operator A = dd* + d*d acting on A*(M), with domain

Dom(A) ={w € A*(M) : dw, d*w, dd*w
and d”dw are square-integrable} .

Let A\, denote the restriction of A to AP(M). The spectrum o(A,) of A,
is a closed subset of [0, c0).

(2.3)
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LEMMA 2. The kernel of A, is {w € A’(M) : dw = d*w = 0}.

Proof. Clearly {w € A’(M): dw = d*w = 0} C Ker(A)). If w € Ker(A,)
then by elliptic regularity, w is smooth. Using integration by parts,

0= (w, Aw) = (dw, dw) + (d*w,d*w), so dw=d*w=0. [

WARNING. Unlike what happens with compact manifolds, it is possible
that Ker(A,) = 0 but nevertheless 0 € o(A,). The simplest example of this
is when M = R and p = 0. By Lemma 2, Ker(/\y) consists of square-
integrable functions f on R such that df = 0. Clearly the only such function
is the zero function. However, under Fourier transform, /Ay is equivalent to
the multiplication operator by k> on L?>(R) and hence o(Ag) = [0, 00).

® ®

{ ] o
0}

o o
o o
® ®
0 1 n—1 n

p
FIGURE 1

EXAMPLES. We now give o(/\,) for simply-connected space forms.

1. M is the standard sphere S". From [14],

24) o) ={k+pk+n+1—p}oU{k+p+1Dk+n—p)},.
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(See Fig. 1.) The details of the spectrum are not important for us. We only
wish to note that o(4,) is discrete, and 0 € 0(A,) if p =0 or p = n. These
statements are a consequence of the fact that M is closed. Namely, if M" is any
closed Riemannian manifold then o(A,) is discrete and Ker(A,) = H'(M;C).
In particular, Ker(/\g) 22 H°(M; C) = C consists of the constant functions and
Ker(A,) =2 H'(M; C) = C consists of multiples of the volume form.

2. M is the standard Euclidean space R". As the p-forms on R" consist of
(;) copies of the functions, it is enough to consider o(/Ay). By Fourier
analysis, o(Ap) = [0,00). Thus o(A,) = [0.0c) for all 0 < p < n.
(See Fig. 2.) Note that Ker(A,) =0 for all p.

0 1 n-1 n

FIGURE 2

3. M is the hyperbolic space H*". From [9]

2n—2p—1)* :
[(Lf—),oo) if0<p<n-1,

o(Dp) = ¢ {0} U [1,00) if p = n,
[M,OO) ifn+1<p<on.
(See Fig. 3.) There is an infinite-dimensional kernel to A,. Otherwise, the

spectrum is strictly bounded away from zero.
| e - .
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0 1 n e 2n—-1 2n

FIGURE 3

4. M is the hyperbolic space H***!. From [9],

[ 2
@2F 00)  if0<p<n,

U(Ap) —

FQP——?_—Q)Z,OO) ifn+1<p<2n+1.

(See Fig. 4.) For all p, Ker(A,) = 0. The continuous spectrum extends down
to zero in degrees n and n + 1, and is strictly bounded away from zero in
other degrees.

Comparing Figures 1-4, the spectra do not have much in common. However,
one common feature is that zero lies in o(A,) for some p, although for
different reasons in the different cases. In Figure 1, it is because /Ay has a
nonzero finite-dimensional kernel. In Figure 2, it is because zero lies in the
continuous spectrum of A, for all p. In Figure 3, it is because A, has an
infinite-dimensional kernel. And in Figure 4, it is because zero lies in the
continuous spectrum of A, for p=n and p=n+1.

The above examples, along with others, motivate the zero-in-the-spectrum
question. One can pose the question for various classes of manifolds,
such as
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1. Complete Riemannian manifolds.

2. Complete Riemannian manifolds of bounded geometry, meaning that the
injectivity radius is positive and the sectional curvature K satisfies |K| < 1.

3. Uniformly contractible Riemannian manifolds, meaning that for all » > O,
there is an R(r) > r such that for all m € M, the metric ball B,(m) can
be contracted to a point within Bgy(m).

4. Universal covers of closed Riemannian manifolds.

5. Universal covers of closed aspherical Riemannian manifolds.

o
0 1 - n n+1 - 2n 2n+1
P
FIGURE 4
5 C 4 C 2
There are obvious inclusions N M . As we shall discuss,

3 C 1
there are some reasons to believe that the answer to the zero-in-the-spectrum

question is “yes” in class 5, but the evidence for a “yes” answer in class 1
consists mainly of a lack of counterexamples.

In order to make the study of the spectrum of A, more precise, the Hodge
decomposition

(2.5) AP(M) = Ker(A,) ® Im(d) @ AP (M) / Ker(d)
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is useful. The operator A, decomposes with respect to (2.5) as a direct sum
of three operators. If we know the spectrum of the Laplace-Beltrami operator
on all forms of degree less than p then the new information in degree p
consists of Ker(A,) and the spectrum of A, on A’(M)/Ker(d). So we can
ask the more precise questions :

1. What is dim(Ker(A,)) ?
2. Is zero in o (A, on A’(M)/ Ker(d)) ?

By its definition, /A, involves the first derivatives of the metric tensor. We
now show that the answer to the zero-in-the-spectrum question only depends
on the CP-properties of the metric tensor. To do so, we reformulate the
question in terms of L?-cohomology. Define a subspace QP(M) of AP(M) by

(2.6) QP(M) = {w € A(M) : dw is square-integrable},

where dw is initially interpreted in a distributional sense. The subspace 7(M)
is cooked up so that we have a cochain complex

2.7 AL oo & ortlan

LEMMA 3. Ker(d,) is a subspace of QF(M) which is closed in AP(M).

Proof. Suppose that {n;}2°, is a sequence in Ker(d,) which converges
to w € AP(M) in an L?-sense. We must show that the distributional form dw
vanishes. Given a smooth compactly-supported (p + 1)-form p, we have

(2.8) (dw, p) = (w,d"p) = lim (n;,d"p) = lim (dn;, p) = 0.

The lemma follows. []

DEFINITION 1. The p-th unreduced L?-cohomology group of M is
Hfz)(M) = Ker(d,)/ Im(d,—1). The p-th reduced L?-cohomology group of
M is H_[()Z)(M) = Ker(d,)/Im(d,—1), a Hilbert space.

The square-integrability condition on the forms should be thought of as
a global decay condition, not as a local regularity condition. One can also
compute Hp (M) using a complex as in (2.7) where the forms are additionally
required to be smooth [20, Prop. 9].

There is an obvious surjection i, : H’(?Z)(M) o ﬁfz)(M). Clearly i, is an
isomorphism if and only if d,_; has closed image.
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PROPOSITION 1.
1. Ker(A,) 22 Hpy(M).
2. 0¢ o (A, on AP(M)/Ker(d)) if and only if ipy1 is an isomorphism.

Proof. 1. Using Lemma 2, we have
Ker(A,) = {w € A’ (M) 1 dw = d"w = 0}

2.9 — T
29) = Ker(d,) N Im(dp—l)—l_ = Hl(Jz)(M) :

The first part of the proposition follows.

2. Suppose first that A, has a bounded inverse on AP(M)/ Ker(d). Given
€ AP(M), let  denote its class in AP(M)/ Ker(d). Define an operator S
on smooth compactly-supported (p + 1)-forms by S(w) = dA,'d*w. Then §
extends to a bounded operator on APT!(M). Let {n;}72, be a sequence in
QP(M) such that lim; o dn; = w for some w € APT!'(M). Then for each i,
we have dn; = S(dn;) and so w = S(w). Thus w € Im(d) and so Im(d) is
closed.

Now suppose that A\, does not have a bounded inverse on A”(M) / Ker(d).
Then there is a sequence of positive numbers r; > s; > rp > 5o > ... tending
towards zero and an orthonormal sequence {7;}2°, in AP(M)/ Ker(d) such that
with respect to the spectral projection P of A, (acting on A”(M)/Ker(d)),
m € Im(P([s;,r;])). Put A = ||dn||. Then lim; oo A; = 0. Let {c;}{Z
be a sequence in R such that Y o ¢} = co and ) 0, ¢\ < co. Put
w =37 cidn;. Then w € Im(d). Suppose that w = dpu for some p € Q"(M).
By the spectral theorem, we must have 7 = > ., ¢;7;. However, this is not
square-integrable. Thus Im(d) is not closed. The proposition follows. [

COROLLARY 1. Zero does not lie in o(A,) for any p if and only if
HI()2>(M) = 0 for all p, i.e. if the complex (2.7) is contractible.

So a counterexample to the zero-in-the-spectrum question would consist
of a manifold M whose complex (2.7) is contractible. By way of comparison,
recall that the compactly-supported complex-valued cohomology of M is
computed by a cochain complex similar to (2.7), except using compactly-
supported smooth forms. As H*™™) (A1, C) # 0, this latter complex is never
contractible. And the ordinary complex-valued cohomology of M is computed
by a cochain complex similar to (2.7), except using smooth forms without

any decay conditions. Again, as H(M; C) # 0, this latter complex is never
contractible.
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If M is closed then ﬁzﬁz)(M) is independent of the Riemannian metric on
M . This is no longer true if M is not closed — consider R? and H”. However,
the L?-cohomology groups of M do have some invariance properties which
we now discuss.

DEFINITION 2. Riemannian manifolds M and M’ are biLipschitz diffeo-
morphic if there is a diffeomorphism F : M — M' and a constant K > 1
such that the Riemannian metrics g and ¢’ satisfy the pointwise inequality

(2.10) K lg<F*¢ <Kg.

If M and M’ are biLipschitz diffeomorphic then their reduced and
unreduced L?-cohomology groups are isomorphic, as the Riemannian metric
only enters in the complex (2.7) in determining which forms are square-
integrable. Thus the answer to the zero-in-the-spectrum question only depends
on the biLipschitz diffeomorphism class of M. More generally, we can
consider a category whose objects are Lipschitz Riemannian manifolds and
whose morphisms are Lipschitz maps. Then the reduced and unreduced L?-
cohomology groups are Lipschitz-homotopy-invariants.

Note that L?-cohomology groups are not coarse quasi-isometry invariants.
For example, any closed manifold is coarsely quasi-isometric to a point, but
its L?-cohomology is the same as its ordinary complex-valued cohomology,
which may not be that of a point. However, some aspects of L?-cohomology
only depend on the large-scale geometry of the manifold.

PROPOSITION 2 ([20], Prop. 12). If M and M’ are isometric outside of
compact sets then

1. Ker(A,) is finite-dimensional on M if and only if it is finite-dimensional
on M.

2. Zerois in o (AP on A/ Ker(d)) on M if and only if the same statement
is true on M’.

Consider uniformly contractible Riemannian manifolds of bounded geome-
try. If two such manifolds are coarsely quasi-isometric then they are Lipschitz-
homotopy-equivalent and hence their L?-cohomology groups are isomorphic
[15, p. 219]. The next proposition gives an extension of this result in which
uniform contractibility is replaced by uniform vanishing of cohomology, the
latter being defined as follows.
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DEFINITION 3. We say that H/(M; C) vanishes uniformly if for all r > 0,
there is an R(r) > r such that for all m € M,

(2.11) Im (K (Bg(y(m); C) — H (B,(m);C)) = 0.

PROPOSITION 3 (Pansu [25]). Consider a Riemannian manifold M of
bounded geometry such that for some k > 0, H/(M; C) vanishes uniformly
for 1 <j<k. Then within the class of such manifolds,

1. ﬁfz)(M) and H‘(’2)(M) are coarse quasi-isometry invariants for 0 < p < k.

2. Ker(Hy ' (M) — H*'(M;0)) and Ker(HS'(M) — HY'(M;0)) are
coarse quasi-isometry invariants.

3. GENERAL PROPERTIES OF L2?-COHOMOLOGY

In this section we give some general results about the L?-cohomology of
complete Riemannian manifolds. First, we give a useful sufficient condition
for the reduced L?-cohomology to be nonzero.

PROPOSITION 4. For all p, Im (H’g(M; C) — H (M, C)) injects into
Hep)(M).

Proof. Suppose that w is a smooth compactly-supported closed p-form
which represents a nonzero class in H?(M;C). By Poincaré duality, there
is a smooth compactly-supported closed (dim(M) — p)-form p such that
[ W ANp#0.

As w 1is compactly-supported, it is square-integrable and so represents an
element [w] of ﬁfz)(M). Suppose that [w] = 0. Then there is a sequence
{ni}2, in Q7~Y(M) such that w = lim; .. dn;, where the limit is in an
L?-sense. It follows that

—00

(3.1) /w/\p: lim dn,-/\p:_lim/d(m/\p)zo,
M M e M

which is a contradiction. Thus [w] #0. [
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COROLLARY 2. Let N* be a compact manifold-with-boundary with
nonzero signature. Then if M is any complete Riemannian manifold which is

diffeomorphic to int(N), ﬁ?g(M) # 0.

Proof. By definition, the signature of N is the signature of the intersection
form on

(3.2) Im (H*@,0N;C) — H*(WV; C)) = Im (H(M; C) — H*(M; 0)) .

If the signature of N is nonzero then Im (ka(M ;C) — HZk(M ; C)) must be
nonzero. The corollary follows from Proposition 4. [

EXAMPLE. Let N be CP? with a small 4-ball removed. Then N satisfies
the hypothesis of Corollary 2.

We now show that the middle-dimensional reduced L?-cohomology is a
conformal invariant of M.

PROPOSITION 5. If M?* is even-dimensional then Ker(/\y) is conformally-
invariant.

Proof. Suppose that g and e?g are conformally equivalent Riemannian
metrics on M, with ¢ € C*°(M). We use the fact that the action of the Hodge
duality operator * on A¥(M) is independent of ¢. If w is a k-form on M,
its L*-norm [, w A *w is independent of ¢. Thus the Hilbert space A*(M)
is independent of ¢. Furthermore,

(3.3) Ker(A\r) = {w € A¥M) : dw = d*w = 0}
= {w e AM) : dw = £ xd x (w) = 0}
(3.4) = {we AWM) :dw=d*(w)=0}

is independent of ¢. [

EXAMPLE. Take M = H?. Then M is conformally equivalent to a
Euclidean disk D. The harmonic square-integrable 1-forms on D are of the
form fi(x,y)dx + fo(x,y)dy, where f; and f, are square-integrable harmonic
functions on D. There is clearly an infinite number of such functions,

and so dim(ﬁ(lz)(Hz)) = o0o. The same argument applies to H%*, to give
dim (i, (H2)) = oo.

In the case of functions, one has a good control of when zero is in the
spectrum of the Laplacian.
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LEMMA 4. Ker(Ag) # 0 if and only if vol(M) < oo.

Proof. If vol(M) < oo then the constant functions on M are square-
integrable and harmonic. Conversely, if f € Ker(/A\o) then by Lemma 2, f is
constant. If f is nonzero and square-integrable then vol(M) < 0.

DEFINITION 4. M is open at infinity if there is a constant C > 0 such

that for all domains D in M with smooth compact closure, arf;((‘?)l)) ) >C.

EXAMPLES.

1. R" is not open at infinity, as can be seen by taking large balls for D.
2. H" is open at infinity.

PROPOSITION 6 (Buser [3]). Let M have inﬁnite volume. Suppose that
there is a constant ¢ > 0 such that Ricciy > . Then 0 ¢ o(Ly) if and
only if M is open at infinity.

Proof.
1. Suppose that M is open at infinity. By Cheeger’s inequality,

area(@D))2 0

(3.5) inf (0(Ao)) > inf - ( vol(D)

2. Suppose that M is not open at infinity. The bottom of the spectrum of
Ao is given in terms of Rayleigh quotients by

2
(3.6) inf(a(Ao)) mf fMl 4|
0 Juf*
M
where f ranges over compactly-supported Lipschitz functions on M. We want
to find compactly-supported Lipschitz functions on M of arbitrarily small

Rayleigh quotient. By assumption, for all ¢ > 0O there is a domain D such

that areal((%l)” < ¢. Put

(3.7) N\(OD)={meM:m¢ D and d(m,0D) < 1}.

Define a function f, which approximates the characteristic function of D, by
1 itmeD

(3.8) f(m)=< 1 —d(m,0D) if m € Ni(OD)
0 if m¢ D and m ¢ N{(OD).
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Clearly f o 2 > vol(D). As f has nonzero gradient only in N;(0OD), where

|df| = 1 almost everywhere, we have [, |df |2 = vol(N1(8D)). If D is nice
and round then we expect that

(3.9) vol(N{(8D)) ~ area(dD)

Ll 4fT”
Juf?
The only problem with this argument is that D may not be nice and round,
but may have long thin legs coming out of it, like an octopus. Then (3.9)
may not be valid. The content of [3] is that if this is the case, we can cut the
legs off of D to come up with a new domain for which the above heuristic
argument is valid. We refer to [3] for details. [

and the Rayleigh quotient will be comparable to e.

COROLLARY 3 (Brooks [2]). Let M be a normal covering of a compact
manifold X with covering group T'. Then 0 € o(Xg) on M if and only if T
is amenable.

Proof. If T is finite then 0 € 0(Ao) and I" is amenable. If I" is infinite
then by Proposition 6, 0 € o(4Ag) if and only if M is not open at infinity.
Let § be a finite set of generators of I'. Let G be the Cayley graph of I,
constructed using S. There is a notion of G being open at infinity which
is similar to Definition 4. As M is coarsely quasi-isometric to G, M is not
open at infinity if and only if G is not open at infinity. However, this is one
of the characterizations of amenability of T".  []

We now prove a result about manifolds which, roughly speaking, are at
least as large as Euclidean space.

DEFINITION 5. M is hyperEuclidean if there is a proper distance-
nonincreasing map F : M — RI™M of nonzero degree.

REMARKS.

1. A map is proper if preimages of compact sets are compact. Instead of
requiring that F' be distance-nonincreasing, we could require that F* have a
finite Lipschitz constant. By postcomposing F with a dilatation of RYm®)
the two conditions are equivalent.

2. If M is hyperEuclidean then a compactly-supported modification of M is
also hyperEuclidean.
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3. Examples of hyperEuclidean manifolds are given by simply-connected
nonpositively-curved manifolds M. Namely, fix mp € M and put F =
eXp;y. -

4. There was once a conjecture that all uniformly contractible manifolds are
hyperEuclidean (with a degree-one map to R¥™™)) but this turns out to be
wrong [11]. There is still an open conjecture that a uniformly contractible
manifold of bounded geometry is hyperEuclidean, and in particular, that
the universal cover of an aspherical closed manifold is hyperEuclidean.

PROPOSITION 7 (Gromov [15, p. 238]). If M is hyperEuclidean then
0 € o(A)) for some p.

Proof. Put n = dim(M). First, suppose that »n is even. We will construct a
vector bundle £ with connection on R"” which is topologically nontrivial but
analytically trivial, in a sense which will be made precise. Then assuming that
zero is not in the spectrum of M, we will apply the relative index theorem
to F*E in order to get a contradiction.

Recall that K°(S") = Z @ Z. If £ is a (virtual) vector bundle on S”, the
two Z factors correspond to rk(£) and f o Ch(E), respectively. This means that
for some N > 0, there is a CY-bundle £ on S§* with fsw ch(€) # 0. Fixing
a point oo € §", we can trivialize £ in a neighborhood of oo. Furthermore,
we can put a Hermitian metric and Hermitian connection on &£ so that the
connection 1s flat in a neighborhood of .

Let E be the restriction of £ to R" = 5" —{oo}. Let V be the restriction
of the Hermitian connection on £ to R". Then E is trivialized outside of a
compact set K C R" and V is flat outside of K.

As R" is contractible, there is an isomorphism of Hermitian vector bundles
i:R"x CV — E. Then i*V can be considered to be a u(N)-valued 1-form
w on R". The curvature of w is the u(N)-valued 2-form Q = dw + w?. The
nontriviality of &£ translates to the facts that

1. Q vanishes outside of K and

2. The de Rham cohomology class of the compactly-supported form
Tr (e—z—?,—,-) — N

is a nonzero multiple of the fundamental class [R"] € H(R";R).

In fact, we can take w to have a finite L®-norm | w ||o,. For example,

if n =2, take N =1. Let f € C;°([0,00)) be a nonincreasing function such
that if x € [0, 1] then f(x) = 1. Put w = —i(1 — £(r)) df. Then
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(3.10) Q=dw=if'(rdrNdb.

We have || w [loo= sup,s 22 and [, [Tr (e‘%> - 1} =1.
Returning to the case of general even n, for ¢ > 0, let ®, : R* — R" be
the map ®.(x) = ex. Put w, = ®w and Q. = dw, + w?. Then

| welloo = € ]| @ Jloo and / Tr (e %) - ]
- fle#) w0

We now turn our attention to M. Suppose that 0 ¢ o(4A,) for all p.
Consider the self-adjoint operator d +d* on A*(M). As (d+ d*)* = A\, it
follows that 0 ¢ o(d + d*). In other words, d + d* is L*-invertible. Define
an operator u on A*(M) by saying that if w € AP(M) then

(3.11)

 n—1) pip—1)
(3.12) pw)=1i 7z (1) 7 *x(w).
One can check that p?> =1 and w(d +d*) + (d+d*)pu = 0.
Clearly the operator (d+d*)®Idy, acting on A*(M)®CY, is also invertible.
Consider the u(N)-valued 1-form F*w. on M. As F is distance-nonincreasing,

(3.13) | F*we [loo<|| we loo=€ || w ||oo -

Let e(F*w,.) denote exterior multiplication by F*w,, acting on A*(M)® CV
and let i(F*w.) denote interior multiplication by F*w.. By making ¢ small
enough, the operator e(F*w.) — i(F*w.) has arbitrarily small norm and so the
operator ((d + d*) ® Idy) + e(F*we) — i(F*w,) is also invertible.

Put D = (d ® Idy) +e(F*w,.). Then D is exterior differentiation, using the
connection F*w., and

(3.14) D+ D" = ((d+d") @ Idy) + e(F*we) — i(F we) .

As (d+d*)®Idy and D+ D* anticommute with p ® Idy, they have well-
defined indices which happen to vanish, as the operators are invertible. On the
other hand, let L(M) be the Hirzebruch L-form. The relative index theorem
of Gromov and Lawson [10, 16] says that

ind(D + D*) — ind((d + d*) ® Idy)
(315) / __F*Q.
— LM N T 2mi —N .
000 [T () =]
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F*Q

As F is proper, the de Rham cohomology class of Tr (e—‘?ﬁ“> —N =

F* [Tr (e_%f“f) — N] is well-defined as a multiple of the fundamental class

[M] € HA(M;R). As the series for L(M) starts off as L(M) =1+ ..., we
obtain

ind(D + D*) — ind((d + d*) ® Idy) = /M [Tr (e—?iiﬁ ) = N]

(3.16) _ /MF [Tr (e*‘ﬂ —N}

= deg(F) [Tr (e_%> —le #£0.
R
This contradicts the vanishing of ind(D + D*) and ind((d + d*) ®IdN). Thus
zero must be in the spectrum of M after all.
Now suppose that n is odd. As M is hyperEuclidean, so is R x M. With
respect to the decomposition A*(R x M) = A*(R) ® A*(M), the Laplace-
Beltrami operator on R x M decomposes as

(3.17) Arxmy = (Ar @)+ T @ Apy).
Then
(3.18) o(Arxym) = {Al + Xt A €10, 00) and My € O'(AM)}

From what has already been proved, 0 € o(Arxpn). It follows that
0co(ly). U

REMARKS.

1. We have shown that if M is hyperEuclidean then 0 € o(4,) for some p.
One can ask whether the number p can be pinned down. In general, when
computing the index of the operator d + d*, the differential forms outside
of the middle dimensions do not contribute. This is a reflection of the fact
that the signature of a closed manifold can be computed using only the
middle-dimensional cohomology. So this gives some reason to think that

if dim(M) is even then 0 € o (Aw)
2

Unfortunately, the operator (D + D*)* does not preserve the degree of a
differential form and so we cannot use the above proof to reach the desired
conclusion. However, with a more refined index theorem [28, Theorem 6.24],

one can indeed conclude that 0 € o (Aw) if dim(M) is even and that

Oco (A,ﬁ,,;mg)ﬂ) if dim(M) is odd.
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2. If M is an irreducible noncompact globally symmetric space G/K, with
G = Isom(M) and K a maximal compact subgroup, then one can say more

about the bottom of the spectrum. If rk(G) = rk(K) then Ker (AM> is

infinite-dimensional and the spectrum of /\ is bounded away from zero
otherwise. If rk(G) > rk(K) then Ker(A) =0 and 0 € g(4,) if and only
if

dim(M) B rk(G) — rk(K) dim(M)  rk(G) — rk(K)
2 2 2 + 2
[19, Section VIIB].

Finally, we state a result about uniformly contractible Riemannian
manifolds.

DEFINITION 6 [15, p. 29]. A metric space Z has finite asymptotic dimension
if there is an integer n such that for any r > 0, there is a covering Z = UiEI C;
of Z by subsets of uniformly bounded diameter so that no metric ball of radius
v in Z intersects more than n+ 1 elements of {C;}icr. The smallest such
integer n is called the asymptotic dimension asdim,(Z) of Z.

PROPOSITION 8 (Yu [33]). If M is a uniformly contractible Riemannian
manifold with finite asymptotic dimension then 0 € o(,) for some p.

The proof of Proposition 8 uses methods of coarse index theory [28].

4. VERY Low DIMENSIONS

In this section we show that the answer to the zero-in-the-spectrum ques-
tion is “yes” for one-dimensional simplicial complexes and two-dimensional
Riemannian manifolds.

4.1 ONE DIMENSION

As a one-dimensional manifold is either S' or R, zero is clearly in the
spectrum. '

A more interesting problem is to consider a connected one-dimensional
simplicial complex K. Let V be the set of vertices of K and let E be the set
of oriented edges of K. That is, an element e of E consists of an edge of
K and an ordering (s.,f,) of Je. We let —e denote the same edge with the
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reverse ordering of Oe. For x € V, let m, denote the number of unoriented
edges of which x is a boundary. We assume that m, < oo for all x. Put

C%K) = {f : V — C such that Z;nx1f(x)|2 < 00},

xXev
4.1) CY(K) = {F : E — C such that

F(—e) = —F(e) and %; |Fe)|” < oo} .

Then C%XK) and C'(K) are Hilbert spaces. The weighting used to define
C%K) is natural in certain respects [8].

There is a bounded operator d : C%K) — CY(K) given by (df)(e) =
f(t,) — f(s.). Define the Laplace-Beltrami operators by /Ay = d*d and
A, = dd*. An element of Ker(/\;) is an F € C}(K) such that for each
vertex x the total current flowing into x vanishes, i.e. Zee Eito—x F(e) =0.

The next proposition is essentially due to Gromov [15, p. 236], who proved
it in the case when {m,}.cy is bounded.

PROPOSITION 9. 0 € g(A\g) or 0 € o(A\}).

Proof. As the nonzero spectra of d*d and dd* are the same, for
our purposes it suffices to consider o(4y) and Ker(A;). We argue by
contradiction. Suppose that 0 ¢ o(4y) and Ker(A;) = 0. First, K must
be infinite, as otherwise Ker(£y) # 0. Second, K must be a tree, as if K
had a loop then we could create a nonzero element of Ker(/A\;) by letting a
current of unit strength flow around the loop.

We now show that K has lots of branching. For x,y € V, let [x,y] be

the geodesic arc from x to y and let (x,y) be its interior. Let d(x,y) be the
number of edges in [x,y].

LEMMA 5. There is a constant L > 0 such that if d(x,y) > L then there

s an infinite subtree of K which intersects (x,y) but does not contain x
or y.

Proof. If the lemma is not true then for all N > 1, there are vertices x and
y such that d(x,y) > N but there are no infinite subtrees as in the statement
of the lemma. In other words, the connected component C of K — {x} — {y}
which contains (x,y) is finite. As K is a tree, x is only connected to the

vertices in C by a single edge, and similarly for y (see Fig. 5). Define
f e C%K) by
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42) ()_{1 if veCdC,
' J) = 0  otherwise.
Then

< =
As N can be taken arbitrarily large, this contradicts the assumption that

O%O’(Ao) D

/! N

FIGURE 5

It follows that K contains a subtree K’ which is topologically equivalent
to an infinite triadic tree, with the distances between branchings at most L
(see Fig. 6). We can create a nonzero square-integrable harmonic 1-cochain
F’ on K’ by letting a unit current flow through it, as in Fig. 6. Let F € C'(K)
be the extension of F’ by zero to K. If x is a vertex of K’ then the total
current flowing into x is still zero, as no new current comes in along the
edges of K — K’. Thus Ker(/A\;) # 0, which is a contradiction. [

FIGURE 6
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PROPOSITION 10 (Lott, Dodziuk). The answer to the zero-in-the-spectrum
question is “yes” if M is a two-dimensional manifold.

Proof. The Hodge decomposition gives

(4.4) AY(M) = Ker(Ag) & A°(M)/ Ker(d),
(4.5) A (M) = Ker(A ) ® dAYM) @ «dAO(M),
(4.6) A2(M) = *Ker(Ag) @ *(A°(M)/ Ker(d)).

-Thus it is enough to look at
Ker(Ag), Ker(A;) and o (Lo on A°(M)/ Ker(d)) .

We argue by contradiction. Assume that zero is not in the spectrum. By
Proposition 4, Im(H.(M) — H'(M)) = 0. Thus M must be planar, in the
sense of either of the following two equivalent conditions :

1. Any simple closed curve in M separates it into two pieces.
2. M is diffeomorphic to the complement of a closed subset of S2.

As Ker(/\g) = 0, M cannot be S?. By Proposition 5, the possible existence
of nonzero square-integrable harmonic 1-forms on M only depends on the
underlying Riemann surface coming from the Riemannian metric on M.

We recall some notions from Riemann surface theory [1]. A function
f € C®°(M) 1s superharmonic if Agf > 0. (This is a conformally-invariant
statement.) The Riemann surface underlying M is hyperbolic if it has a
positive superharmonic function and parabolic otherwise. If M is planar and
hyperbolic then there is a nonconstant harmonic function f € C*°(M) such
that | wd Nxdf < oo [1, p. 208]. Then df would be a nonzero element of
Ker(A;). Thus M must be parabolic.

Put Ag = inf(0(4p)). Choose some A such that 0 < A < )y. Then
there is a positive f € C>°(M) (not square-integrable !) such that Aqf = Nf
[31, Theorem 2.1]. However, this contradicts the parabolicity of M. [

We do not know of any result analogous to Proposition 10 for general

two-dimensional simplicial complexes, say uniformly finite. See, however,
Subsection 5.2.



362 J. LOTT

5. UNIVERSAL COVERS

Suppose that M is the universal cover of a compact Riemannian manifold
X. We give M the pulled-back Riemannian metric and consider the Laplace-
Beltrami operator A, on M. There are numerical invariants derived from
{Ap}p>0, the so-called L>-Betti numbers {b{’(X)},>o and Novikov-Shubin
invariants {a,+1(X)},>0. The L*-Betti numbers lie in [0, co) and the Novikov-
Shubin invariants lie in [0, 00] U oco™. Here oo™ is a formal symbol which
should be considered to be greater than oco. Roughly speaking, b{”(X)
measures the size of Ker(A,) as a m(X)-module and a,,i(X) measures
the thickness near zero of the spectrum of A, on A?(M)/Ker(d); the larger
a,p+1(X), the thinner the spectrum near zero. We refer to [21, 22, 26] for the
definitions of these invariants. We will only need the following properties :

PROPERTIES.

bP(X) =0 <= Ker(A,) =0.

0¢ o(A, on AP(M)/Ker(d)) < 41 =o0T.

bP(X) and ,(X) are homotopy-invariants of X.

b (X), BP(X), ai(X) and ay(X) only depend on mi(X).
b?(X) = 0 if and only if 7(X) is infinite.

a1(X) = oo™ if and only if 7(X) is finite or nonamenable.

el B WA g B Re b

The Euler characteristic of X satisfies
(5.1) XG0 =) (~1y7 bPX)
p

8. If X" is closed then b\ (X) = bP(X).

9. If X* is closed then there are nonnegative numbers b(z) i(X) such that
b(z) X) = b(z) +(X) + b (X) and the signature of X satisfies

(5.2) T(X) = b5 L (X) — b5 _(X).

One can extend properties 1-7 from compact Riemannian manifolds X to
finite CW-complexes K.
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In what follows, I' will denote a finitely-presented group. Given a
presentation of I', there is an associated 2-dimensional CW-complex K
which we call the presentation complex. To form it, make a bouquet of circles
indexed by the generators of I'. Attach 2-cells based on the relations of
. (We allow trivial or repeated relations in the presentation.) This is the
presentation complex.

DEFINITION 7. Pur BP(T) = bP(K), bP(T) = bP(K), au(I) = ay(K)
and o(IN) = ay(K).

By Property 4 above, Definition 7 makes sense in that the choice of
presentation of I' does not matter.

As the invariants b3(I), BP(I), a;(I) and ay(T) will play an important
role, let us state explicitly what they measure. First, from Property 5, b(()2)(r)
tells us whether or not I' is infinite. In general, bg”(r) = T%—l Next, from

Property 1, b(lz)(F) tells us whether or not M has square-integrable harmonic
1-forms (or K has square-integrable harmonic 1-cochains). From Property 2,
a(I) tells us whether or not the Laplacian /Ay, acting on functions on M,
has a gap in its spectrum away from zero. In fact, Property 6 is just a
restatement of Corollary 3. Finally, from Property 2, a,(I') tells us whether
or not the spectrum of the Laplacian on A'(M)/Ker(d) goes down to zero.

5.1 BIG AND SMALL GROUPS

Let us first introduce a convenient terminology for the purposes of the
present paper.

DEFINITION 8. The group T is big if it is nonamenable, b(lz)(l“) =0 and
asr(I") = co™. Otherwise, T is small.

We recall that /A, denotes the Laplace-Beltrami operator on the universal
cover M.

PROPOSITION 11.  Let X and M be as above. The group m(X) is small
if and only if 0 € o(Ng) or 0 € a(/\)).

Proof. This follows immediately from Properties 1, 2, 4, 5 and 6 above. []

The question arises as to which groups are big and which are small. Clearly
any amenable group is small.
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PROPOSITION 12. Fundamental groups of compact surfaces are small.

Proof. Suppose that X is a compact surface and I' = m(Z). If £ has
boundary then I" is a free group F; on some number j of generators. If j =0
or j=1 then T is amenable. If j > 1 then HP(T) =j—1> 0.

Suppose now that X is closed. If x(X£) > 0 then I'" is amenable. If x(X) < 0
then bV = —x(X) >0. O

We now extend Proposition 12 to 3-manifold groups. We use some facts
about compact connected 3-manifolds Y, possibly with boundary. (See, for
example, [21, Section 6]). Again, all of our manifolds are assumed to be
oriented. First, ¥ has a decomposition as a connected sum Y = Y #Y,#...#Y,
of prime 3-manifolds. A prime 3-manifold is exceptional if it is closed and
no finite cover of it is homotopy-equivalent to a Seifert, Haken or hyperbolic
3-manifold. No exceptional prime 3-manifolds are known and it is likely that
there are none.

PROPOSITION 13 (Lott-Luck). Suppose that Y is a compact connected
oriented 3-manifold, possibly with boundary, none of whose prime factors are
exceptional. Then m(Y) is small.

Proof. We argue by contradiction. Suppose that 7;(Y) is big. First, m(Y)
must be infinite. If Y has any connected components which are 2-spheres
then we can cap them off with 3-balls without changing m(Y). So we
can assume that 0Y does not have any 2-sphere components. In particular,
x(¥Y) = %X(c‘?Y) < 0. From [21, Theorem 0.1.1],

i 1
2) _ . . o
(5.3) by”(Y)=(r—1) ;:1 A x(Y).

As this must vanish, we have x(¥) =0 and either
1. {m@¥)|}t-, =42,2,1,...,1} or
2. A{|lm()| Y, = o0, 1,...,1}.
It follows that JY is empty or a disjoint union of 2-tori. As there are no

2-spheres in 9Y, if |m;(¥;)| =1 then Y; is a homotopy 3-sphere. Thus Y is
homotopy-equivalent to either

1. RP3#RP3 or

2. A prime 3-manifold Y’ with infinite fundamental group whose boundary
is empty or a disjoint union of 2-tori.
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If Y is homotopy-equivalent to RP3#RP® then 7;(Y) is amenable, which
is a contradiction. So we must be in the second case. Using Property 3, we
may assume that ¥ = Y’. Then as Y is prime, it follows from [24, Chapter 1]
that either Y = S' x D? or Y has incompressible (or empty) boundary. If
Y = S! x D? then m;(Y) is amenable. If Y has incompressible (or empty)
boundary then from (21, Theorem 0.1.5], a»(¥Y) < 2 unless Y is a closed
3-manifold with an R?, Rx S? or Sol geometric structure. In the latter cases,
I is amenable. Thus in any case, we get a contradiction. [

The next proposition gives examples of big groups.

PROPOSITION 14.
1. A product of two nonamenable groups is big.
2. If Y is a closed nonpositively-curved locally symmetric space of dimension

greater than three, with no Euclidean factors in Y, then m(Y) is big.

Proof. 1. Suppose that I' =T xI, with I'; and I, nonamenable. Then
I' is nonamenable. Let K; and K, be presentation complexes with fundamental
groups I'; and I, respectively. Put K = K; X K,. Then I' = m(K). Let
AP(IN{), AP(E) _and A[il?;) denote the Laplace-Beltrami operator on p-

cochains on K, K; and K;, respectively, as defined in Subsection 5.2 below.
Then

inf (o (A1(K))) =min(inf (o (A1(K)))) + inf (o (20(K2))),
inf (o (Lo(K))) + inf (0 (L1(K2)))) > 0.

Using Proposition 11, the first part of the proposition follows.

(5.4)

2. If Y is irreducible then part 2. of the proposition follows from the second
remark after Proposition 7. If Y is reducible then we can use an argument
similar to (5.4). [

REMARK. Let I' be an infinite finitely-presented discrete group with
Kazhdan’s property T. From [6, p. 47], H' (I'; () = 0. This implies that
I' is nonamenable and b(lz)(F) = 0. We do not know if it is necessarily true
that (') = co™.

5.2 TwO AND THREE DIMENSIONS

In this subsection we relate the zero-in-the-spectrum question to a question
in combinatorial group theory. Let K be a finite connected 2-dimensional
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CW-complex. Let K be its universal cover. Let C*(INQ denote the Hilbert
space of square-integrable cellular cochains on K. There is a cochain complex

(5.5) 0 — C'K) 2 c'(K) 4 C2(K) — 0.

Define the Laplace-Beltrami operators by Ay = didy, L1 = dod} + did,
and A, = d;d} . These are bounded self-adjoint operators and so we can talk
about zero being in the spectrum of K.

PROPOSITION 15. Zero is not in the spectrum of K if and only if m(K)
is big and x(K) = 0.

Proof. Suppose that zero is not in the spectrum of K. From the analog
of Proposition 11, I' must be big. Furthermore, from Properties 1 and 7,
x(K) =0.

Now suppose that m;(K) is big and x(K) = 0. From the analog of
Proposition 11, 0 ¢ o(4Ay) and 0 ¢ o(A;). In particular, Ker(£y) =
Ker(A;) = 0. From Properties 1 and 7, Ker(A;) = 0. As C*K) =
Ker(A\;) & d; CY(K), we conclude that 0 ¢ o(N,y). O

Let I' be a finitely-presented group. Consider a fixed presentation of
I' consisting of g generators and r relations. Let K be the corresponding
presentation complex. Then x(K) = 1—g+r. Thus zero is not in the spectrum
of K if and only if m;(K) is big and g —r = 1.

Recall that the deficiency def(I') is defined to be the maximum, over all
finite presentations of I', of g —r. If b§2>(r) = 0 then from the equation

(5.6) X(K) =1—g+r=>bI) - b7 ([1) + b (K),

we obtain def(I') < 1. This is the case, for example, when I' is big or when
I" is amenable [5].

As any finite connected 2-dimensional CW-complex is homotopy-
equivalent to a presentation complex, it follows from Proposition 15 that
the answer to the zero-in-the-spectrum question is “yes” for universal covers
of such complexes if and only if the following conjecture is true.

CONJECTURE 1. If I is a big group then def(I') < 0.
REMARK. If 7;(K) has property T then the ordinary first Betti number of

K vanishes [6], and so x(K) = 1+ b,(K) > 0. Thus zero lies in the spectrum
of K.
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Now let Y be a 3-manifold satisfying the conditions of Proposition 1}. If
0Y + @, we define A, on Y using absolute boundary conditions on JY.

PROPOSITION 16. Zero lies in the spectrum of Y.

Proof. This is a consequence of Propositions 11 and 13. [

5.3 FOUR DIMENSIONS

In this subsection we relate the zero-in-the-spectrum question to a question
about Euler characteristics of closed 4-dimensional manifolds.
If M is a Riemannian 4-manifold then the Hodge decomposition gives
(5.7) A(M) = Ker(No) @ A°(M)/ Ker(d),
A (M) = Ker(Ay) & dAY(M) & A'(M)/ Ker(d),
A2(M) = Ker(A,) @ dAYM) & «dAL(M),
A3(M) = x Ker(A)) @ *dA'(M) @ (A (M)/ Ker(d)),
A*(M) = x Ker(Ao) @ *(A°(M)/ Ker(d)).

Thus for the zero-in-the-spectrum question, it is enough to consider Ker(Ay),
Ker(/\)), J(Ao on AY/ Ker(d)), O'(Al on Al/Ker(d)) and Ker(A\,).

Let I" be a finitely-presented group. Recall that I' is the fundamental
group of some closed 4-manifold. To see this, take a finite presentation of
I". Embed the resulting presentation complex in R> and take the boundary of
a regular neighborhood to get the manifold.

Now consider the Euler characteristics of all closed 4-manifolds X with
fundamental group I'. Given X, we have y(X#CP?) = x(X) + 1. Thus it is
easy to make the Euler characteristic big. However, it is not so easy to make
it small. From what has been said,

{x(X): X is a closed connected oriented 4-manifold with
(5.8) mX)=T}={neZ:n>ql)}
for some ¢q(I’). A priori gI') € Z U {—oc0}, but in fact gI) € Z
[17, Theorem 1]. (This also follows from (5.9) below.) It is a basic problem

in 4-manifold topology to get good estimates of g(I').
Suppose that 7;(X) = I'. From Properties 4, 7 and 8 above,

(5.9) X(X) = 26(T) — 2630 + BP(X) .

In particular, if 5{’(I") = 0 then x(X) > 0 and so ¢(T)) > 0. This is the case,
for example, when I' is big or when T" is amenable [5].



368 J. LOTT

PROPOSITION 17. Let X be a closed 4-manifold. Then zero is not in the
spectrum of X if and only if m(X) is big and x(X) = 0.

Proof. Suppose that zero is not in the spectrum of X. Then from
Proposition 11, m;(X) must be big. Furthermore, Ker(A,;) = 0. From
Property 1 and (5.9), x(X) = 0.

Now suppose that 7(X) is big and x(X) = 0. From Proposition 11,
0¢ o(Lo) and 0 ¢ o(4\). From Property 1 and (5.9), Ker(A;) = 0. Then
from (5.7), zero is not in the spectrum of X. O

REMARK. If zero is not in the spectrum of X then it follows from
Property 9 that in addition, 7(X) = 0. Also, as will be explained later in
Corollary 4, if m(X) satisfies the Strong Novikov Conjecture then v, ([X])
vanishes in Hy(Bm;(X); C).

In summary, we have shown that the answer to the zero-in-the-spectrum
question is “yes” for universal covers of closed 4-manifolds if and only if
the following conjecture is true.

CONIJECTURE 2. If T is a big group then g(I') > 0.

We now give some partial positive results on the zero-in-the-spectrum
question for universal covers of closed 4-manifolds. Recall that there is a
notion, due to Thurston, of a manifold having a geometric structure. This
is especially important for 3-manifolds. The 4-manifolds with geometric
structures have been studied by Wall [32].

PROPOSITION 18. Let X be a closed 4-manifold. Then zero is in the
spectrum of X if

1. m(X) has property T or
2. X has a geometric structure (and an arbitrary Riemannian metric) or

3. X has a complex structure (and an arbitrary Riemannian metric).

Proof.

1. If X has property T then the ordinary first Betti number of X vanishes
[6]. Thus x(X) =2+ by(X) > 0. Part 1. of the proposition follows.

2. The geometries of [32] all fall into at least one of the following classes :
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a. bP #0: 5, $? x$?, CP2.

b. 0€o(Apon A/ Ker(d)) : R*, $* xR, §* x R?, Nil’ xR, Nil*, Solg,
Solt, Sol,

G b(lz) £0: 82 x H?.
d. 0€o(A; on A/Ker(d)) : H® xR, SL, x R, H? x R%.
e. x>0: H*, H?>xH?, CH>.

Part 2. of the proposition follows.

3. Suppose that zero is not in the spectrum of X. From Properties 7 and 9,
x(X) = 7(X) = 0. From the classification of complex surfaces, X has
a geometric structure [32, p. 148-149]. This contradicts part 2. of the
proposition. [

5.4 MORE DIMENSIONS

In this subsection we give some partial positive results about the zero-in-the-
spectrum question for covers of compact manifolds of arbitrary dimension.
Let us first recall some facts about index theory [18]. Let X be a closed
Riemannian manifold. If dim(X) is even, consider the operator d + d* on
A*(X). Give A*(X) the Z,-grading coming from (3.12). Then the signature
7(X) equals the index of d+ d*. To say this in a more complicated way, the
operator d+d* defines a element [d+d*] of the K-homology group Ko(X). Let
n : X — pt. be the (only) map from X to a point. Then n.([d+d*]) € Ko(pt.).
There is a map A : Ky(pt.) — Ko(C) which is the identity, as both sides are
Z. So we can say that 7(X) = A(n([d + d*1)) € Ko(C).

We now extend the preceding remarks to the case of a group action. Let
M be a normal cover of X with covering group I'. The fiber bundle M — X
is classified by a map v : X — BI', defined up to homotopy. Let d be exterior
differentiation on M. Consider the operator d+d*. Taking into account the
action of I" on M, one can define a refined index ind(3+3*) € Ko(Cr 1),
where C:T" is the reduced group C*-algebra of T .

We recall the statement of the Strong Novikov Conjecture (SNC) [18, 29].
This is a conjecture about a countable discrete group I', namely that the
assembly map A : K,(BI') — K,(C;T’) is rationally injective. Many groups
of a geometric origin, such as discrete subgroups of connected Lie groups or

Gromov-hyperbolic groups, are known to satisfy SNC. There are no known
groups which do not satisfy SNC.
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PROPOSITION 19. Let X be a closed Riemannian manifold with a surjective
homomorphism (X)) — I'. Let M be the induced normal T -cover of X.
Suppose that T satisfies SNC. Let L(X) € H*(X; C) be the Hirzebruch L-class
of X and let xL(X) € H.(X;C) be its Poincaré dual. Then if v,(xL(X)) # 0

in H.(BT';C), zero lies in the spectrum of M. In fact, 0 € o (A%@> if
dim(X) is even and 0 € & (Amg,ﬂ) if dim(X) is odd

Proof.  Suppose first that dim(X) is even. Suppose that zero does not lie
in the spectrum of M. Then the operator d+d* is invertible. (More precisely,
it 1s invertible as an operator on a Hilbert CT"-module of differential forms
on M.) This implies that ind(ﬁ + 2*) vanishes in Ko(C:T).

The higher index theorem says that

(5.10) ind(d + d*) = A(v.(ld + d*1)) .

Let Ac : Ko(BI) ® C — Ko(C:T) ® C be the complexified assembly map.
Using the isomorphism Ky(BI') @ C = H,yen(B1'; C), the higher index theorem
implies that in Ko(C'T) ® C,

(5.11) ind(d + d*)c = Ac (v« (xL(X))) .

By assumption, Ac is injective. This gives a contradiction.
Let T be the operator obtained by restricting d 4+ d* to

dim(X) dim(X) dlm(X)

AT (M) © AN (M) @ +dA™5 (M),

One can show that the other differential forms on M cancel out when
computing the rational index of d + d*, so T will have the same index

as d + d*. Then the same arguments apply to T to give 0 € o (A@>
If dim(X) is odd, consider the even-dimensional manifold X’ = X x S!

and the group I" = T" x Z. As the proposition holds for X', it must also hold
for X. [

COROLLARY 4. Let X be a closed Riemannian manifold. Let [X] €
Hyimx)(X; C) be its fundamental class. Suppose that there is a surjective
homomorphism 7 (X) — I' such that 1" satisfies SNC and the composite map
X — Bm(X) — BI sends [X] to a nonzero element of Hgime)(BL'; C). Let M

be the induced normal T -cover of X. Then on M, 0 € o (AQ@) if dim(X)
is even and 0 € o <A dim()zf)il) if dim(X) is odd.
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Proof. As the Hirzebruch L-class starts out as LX) = 1+ ..., its
Poincaré dual is of the form *L(X) = ...+ [X]. The corollary follows from
Proposition 19.  []

COROLLARY 5. Let X be a closed aspherical Riemannian manifold whose
fundamental group satisfies SNC. Then on X,0co <A(LZQ ) if dim(X) is

even and 0 € o (Ad,-,,,o?oil) if dim(X) is odd.

Proof. This follows from Corollary 4. [

EXAMPLES.
1. If X = T" then Corollary 5 is consistent with Example 2 of Section 2.

2. If X is a compact quotient of H*" then Corollary 5 is consistent with
Example 3 of Section 2.

3. If X is a compact quotient of H***! then Corollary 5 is consistent with
Example 4 of Section 2.

4. If X is a closed nonpositively-curved locally symmetric space then
Corollary 5 is consistent with the second remark after Proposition 7.

If X is a closed aspherical manifold, it is known that SNC implies that
the rational Pontryagin classes of X are homotopy-invariants [18] and that
X does not admit a Riemannian metric of positive scalar curvature [29].
Thus we see that these three questions about aspherical manifolds, namely
homotopy-invariance of rational Pontryagin classes, (non)existence of positive-
scalar-curvature metrics and the zero-in-the-spectrum question, are roughly all
on the same footing.

If X is a closed aspherical Riemannian manifold, one can ask for which
p one has 0 € o(4A,) on X. The case of locally symmetric spaces is
covered by the second remark after Proposition 7. Another interesting class
of aspherical manifolds consists of those with amenable fundamental group.
By [5], Ker(A,) =0 for all p. By Corollary 3, 0 € 0(4y).

PROPOSITION 20. If X is a closed aspherical manifold such that m(X)

has a nilpotent subgroup of finite index then 0 € o(A,) on X for all
p € [0,dim(X)].

Proof. First, X 1s homotopy-equivalent to an infranilmanifold, that is,
a quotient of the form I'\G/K where K is a finite group, G is the
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semidirect product of K and a connected simply-connected nilpotent Lie
group and I' is a discrete cocompact subgroup of G [12, Theorem 6.4].
We may as well assume that X = I'\G/K. By passing to a finite cover,
we may assume that K is trivial. That is, X is a nilmanifold. From
[27, Corollary 7.28], H?(X; C) = H’(g, C), the Lie algebra cohomology of g.
From [7], HP(g,C) # 0 for all p € [0,dim(X)]. Thus for all p € [0,dim(X)],
HP(X;C) #0.

Now let w be a nonzero harmonic p-form on X. Let m*w be its pullback
to X. The idea is to construct low-energy square-integrable p-forms on X
by multiplying 7*w by appropriate functions on X. We define the functions
as in [2, §2]. Take a smooth triangulation of X and choose a fundamental
domain F for the lifted triangulation of X. If E is a finite subset of 7{(X),
let xg be the characteristic function of H = [ gee 9 F. Given numbers
0 <€ <& <1, choose a nonincreasing function 1 € C§° ([O, oo)) which is
identically one on [0, ¢;] and identically zero on [e;, 0c0). Define a compactly-
supported function fg on X by fe(m) = w(d(m,H)) . Then there is a constant

C; > 0, independent of E, such that
(5.12) [ |dfs|> < C) area(OH) .
X

Define pg € AP(X) by pg = fg - mw. We have dpg = dfyg N 7w and
d*pg = —i(dfg) m*w. As fg is identically one on H, it follows that there is
a constant C > 0, independent of E, such that

Jz ldpel* + |d* pel] = area(OH)
Jz loel? =~ "Vol(H)

As m(X) 1s amenable, by an appropriate choice of E this ratio can be made
arbitrarily small. Thus 0 € o(4,). [

(5.13)

QUESTION. Does the conclusion of Proposition 20 hold if we only assume
that 7;(X) is amenable ?

6. TOPOLOGICALLY TAME MANIFOLDS

Another class of manifolds for which one can hope to get some nontrivial
results about the zero-in-the-spectrum question is given by topologically tame
manifolds, meaning manifolds M which are diffeomorphic to the interior of a
compact manifold N with boundary. If M has finite volume then Ker(4) # 0,
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so we restrict our attention to the infinite volume case. A limited result is
given by Corollary 2.

An interesting class of topologically tame manifolds consists of those which
are radially symmetric. This means that M is diffeomorphic to R", with a
metric which is given on R” — {0} = (0,00) x §"~! by

(6.1) g = dr* + ¢*(rdQ.

Here dQ? is the standard metric on S 1, r € (0,00), ¢ € C*([0,0)),
o(0) =0, ¢'(0) =1 and ¢(r) >0 for r > 0.

PROPOSITION 21. Suppose that there is a constant ¢ > 0 such that
Ricciy > —c?. Then 0 € o(A,) for some p.

Proof. We may assume that vol(M) = oco. Suppose first that
liminf ¢(r) < co.

Then there is a constant C > 0 and a sequence {r;}?2; such that lim; 77 =

oo and ¢(r;) < C. Let D; be the domain in M defined by r < r;. Then
area(D;) < C"~! vol(§"~!) and lim;_,, vol(D;) = oco. Thus M is not open at
infinity. By Proposition 6, 0 € a(4\p).

Now suppose that liminf,_ . o(r) = co. We want to show that M is
hyperEuclidean and apply Proposition 7. Consider a map F : M — R" given
in polar coordinates by

(6.2) F(r,0) = (s(r),0),

for some s : [0,00) — [0,00). The condition for F to be distance-
nonincreasing 1is

(6.3) ' (0] < 1, s(r) < o(r).

If lim,_ o s(r) = co then F is a proper map of degree one. It remains to
construct s satisfying (6.3).

Put
(6.4) ¢ = inf ¢).
vE[r,0c0)
Replacing ¢ by gfg , We may assume that ¢ is monotonically nondecreasing.
Thinking of ¢(r) as representing the trajectory of a car in front of us which

is blocking the road, with our car’s velocity bounded above by one, it is
intuitively clear that we can find a trajectory s(r) for our car such that
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lim, o s(r) = co. More precisely, let p € C°°([0,2]) be a nondecreasing
function which is identically zero near 0, identically one near 2 and satisfies
p'(x) <1 for all x € [0,2]. Put o = 0 and define {ri}72y and {rj}Jﬁl
inductively by

ri=1inf{r:r>r;+2 and ¢(r) > j+ 1},

(6.5)
Figpl = r; + 2.
Define s by
' if re[r,7r
(6.6) s(r) = { ] / . [ J/ /]
jH+plr—r) it relrral

Then s satisfies (6.3) and lim,_, oo s(r) = 0c0. [

QUESTION. What can one say in the radially symmetric case without the
assumption of a lower bound on the Ricci curvature ?

Another interesting class of topologically tame manifolds consists of those
which are hyperbolic, that is, of constant sectional curvature —1. Complete
hyperbolic manifolds are divided into those which are geometrically finite and
those which are geometrically infinite. Roughly speaking, M is geometrically
finite if its set of ends consists of a finite number of standard cusps and flares.

PROPOSITION 22 (Mazzeo-Phillips [23, Theorem 1.11]). Let M be an
infinite-volume geometrically finite hyperbolic manifold. If dim(M) = 2k then
dim(Ker(Ay)) = co. If dim(M) = 2k + 1 then o(A\) = o(Dryq) = [0, 00).

The paper [23] also computes dim(Ker(A,)) for such manifolds.

In general, geometrically infinite hyperbolic manifolds can have wild end
behavior. However, in three dimensions one can show that the ends have a
fairly nice structure. This is used to prove the next result.

PROPOSITION 23 (Canary [4, Theorem A]). If M is a geometrically infinite
topologically tame hyperbolic 3-manifold then 0 € g(/\).

Proof. The method of proof is to show that M is not open at infinity
and then apply Theorem 6. See [4] for details. [
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Thus zero lies in the spectrum of all topologically tame hyperbolic 3-
manifolds. From Proposition 2, the same statement is true for compactly-
supported modifications of such manifolds.
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