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L'Enseignement Mathématique, t. 42 (1996), p. 97-123

MOYENNES SUR CERTAINS ENSEMBLES DE DIVISEURS

D'UN ENTIER

par Jean-Marie De Köninck et Jacques Grah1)

Abstract. Given an arithmetical function /, we examine the

average value of f(d) as d runs through subsets of the divisors d of an

integer n. In particular, we study the functions f(n)= £ f(d),f(n)
l(n) d I n

—L S f(d) and /(«) —— £ where x(n) is the
a\n 2»<")

d squarefree (d,n/d) 1

number of divisors of n and co («) stands for the number of distinct prime
factors of n, and show that their arithmetic properties resemble those of /.

1. Introduction

Soit F l'ensemble des fonctions arithmétiques. On dit que / e F est

additive si f(mn) - f(m) + f(n) lorsque (m, n) 1. Si n qf q\2... q*r
est la décomposition canonique de n, alors les fonctions co(n) Y,p\nl r>

Q(n) E/=1a/ et log« sont additives. Lorsque l'égalité f(mn) f(m)
+ f(n) est valable pour tous les entiers positifs m et n, on dit que / est
totalement additive. Si en plus d'être additive, / satisfait f(pa) f(p)
pour chaque nombre premier p et tout a e N, on qualifie / de fortement
additive.

Une fonction / e F est dite multiplicative si f(mn) f(m) f(n) lorsque
r

{m, n) 1. C'est le cas des fonctions X(n) (- 1)Q("), t(n) H (a/ + 1)»

§(n) L l,o(«)= Xi ^ l(n) 1 V« ^ 1, ô(«) qxq2... qr (qu'on
m ^ n d\n

(m, n) 1

]) Travail supporté en partie par une subvention du CRSNG et une subvention du
programme FCAR. 1991 Mathematics Subject Classification: 11A25, 11N37.
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appelle «noyau de «»), de la fonction de Moebius \x(n) définie par

n(«)

1 si n 1

0 si p11 n pour un certain nombre premier p
(- l)r si n qxq2... qr\ Qi premiers distincts

et enfin de la fonction E(n) qui vaut 1 si n 1, et 0 autrement. Lorsque
l'égalité f(mn) f{m)f(n) est valable pour tous les entiers positifs m

et n, f est dite totalement multiplicative. Une fonction multiplicative / telle

que f(pa) f(p) pour chaque nombre premier p et tout a e N est dite

fortement multiplicative. On désigne par Jt (respectivement par W ,Jt et

par -50#) l'ensemble des fonctions multiplicatives (respectivement l'ensemble
des fonctions totalement multiplicatives et l'ensemble des fonctions fortement

multiplicatives). De même, on désigne par j/, W.sd et Jùj/ les ensembles

des fonctions additives, totalement additives et fortement additives.
Très souvent, étant donné une fonction arithmétique /, on est appelé à

étudier des expressions de la forme

(1.1) I f(d),I I f{d),
d\n d\n d\n

d libre de carrés (d, n/d) - 1

où, dans chaque cas, l'argument de / parcourt tous les diviseurs de l'entier
positif n ou encore un sous-ensemble de ses diviseurs; la troisième somme
de (1.1) parcourt ce qu'on appelle communément les diviseurs unitaires
de l'entier n.

Notre étude portera d'abord sur les fonctions arithmétiques /, / et /,
associées à une fonction arithmétique / donnée, et définies respectivement par

/("):= -7— I f(d),/(«):= —L S

„ T (n)dIn2C0(") d\"
(1.2) d libre de carrés

2®(n)
(d, n/d) 1

En effet l'étude des sommes du type (1.1) et celle des sommes
correspondantes (1.2) s'avèrent être deux problèmes analogues; toutefois les

sommes (1.2) ont l'avantage d'avoir une interprétation «plus naturelle» en ce

sens que chacune d'elles représente une moyenne de la fonction / lorsque

son argument parcourt un sous-ensemble particulier de diviseurs de l'entier n.
De plus, comme on le verra ci-dessous, les sommes du type (1.2) possèdent
des propriétés arithmétiques qui rendent leur étude beaucoup plus facile

que celles du type (1.1).
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Les trois fonctions f.fetf représentent donc la moyenne des valeurs

de f prises respectivement sur les diviseurs de sur les diviseurs libres

de carrés et sur les diviseurs unitaires de Par exemple si f{ji) 2

alors f (n) x(n2)/x{n).Si f(n) A (n) logp si^ n (pour^ un

certain ppremier et m ^1), 0 autrement, alors f(n) A A

log (8(n))/2aM et À(n) log (n)/x(n).Il est également facile de vérifier

que X(n)=E(n), ä(n)= Zpa\lna/(1 + a)=<ù_(n) - Y,p^n 1/(1 + a),

©(«) co(ra) co(n)/2 Q(n) et que 1=1=1=1. Plusieurs autres

exemples seront exposés dans cet article.

Nous étudierons donc ici les propriétés arithmétiques des fonctions

/, / et y C'est ainsi qu'à la section 2, on démontre que, vues comme des

opérateurs sur l'ensemble F, ces fonctions «héritent» du caractère additif de

la fonction originale /, ou de son caractère multiplicatif, selon le cas.

Réciproquement, de (1.2), on montre que / hérite du caractère additif ou

multiplicatif des fonctions /, et /. En effet, en utilisant la notation
habituelle / * g pour désigner le produit de Dirichlet des fonctions arithmétiques

f et g, et *w la restriction de * aux diviseurs unitaires, alors, si

/ e F telle que f e M, des égalités / t/ * p et p * t 1, on déduit

facilement que / e j/. Pour f e sd les identités / 2C0/*W(-l)03 et

(-1)CÙ*U2CÛ= 1 permettent d'établir l'additivité de /. Lorsque les fonctions

/ et / appartiennent à on obtient la multiplicativité de /
directement à partir des formules d'inversion de Moebius sans faire appel aux
identités p * t 1 et (- l)03 2e0 1.

Nous traitons, à la section 3, des liens qui existent entre la valeur

moyenne de / sur un intervalle donné [l,x] et celles des fonctions /, f et /.
Ainsi on établit que lorsque / e JCjsf et satisfait certaines conditions de

régularité, alors / n'est pas nécessairement dans mais pourtant /
possède une valeur moyenne si et seulement si f en possède une. On

complète cette section avec l'étude du comportement des itérations
successives /,/,/,

La question naturelle de l'écart, pour un entier naturel n, entre f(n) et
— A ~

chacune des quantités f(n),f(n) et f(n), est soulevée à la section 4. On
démontre que ces écarts, interprétés comme des fonctions arithmétiques,
préservent l'additivité, ce qui permet d'analyser plus facilement leur ordre
de grandeur.

Enfin, à la section 5, étant donné une fonction arithmétique /, on
considère des sous-ensembles de diviseurs d'un entier n qui ont la propriété
d'être «multiplicatifs» et on introduit la notion de moyenne des valeurs de
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la fonction / sur ces ensembles de diviseurs de n. Certains des résultats établis
dans cette section donnent d'ailleurs lieu à plusieurs identités surprenantes.

Les auteurs remercient le rapporteur dont les nombreuses suggestions leur
ont été utiles pour la version définitive de ce travail.

2. Propriétés arithmétiques de /, / et /
On définit sur F les opérateurs T, T et T par T(f) \= /, T(f) : f et

T(f):=f.
Du prochain résultat, il découle en particulier que toute fonction arithmétique

est elle-même la «moyenne» d'une autre fonction arithmétique.

Théorème 2.1. L'opérateur T établit une bijection de F sur F.

Il en est de même pour l'opérateur T.

Démonstration. Pour chaque / e F,

T(f) / =i (1 * /) si et seulement si / \i * t/T

1

et T(f) / — (1 *uf) si et seulement si / (- l)w *w 2e0/
2«

d'où le résultat.

Exemples. Ainsi il est intéressant de se demander quelles sont les images

par l'opérateur T~l ou par l'opérateur T-1 de certaines fonctions
arithmétiques classiques, soit par exemple les fonctions co, A, X(n) et E(n). On

vérifie successivement que

p\\n
co {n) (co + k)(n), où k(n) =* £ 1,

A (n) g(n), où g(n)
0 si n 1,

P I r,(_l)œ(n)£ Jogi si 1,

X{n) X(n)x(n2),

E(n) \i{n) jü(w).

L'opérateur T n'est pas injectif. En effet, si on pose g\(n) i(n)/n,
g2(«) 2Cû(")/fl et g3(fl) «= 2alors

êi(«) =ft(/i) 2-J](l+ 2/p)

1

n e += 0<")

ô(«)2®(") pin ô(n)
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Les opérateurs T, T et T préservent la multiplicativité et 1 additivité.

On a en effet le résultat suivant.

Théorème 2.2. Si f est dans sd (respectivement dans Jd), alors

les fonctions f•> f f sont chacune dans sd (respectivement

dans d/).
Avant de donner la démonstration du théorème, voyons par des exemples

les allures que prennent /, f et / pour des fonctions / additives et

multiplicatives.

Exemples

1) On démontre facilement avec le théorème 2.2 que

1 si n m2,
X(n) X(n)x(n) *

[O autrement,

soit la fonction caractéristique de l'ensemble des carrés parfaits.

2) Parfois, il arrive que f{n) f(n)\ ainsi on a

i(„) n (1 + a/2)
2t0<") pa|| „

et

Q(n)
Q(n) Q(n)

Démonstration du théorème 2.2. Si f e <.//, la démonstration est presque
immédiate. Nous allons établir la preuve uniquement pour /, dans le cas

A ~
oil f e sd\ les cas des fonctions / et /, avec f e sd, sont presque identiques.
Soit donc / e sd et soit n et m deux entiers positifs relativement premiers,
alors

f(mn)
1

E fid) —f— E
x{mn) d\mn T(m)x(n) dt\n

d 2
I m

1

T(m)T(n) d i \ n

d 2
I m

E (/(*) +/(rf2))

E f{d\) + ——-——— E 2)
x(m)x(n)dt\n x(m)x(n) </,|n

d2\m d2\m

]
E /<<*>> E 1 +

*
E /(rf2) E 1

x(m)x(n)rf;rf2|m

fin) + /(/w)
Le résultat est ainsi démontré pour
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Remarque. La réciproque du théorème 2.2, comme nous Lavons

montré dans l'introduction, est vraie pour / et pour /. Montrons par un
exemple que ce n'est pas le cas de la fonction /. Soit / la fonction
définie par

fin)
2QW si p11 n,

co {n) sinon

Il est clair que / n'est pas additive; or il est facile de voir que fin)
à in) e s-/, puisque fin) est indépendante des valeurs de fid)

où d \ n avec p(<i) — 0. C'est pourquoi f e s/ f e •?/.

Il est intéressant de signaler qu'en général fin) ^ fin). En effet, il est

facile de démontrer que, quelle que soit la fonction arithmétique /,
fin) fin) pour tout ne N ^ / c, pour une certaine constante c

La même affirmation est valable dans le cas des fonctions f et /. Une
observation plus générale sera faite à la section 5.

Par ailleurs, si / e s/,

/(«)= I —L- t
pa\\n CL + 1 m \

An) \ S f(p) 1/(8(«))
2 P|„ 2

et /(/i) \fin)
2

Si / e W sd, alors fin) /(«) fin)/2. Mentionnons également que
lorsque / e

/(«) I 7—— /(p) /(«) - I 7^— /(p) ;

p"\\n 1 + a pa\\n 1 + a

en particulier, si / est à valeurs positives, on a les inégalités \fin) ^ /(«)
< fin), ce qui est équivalent à fin)< fin) ^2/(«).

Par ailleurs si / e alors

/(«) -7— n f1 + z
T in) pa\\ n y m 1 J

/(«)— n d+/(/»))
Z P I «

et n (i+/(po)).
Z v ' pa II n
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Lorsque / e JO#,

fin) —— n (1+
t in) ||n

et fin)fin) —L R (1 •

2®{n) p\n

Enfin si fe W Jé,alors fin) n^«||«(l +fiP)a)-
Il découle donc de ces observations que T préserve le caractère tota-

A

lement additif alors que T applique les ensembles sé et respectivement

sur et sur JC#. En particulier 2Fsrf et JO# sont des ensembles

invariants par rapport à l'opérateur T en ce sens que pour chaque / e JLjaf,

T(f) e -frs/, et que pour chaque / e FF/, T(f) e FJt. Par ailleurs,

l'opérateur T préserve les caractères totalement additif, fortement additif
et fortement multiplicatif des fonctions arithmétiques qui ont ces propriétés
avec la particularité que T - T sur Fsd ainsi que sur

Le prochain résultat précise que si f e J/l alors f(8(n)) est le quotient
de deux fonctions chacune d'elles étant une moyenne sur les diviseurs libres
de carrés.

Théorème 2.3. Soit f e .£ telle que f(n)^0, et posons
g 1 //, alors

Sous les mêmes hypothèses, on obtient l'équivalent de (2.1) pour f à

savoir

fin) fin) gin)

Démonstration. Soit f e // telle que 0, V« ^ 1, alors avec
la notation g1 //, on obtient

(2.1) fin) fi&in)) gin) •

I V2 id) g id) f(S in)) gin)
2W(/7) d\n

Exemple. Si on pose fin) alors gin) et fin)
suit immédiatement de (2.1). Comme ici fin) e S/i//, on a également
fin) fin) g in).
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Remarque. Vu que si f(n) ^ alors f(n) f(n)j(n) et comme
l'opérateur T est bijectif, il existe une fonction h e Jé telle que h (ri)

\/[j}(n). On établit facilement (par la formule d'inversion sur les

diviseurs unitaires mentionnée ci-dessus) que h(n) -2/2p— 1)).

C'est donc dire que s'écrit comme le produit de deux moyennes sur les

diviseurs unitaires, puisque, dans ce cas, f(n)h(n). De façon
générale, grâce à la bijectivité de T, on peut exprimer toute fonction

/ e Jé comme produit de deux moyennes sur les diviseurs unitaires, l'une
d'elles étant /.

Désignons maintenant par o l'opérateur classique de composition des

applications. On peut facilement vérifier que (To r)(p) (f o r)(|i).
Ce constat n'est pas exclusif à la fonction p, comme l'indique le résultat
suivant.

Théorème 2.4. Soit gei u alors (f o f) (g) (f o f) (g),
i.e. g g. En particulier T et T commutent sur Tensemble des
combinaisons linéaires des fonctions g e sd u .Jé.

Démonstration. Nous allons maintenant établir la preuve dans le cas

g e Jt. Le cas g e ja/ se traite de manière analogue et utilise le fait que les

opérateurs T et T sont linéaires. Soit donc g e .Jé, alors T(g) —g e Jï et

T(g) g e Jé, avec

T(g)(pa) g(pa) g(pm)
1

a + 1 m 0

et T(g)(pa g(pa) =-(\ + g(pa))

d'où

(2.2)

(T o T){g)(n) T[f(g)](n) T(g)(n) Ü ^ 0 +
pa II n 2

2-«(«)
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D'autre part,

/ 1 a

(fof)(g)(n)=T(g)(n)= II 7 X S(P'
pa\\n \ OC "h" 1 m 0

(2.3) =JL [] / £ 2 - 1 (1 + g)/?"1))]
T (ri) P*\\n \ m 0 J

2~(o(n) / j*— n (i + a+ d )•
T (/?) /?a II /î \ m 0

L'égalité entre (2.2) et (2.3) équivaut à g g. Et le théorème est

démontré.

Exemples

t(H2)
1) On a vu dans l'introduction que si f(n) 2Cû(") alors f(n)

t (n)
d'où

fin) — n i + ^2) n i+—-—) •

2«<">A\ t(P«)/ Al 2(a + 1)/

fin)

D'autre part,

(2P" « ,-L n (u'.U'1*».^2/ t (n)\Or d'après le théorème 2.4 on a l'égalité fin) donc en particulier

-t(n35 (nj)„/
|

a

2a>("H(n)p«\\„\ +2(a+l)J
2) Comme

1 si n m2,
X(n) X(n)T(n)

il suit du théorème 2.4 que lin
0 autrement,

M«) —L L+—I—\
2W(") M \ a + 1
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3. Valeurs moyennes de /, / et /
Soit / une fonction arithmétique. S'il existe une fonction continue

monotone g définie sur [1, + oo[ et telle que £ f(n) ~ £ g(n), lorsque
n ^ x n ^ x

x oo, on dit que g est une valeur moyenne (ou un ordre moyen) de /.
On dit qu'une fonction mesurable R : [2, + oo[ -> R+ est une fonction à

variation régulière s'il existe un nombre réel p ^ 0 tel que pour chaque a > 0

R(ax)
on a lim ap. Compte tenu de la nature des applications consi-

X-oo R(x)
dérées ci-dessous, nous n'étudions que les fonctions continûment dérivables à

variation régulière. Si p 0, on dit que R est à oscillation lente. Désignons

par j5f l'ensemble des fonctions continûment dérivables à oscillation lente.

On peut montrer (voir le livre de Seneta [7], p. 2) que toute fonction à

variation régulière R peut s'écrire sous la forme R(x) xpL(x), où p e R
et L e /. Il est démontré dans Seneta ([7], p. 7) que L e & si et seu-

xZ/(x)
lement si o(l) lorsque x oo. Nous utiliserons l'expression fonction

L(x)
régulière pour signifier fonction à variation régulière. Si la fonction g ci-dessus

est régulière, on dit que la fonction arithmétique / possède une valeur

moyenne régulière.

Voyons maintenant dans quel sens on pourra dire que la valeur moyenne
régulière de / est unique. D'abord signalons que si / possède deux valeurs

moyennes monotones régulières R et S alors R et S sont asymptotiquement

équivalentes. En effet, soit R(x) xPlL{ (x) et S(x) xp2L2(x) (où Lx

et L2 sont deux fonctions à oscillation lente) telles que, lorsque x-^ oo,

z f(n)~x~l£R(n)et £ £
n ^ x n ^ x n ^ x n ^ x

On ne restreint pas la généralité en supposant p1(p2> - 1. On

a alors £ «p'Li(rc) ~ £ np^L2{n), et il s'ensuit que | tp^Lx{t)dt
n ^ x n ^ x J 1

fix

~ I tp2L2(t) dt. En utilisant un résultat classique dû à Karamata (voir

Bingham, Goldie and Teugels [2], p. 26), on en déduit que

xPl + 1 xp2 + 1 Pi + 1 L\{x)
Li(x) L2{x) et ainsi que xpi~P2

Pi + 1 P2 + 1 P2 + 1 L2(x)
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Mais puisque Lx et L2 e i5f, il vient
pi + 1 L\ (x)

p2 + 1 L2(x)
xo(1), ce qui permet

de conclure que pi p2 + o(l) c'est-à-dire Pi — P2, ce qui implique

R(x) ~ S (x) lorsque x -* 00.

Compte tenu de ces observations, on peut considérer que la valeur moyenne

régulière, lorsqu'elle existe, d'une fonction arithmétique / est unique.

Dans un tel cas, c'est donc sans ambiguïté qu'on désignera sa valeur moyenne

régulière par VM(f).

Théorème 3.1. Soit f e F~jd. Alors:

(i) la fonction f possède une valeur moyenne si et seulement si la
A

fonction f en possède une;

(ii) la fonction f possède une valeur moyenne si et seulement si la

fonction f en possède une.

De plus, si l'une ou l'autre de ces valeurs moyennes existe et est régulière, on a

Démonstration. Les parties (i) et (ii) ainsi que les égalités (3.1) découlent
immédiatement du fait que / f \f pour toute fonction / e éF.sd.

Théorème 3.2. Soit f e F~sd telle que f{p) R(p) pour chaque
nombre premier p, où R est une fonction continûment dérivable à

variation régulière non décroissante qui possède la représentation R(x)
xpL(x), avec p ^ 0 et L e S. Alors la valeur moyenne régulière

de la fonction f existe si et seulement si celle de la fonction f existe,

auquel cas

Avant d'entreprendre la démonstration du théorème 3.2, nous établissons
d'abord un lemme d'intérêt général qui s'avère crucial pour la démonstration
de ce théorème.

Lemme 3.3. Soit <p: [1, + oo[- R+ une fonction continue non
décroissante telle que limx^oo(p(x) +00. Alors

(3.1) VM(f) 2 VM(f) 2 VM(f)

(3.2) VM(f) 2 VM(f)

r*«,,,I — dt ^ o((p(x))
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Démonstration. Soit (p une fonction satisfaisant les hypothèses du
lemme. Pour tout x assez grand, on pose

y(x):= infO'rtpO') ]/(p.
Il est clair que lim^oo^x) + oo.

Puisque (p est non décroissante on a

|*<P(0 dt
>y(x)

(p (0 dt +
(p (t) dt < (p(y(x))

y M

[Ax) dt f' dt
71+(p(x) 71Jl 1 Jy(x) 1

< l/<p(*)(1 —7—}
\ jW/

+ <p(x)

+ cp(x)

(j_.aUW xf

f— -1)
\y(x) xj

< ]/cp(x) + o(tp(x))
y(x)

car limx_>ooy(x) + 00, ce qui complète la preuve du lemme 3.3.

Démonstration du théorème 3.2. D'abord, puisque / e &
facile d'établir que

il est

(3.3) E fi") E
n ^ x p ^ x

E Riß)
p x

Par ailleurs, toujours parce que / g éFsd, on a

fin) E ——~fiP)= E t~^—RiP)
:?<* Il n 1 + CL va\\n 1 + (X

ce qui permet d'écrire

^ 01 (a a — 1 \
E fin)*E E ~—Rip)= E E It U(P)

n ^ x n^xpa\\nl~\~ CL n ^ x pa \ n \i. CL CL J
a ^ 1

~EE *(/>)+ E E
1

2, n ^ x p \ n n ^ x pa\n (X ((X + 1)
a ^ 2

et donc d'obtenir

1

(3.4) E /(«) r E
n x 2 p ^.x

+ E
a(l + a)

a ^ 2

*(/>)
X

p\
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Considérons d'abord le cas où la fonction R(x) xpL(x) est telle

que p 0. On a alors

(3.5) £ R(p)
p ^ X

E Up)
P ^ x P^X P

(E
\P^x

L(P)

Or, en utilisant le théorème des nombres premiers sous la forme

n (x)
logx

L(p)

+ fe)' on a

Pix p

(3.6)

L(t) ^ ^ L{t) ^dn(t) n(t) n
d (L)

dt
dt

Ljx)
| 0(L{x)\

logx

L(x)

où T|(t) :

logx
tL'(t)
W)

+

log2x

tuu
\log2x

+ (1 + 0(1)) | -L^j-
2 lOg t t2

1 - tL'jt))
Ut)

dt

j +(l + o(l)) j W)
t log t

(1 - ri (tj)dt

0 lorsque t -> oo, puisque Le i5f. Or, étant donné une

fonction Me âf, il a été démontré par De Köninck et Mercier ([3], lemme 3)

que

*"M{t)
M(x) o (î; dt

En utilisant ce résultat avec M(x) (3.6) devient

(3.7) I —*=(1 + 0(1))
P^X P

W)
tlog t

dt

o x

(3.8)

Puisque le terme d'erreur O | Y L(p)^ qui apparaît dans (3.5) est

(x L(t) \
dt\, la relation (3.3) devient

t log t J

I fin)=(1 + o(l))x7V(x)

r LLd,
j2 ti°gt

où N(x) :

Par ailleurs il est clair que
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(3.9)
ptt a(a + 1)

a ^ 2

L(p)
Pa

< X
L(p)

P
a ^ 2

Enfin, puisque L est non décroissante, on a

f* L(t)
N(x) —— dt ^ L(2)

J2 tlogt
L (2) log log x + 0( 1)

dt

2 t lOg t
+ oo lorsque x -

dt

En combinant alors (3.3), (3.4), (3.5), (3.8) et (3.9), on obtient le résultat,
incluant l'égalité (3.2), dans le cas où R L e S7.

Il reste à considérer le cas où R(x) xpL(x), avec p > 0. Comme

x - 1 < [x] ^ x, on a

1 ^ (x- E R-
2 p ^ x \p

< - E
X p ^ x

v R(P)

P ^ X P

et donc

1 1

iW ER(P)
X p x X p x

Or en utilisant les représentations

< \|/(x)

E
P ^ X

R(p) R(t)
dn(t) et E R(

p ^ x
R(t)dn(t)

et en utilisant le théorème des nombres premiers, tout comme on l'a fait
dans le cas R(p) L{p) ci-dessus, on établit que, lorsque x~> oo,

\j/(x)
xp L(x)
P logx

et - E R(p)
X p x

xp L(x)
p + 1 logx

de sorte que les trois quantités \]/(x), - ^xR(p) et \|/(x) - l-%p ^xR(p)
sont du même ordre de grandeur. Ainsi, compte tenu des relations (3.3)
et (3.4), la démonstration sera terminée si l'on peut démontrer que le deuxième

terme à droite de (3.4) est o(x\j/(x)). Le résultat sera donc démontré si

l'on arrive à établir l'implication générale suivante:

T(n) ^ 0, (p(x) —> -i- oo, S(x):= £ T(n) ~ cp(x)

(3-l°> y T(n)
=> 2. o((p(x))
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Or cette dernière somme peut s'écrire comme suit:

E £ »<>ÎIW(!._L)(M
n ^ x 72 n^x 77 n ^ x \77 77+1/ [Y*] + 1

E + o(<p(x)) ~ f + o(cp(x))
mxn(n +1) Ji

Ainsi compte tenu de (3.11), l'implication (3.10) est une conséquence

immédiate du lemme 3.3. Ceci termine la démonstration du théorème 3.2.

R. L. Duncan a montré (voir [4]) qu'en moyenne, la moyenne de co sur les

diviseurs de n est égale à \ log log«. Plus précisément Duncan a démontré

qu'il existe une constante c telle que

x~' X (—!— X CO (g?) I X-1E ®(«) - loglogx {—î— |
„ix\t(w) d\n I nix 2 \10gX/

A cette fin, Duncan a utilisé la relation asymptotique bien connue

(3.12)

„ „ „ X 1

y log log X + Cx + 0(x/\ogx)E CO (n)E E i E
n ^ x n ^ x p\n p < x

où C:= y+ Y<p (log(l - p~l) + et y est la constante d'Euler. Bien
plus encore, Duncan a établi l'égalité des ordres normal et moyen de cö(tz).

Etant donné / e F, il est naturel d'examiner le comportement de la
suite /,/,/,... Ainsi, pour un entier non négatif m fixé, on considère
l'itération Tm définie par

TmU)r(fm_,(/))
où Ti T, T0(f) /, et où

(«) -E E (/)) (</),«> 1

T(n) d|„

Pour simplifier la notation, on désigne par /,„ l'image de / par T,,,, i.e.
^m(/) /m - Nous définissons de même les itérations /,„ et /„, et obtenons
alors par induction sur m,comptetenu des propriétés de T, T et f,l'énoncé
suivant.

Théorème 3.4. Soit m un entier non négatif et f une fonction
arithmétique. Alors Tm,TmetTm préservent l'additivité et la multi-
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~ A

plicativité. En particulier si f e sd alors fm{n) f(n)/2m et fm(n)
/(ô(«))/2mv Lorsque fe ïïsd, fm(n) f(n)/2m. Enfin

si fe jaf, fm(n) fm(.n)/(«)/ 2mf(5(n))/2m.

Afin de généraliser le résultat de Duncan, nous aurons besoin du lemme
suivant qui est facile à démontrer.

Lemme 3.5. Soit f e <sd. Supposons que f est constante sur
l'ensemble & des nombres premiers et qu'elle satisfait à f (pr) - f (pr~l)

0(1) uniformément pour p premier et r ^ 2. Alors les expressions

fm(Pr) - fm(Pr'1), fm(Pr) - fmip1"1) et fm(pr) ~ fm(pr ~ l) SOUt

également bornées uniformément pour p premier et r ^ 2. De plus les

fonctions fm, fm et fm sont constantes sur ZP.

A chaque fonction g constante sur ^ on associe les constantes suivantes

+ ^ T r S(Pr) -cg:=g(2) et Dg:=cgC+ )_
r>2 p Pr

où C est la constante de la relation (3.12).

Théorème 3.6. Soit f une fonction additive satisfaisant les

hypothèses du lemme 3.5. Alors

x'1 E fm(n) loglogx + Dfm+ O(l/logx),
n < x 2

X'1 T, fm(n) —X-1T ®(«) — loglogx + — C + 0(l/logx),
9 m "v 9 m 9 m

n < x xL, n ^ x

X'x y fm(n) — log log X + + 0(1 /logw 9 m 9 m
n fi x ^ X-*

Démonstration. Si g e -sd et est constante sur on a

x-' y g(n)X-1 x Z g(p r) xy y (g(pr)-g(pr~'))
n ^ x n ^ x pr\\n n ^ x pr\n

x-'cg y
P ^ x

+ x~i E (g(pr
Pr ^ X

2

X

P"

Alors la relation (3.12) et le lemme 3.5 permettent d'obtenir les égalités du

théorème si on prend soin de remplacer successivement g par fm, fm et fm.
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Exemple. Si f(n) logx(rt) et m 1, alors

- log 2 log 2
Yé f(n) log logx + - C

n 2 2

+ E E -+ o(i/iog*).
r»i p r(r +l)pr\r\

— A ~
4. Mesure de l'écart entre / et les moyennes /, / et /

Nous allons étudier le moment d'ordre deux (selon le sens des définitions
- A ~ — A —

des moyennes /, / et /) de l'écart entre f(n), f(n) et f(n) et les valeurs
de / sur les diviseurs de n.

Etant donné une fonction arithmétique /, on lui associe les trois
opérateurs

À/(«):= ~£ (fi
T (n) d\n

Af(n):=-i_ £ y id
2œ("> d\n

Ä/(n):=^ ^ (fid)~ fin))2.
2œ("' d\n

(d, n/d) 1

Ainsi on remarque que

Afin)-/- £ { fid)2+ - 2f(h)f(d)
T(n) d | n

~
1

1 fid)2 + fin)2-2^ ^ f{d)
d | n T (n) d\n

1

I fid)2-fin)ï(n) d | n

et donc que

(4.1) Â/(az) —— Yé f(d)2 ~ f(n)2 - /2(n) - f(n)2,
X (/?) d | n

(4.2) Â/(n) £ Yid)fid)2 - /(«)2 /2(n) - /(„)2>^ | n

(4.3) Ä/(n) £ f(d)2-hny=f\ri)-f{ny.^ d\n
(d, n/d) 1
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Le prochain résultat montre que tout comme f, T et T, les opérateurs
Ä, A et À préservent l'additivité. Alors qu'il est facile de vérifier qu'aucun
de ces trois opérateurs ne préserve la multiplicativité, on a le résultat suivant.

Théorème 4.1. Si f e sé alors A/, À/ et Af appartiennent
aussi à //, et en particulier on a

(4.4) À/(n) £ fj f(pm)2I „
1

È /(/>"'))
pa||fll+(Xm=l /7a||rt(l+Ct) \m 1 j

(4.5) Â/(») 1 E f(p Ye ,.?>/,
4 p\n

(4.6) Ä/(«) 1 I f(pa)2.
4 po.||„

Démonstration. Nous allons faire la preuve uniquement pour A, les

autres relations se démontrant de manière analogue. Soient m et n deux
entiers naturels relativement premiers et / une fonction quelconque choisie
dans sd, alors

Af(nm) =—-— E f(d)2 - f(nm)2
T(nm) d | nm

-
1 I {/(</.) + ~ (fin) + f(m)Y

x(n)x{m) dx\n
d 2 I m

Â/(w) + À/(w) - 2f(n)f(m)+
2

E

d2\m

C'est pourquoi le résultat suit de l'égalité

I f(ddf(di)= f-1- I /«/,)) f-T- D /(d2))
T(/|)T(A«) \t(» rfiln / \T(W) rf2|m /

f(n)f(m)
Et le théorème est démontré.

Corollaire 4.2. Si f e Wsé, alors Af(n) — E a(a + 2)f(p)2
12 pa I] n

1 ^> - E f(P)2 À fin) et Af ^ A/. Par ailleurs, s/ /e ^ a/ors
4 pi«

~ A

Af Af et de plus

\I -/(/>)* <Ä/(«) I a
/0?)2 < Â/(K)

4 I „ a (a + l)2
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Remarques

1) Il découle du corollaire 4.2 que si / est totalement additive, l'écart

entre f(n) et f{n) est plus petit qu'entre f(n) et f(n), alors que si / est

fortement additive, c'est le contraire qui se produit.

2) A partir des définitions de À/, Â/, Ä/ et des égalités (4.1), (4.2)

et (4.3), il est intéressant de souligner que, pour toute fonction

arithmétique /, on a les inégalités f2 ^ f2, f2 ^ f2 et f2 ^ /2, et qu'en
— A ~

particulier sur les entiers libres de carrés, on a À f(n) A/(«) À/(«).

5. Généralisations et exemples

Les fonctions /, f et f définies par les égalités (1.3), représentent
essentiellement trois moyennes de / évaluées respectivement sur les diviseurs,
les diviseurs libres de carrés et les diviseurs unitaires d'un entier. Nous

allons maintenant montrer comment certaines propriétés satisfaites par ces

trois fonctions demeurent valables lorsque les moyennes sont évaluées sur
d'autres classes de diviseurs d'un entier.

Etant donné un entier naturel n, on désigne par Dn l'ensemble des

diviseurs (positifs) de n. Soit alors A une famille d'ensembles An tels

que An C Dn pour chaque ne N. Par exemple, en désignant par In
l'ensemble des diviseurs impairs de l'entier positif n, la famille A constituée
de tous les ensembles In est un exemple typique.

Etant donné une famille A : {An : n e N}, alors à chaque ensemble An,
on associe son cardinal soit la fonction iA(n) définie par

M«):= E 1

d | n

d g A n

qu'on peut aussi écrire (1 *4 1) (n), avec *,4 pour signifier que seuls les

diviseurs d de n qui appartiennent à An sont pris en considération. Nous nous
intéressons ici aux familles pour lesquelles les ensembles A„ possèdent une
fonction ta multiplicative et jamais nulle.

Exemples. Soit k e N et 2^yeR. Définissons de plus P(1) 1

et P{n) max{p \p\n]. Alors les ensembles

An(k) {d:
{d

B„(y) {d

d\n et d p\xp\2 • • • pa/, 0 ^ 0q < k)
d I n et d est £-libre}, k ^ 2,

d I n et P{d) ^ y},

En(k) K)-d : dk\n et dk, —1=1
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donnent lieu à trois familles A, B et E de sous-ensembles de Dn pour
lesquels les fonctions xA, xB et xE sont multiplicatives et jamais nulles.

Etant donné une fonction arithmétique / et une famille A, on pose
maintenant

/,(*) —1— I f(d),
Tx(«) d\n

d e A n

ce qui revient à écrire

f *a 1

(5.1)
1 *A 1

Aux cas particuliers *4 *, *a (où */ est la restriction de * aux
diviseurs libres de carrés) et *A correspondent bien sûr les fonctions /,
/ et /.

On a mentionné à la section 2 qu'en général f(n) /(«). Il en est

de même pour sa généralisation fA en ce sens que l'on peut facilement
démontrer que

IaW f(n) pour tout n ^ 1 & f c pour une certaine constante c;

auquel cas, si / est multiplicative on a c 1, alors que si / est additive,

on a c 0.

Le prochain résultat généralise le théorème 2.2.

Théorème 5.1. Soit f e F et A une famille d'ensembles An C Dn

et supposons que xA e .Jé. Alors la fonction fA est multiplicative si

f e .-Jé et elle est additive si f e

Remarques. Il est également possible de considérer les familles
d'ensembles An pour lesquelles ta (n) peut être nulle pour certains entiers n; pour
ce faire, il suffit de remplacer (5.1) par

(5.2) fA(n) — (H) si (1 *1) 0,
1 *.4 1

0 autrement

Dans ce cas, seule la première partie du théorème 5.1 reste valide i.e. si

/ e .Jé alors la fonction fA définie par l'égalité (5.2) est multiplicative. En

effet, soit (m, n) 1 et supposons que f e .Jé. Si ta (n) ^ 0 et xA(m) ^ 0

alors fA{mn) fA(m)fA(n)\ si par contre xA (n) ou xA(m) est nulle alors,
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puisque ta e Jé, iA(mn) 0, i.e. fA(mn) 0 fA(m)fA(n) car au

moins une des quantités fA(m) et fA(n) est nulle. Donc si / e Jé alors

fA e

Pour montrer que la fonction fA de la relation (5.2) ne préserve pas

l'additivité sur certains ensembles de diviseurs, il suffit de considérer

A„ — {d : d | n, (d, 2) — 1 et (n/d, 2) 1} et f e sd avec f(n)> 0 pour
chaque n > 1. On a alors ta(3) 2, t^(4) 0 et 1^(12) 0. Il est clair

que (12) fA(4) 0 alors que fA(3) \f(3) > 0. Ainsi 7^(12)
^74(4) +/4(3).

La définition de la fonction fA à partir de la restriction du produit
de Dirichlet à certains diviseurs est basée sur la notion de A-convolution
introduite par Narkiewicz [6] (voir également Subbarao [8] et le chapitre 4

du livre de McCarthy [5]). Soit h et g e F alors pour une famille A de

sous-ensembles An de Dn, on définit la A -convolution de h et g par

(h *a g)(n):£
d | n

d e A n

qui de façon générale n'est pas commutative. C'est-à-dire qu'il arrive qu'on
ait, pour une certaine famille d'ensembles An C Dn,

I h{d)g(n/d)±£ h(n/d)g(d).
d\n d\n

de An d e An

Exemples. On a ainsi les cas particuliers suivants:

(i) Soit *a *alors fA(n) f(n)—L £ f(d).
T(n) d\n

(ii) Soit * a*/alors fA(n) f(n) —L V
2m<">

(iü) Soit *„ *„ alors fA(n) /(«) —î— y f,dy
2(a<">

(d, n/d) 1

(iv) Soit (a,b)*leplus grand commun diviseur unitaire de et et

ïa(n) £ 1 x(n) II —, alors
d\n po. I) n 1 + a

{d,n/d)* 1 a pair

ÏA(n) — 7/£/U).
^A{n) d | n

(d,n/d)* 1
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(v) On pose cok(n):= Y 1. Soit iA(n) Y 1 2CÛ*(/î) alors
p\n d\n; (d,k) 1

(p, k) 1 {d, n/d) 1

fA{n) -2-I f(d).
d\n-Ad,k)=l

(d, n/d) 1

(vi) Soit y un nombre réel fixe (y ^ 2) et i:A(n) Y alors
d | n

P(d)^y

fA{n)—-— S \x2(d)f{d).Soit fe d alors 1 £ /(p).
t^(«) rf|n 2 p|„

P(d)^y p^y
En particulier, si P(n) ^ ^ alors fA(n) f(n) et /Ux?) 0 si p(n) > y,
où p(n) désigne le plus petit facteur premier de n, avec la convention

p{ 1) 1.

(vii) Soit xi4(«) (a + 1) avec ta(2) ta(1) 1, alors
P«\\n
p > 2

fA(n) £ f(d). En particulier, si n est impair alors
tA(n) d| n

d impair

fA(n) f{n). Soit / e t/, alors fA{n) 0 si n 2m et

1 a

fA(n) Y E f(Pm) si n n'est Pas une puissance de 2.
pa\\n (X + 1 m - 1

p±2

(viii) Soit ta (n) Y 1 2*{p'-p^n avec a s 0 <mod *)lB alors
dk | n

(dk,n/dk) 1

fA(n) -2— £ f(d).
tA(n) dk | n

{dk,n/{dk)) 1

(ix) Soit y ^ 2 fixe et iA{n) Y 1» al°rs .AC«) —-— E f(°0-
| n 1A (x?) | n

XWO P(d)4l

Soit /e j/, alors /(«) /^(n) + £ —-— £ En parti-
/7a 11 /? (X + 1 1

p> y

culier AA) f(n) si P(n) ^ y et Ai(xx) 0 si /?(xî) > j.
(x) La relation (5.2) est valable avec

+ 1) s\n=pa/pa22---parrX[si>rqlet
|n;.,(ar

autrement.
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On peut même démontrer un résultat d'un caractère un peu plus général

que le théorème 5.1 en considérant une fonction arithmétique multiplicative

g qui n'a aucun lien avec un ensemble de diviseurs. C'est ainsi qu'on
a le résultat suivant, dont le théorème 2.2 devient un cas particulier.

Théorème 5.2. Soit A une famille d'ensembles An C Dn telle que

la convolution est commutative. Supposons de plus que ta e .JL On

considère U et g deux fonctions arithmétiques multiplicatives telles que

(U*Ag)(n) 0 pour chaque entier n ^ 1. Enfin, soit f e F, alors

v v è/f *A g
fA fA (g5 jj) : est multiplicative si f est multiplicative, et

U*Ag
additive si f est additive.

Démonstration. On sait que le produit de Dirichlet de deux fonctions

multiplicatives est multiplicatif (voir Apostol [1], p. 35). Cette propriété est

également vraie pour le produit *A tel que défini ici. En effet, il est facile de

démontrer que si / et g sont multiplicatives, alors f *A g est aussi

multiplicative. Ainsi la première affirmation du théorème est vraie.
Pour démontrer le cas additif, on procède comme suit. Soit / e •"/,

alors pour (m, n) 1,

X (Uf*Ag)(m)(U*Ag)(n) (Uf*Ag)(n)(U*Ag)(m)
fA (mn) i

(U*A g)(mn)
(Uf *A g) (m) (Uf *A gv v

777 77 r + 777 rrr + /a in),
(U*A g)(m)(U*Ag)(n)

d'où l'additivité de /.
Remarques

1) Pour déduire le théorème 2.2 du théorème 5.2, il suffit de poser
*a « *> g 1 et de substituer pour U les fonctions 1 et p2, et cela afin
d'obtenir successivement fA f et fA /. Pour obtenir fA /, en plus
de poser g U 1, il faut considérer la convolution unitaire *u.

A

2) Nous avons vu que / ne satisfait pas la réciproque du théorème 2.2.
De même la réciproque du théorème 5.2 n'est pas vraie: il suffit de choisir

*A *, U(n) \x2(n) et g(n) 1 (n)pourobtenir fA f.
Corollaire 5.3. Etant donné fe F, il existe une fonction

telle que f est liée à la fonction (j) d'Euler par la relation

(5-3) /(«) — Y.
nd| n
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En particulier f e sé (respectivement f e ,Jl) si et seulement si
h e sd (respectivement h e Jé

Démonstration. On pose *A *, U(n) n et g(n) p(n) dans le

théorème 5.2 et on obtient ainsi la fonction

(5.4) f{n) —f- Y,
$(") d\n

V

La fonction h cherchée est alors h /, car (5.4) implique h(n)<\>(n)

E df(d)\x{n/d), de sorte que, par l'inversion de Moebius, on en
d | n

déduit (5.3).

Avant d'énoncer le prochain corollaire, nous allons introduire la notion
de nombre /:-parfait. Soit k un entier (k ^ 2). On dit d'un entier n qu'il est

k-parfait s'il existe m tel que n mk; en d'autres mots si les exposants des

facteurs premiers (distincts) de n, dans sa décomposition canonique, sont
des multiples de k, i.e.

n pV Pi2 * * * P°rr avec a/ 0 (mod k) pour / 1,2, —m,r.

Corollaire 5.4. Etant donné un nombre réel r, il existe

une fonction arithmétique gr e définie en (5.5) telle que
nr Y, d1"1 <\)(d)gr(d), pour tout nombre naturel n. En particulier un

d | n

entier positif n est k-parfait si et seulement si il existe m tel que
n Y, dk~l<$)(d)gk(d). Pour des valeurs entières de k} la fonction

d | m

nk~1 §(n)gk(n) est tout simplement la fonction indicatrice Jk(n) de

Jordan définie par Jk(n) := nk JJ (l 1 soit une généralisation deP\n\Pkj
la fonction 0 d'Euler.

Démonstration. Soit r un nombre réel. On pose f{n) nr~1 dans le

corollaire 5.3. On a ainsi nr Y h(d)<\>{d) avec h(n) Y dr\x(n/d).
d\n (]) (/î) d | n

En posant

(5.5) gr(n):= Ü (1 + "—^7-) avec go(n) E(n)
p\n \ P ~1 /

il vient
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1 / 1 — pl "r\
h(n) I dr\i(n/d)Ü 1 + —

ty(n) d\n P«\\n \ 1 /

Ceci permet de déduire l'identité nr£ 1 <\>(d)gr(d).
d | n

Exemples. De ce dernier corollaire, on obtient facilement les identités

suivantes :

^ ^ Hßna +/>-i/2)-\
d | n yd p\d

10' £ d'~lM d)gr(d|10

- In d| na

if nn-rt2 d\2 d p\d

n2Y,«MOE cd2(^/c) •

d|n c\d

Comme on l'a mentionné dans la seconde remarque qui suit le théorème

5.2, la réciproque de ce théorème n'est pas toujours vraie. C'est dans

ce contexte qu'il est intéressant de mentionner qu'on a quand même le résultat
suivant.

Théorème 5.5. Soit *A une A-convolution commutative telle que
xA e Jé et n e An pour chaque n ^ 1. Soit U e Jt et g e tels

que U(n) ^ 0 et (U*A g) (n) ± 0 pour chaque entier n ^ 1. Pour
v Uf *A g v/ e F on pose fA Alors f est additive si fA est additive,

U*Ag
V

et multiplicative si fA est multiplicative.
V

Démonstration. Soit f eF tel que fA e stf. On a 1) g(l)
(U*Ag)(l)=l d'où (Uf *A g)(l) f(l) i.e. /(I) =/(l). Il faut

maintenant montrer que pour tout couple (m, n) d'entiers positifs relativement
premiers, on a f(mn) f(m) + f(n). Supposons qu'il existe de tels couples
pour lesquels la relation d'additivité pour / ne tient pas. Soit m0 le plus petit
élément de N pour lequel il existe au moins un entier positif n (premier
avec m0) tel que f(m0n) * f(m0) + f(n). D'autre part soit n0 le plus petit
parmi tous ces entiers n. Il est alors clair que:
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1 < m0 < n0 avec (m0,n0) 1, f(m0n0) ± f(m0) + f(n0)
f(ln) /(/) + f(n) pour tout n et / (1 ^ / < m0), (/, n) 1

f(m0r) f(m0) + f(r) pour tout r, 1 ^ r < n0 et (m0,r) 1

D'autre part, puisque tout diviseur de m0n0 est le produit de deux entiers
relativement premiers, l'un divisant m0 et l'autre divisant n0, et qu'en plus

fAesd (avec (U*A g) (n) =£ 0, Vn ^ 1), il suit que

(t// g) (m0«o) (t// ^ g) (m0) (U*A g) (n0)

+ (Uf *A g) (no) (U *A g) (m0)

soit l'égalité

£ U(dld2)f(d1(^)
e v4«o \"1"2 /

dj I w0> d2 e /Ifflo

I u(dl)U(d2)(f(d1) + f(d2))g
d\\nQ, d\ £ An q \d\d2)
d2\m0, d2e Am0

qui peut également s'écrire

£ U(dld2)(f(d1d2)-f(dl)-f(d2))g=0.
û?! | «0> d 1 e \d\d2 J
d2\mQ, d2 e^mg

Mais tous les termes de cette somme sont nuls sauf lorsque n0 et

d2 m0. Il suit que U(m0n0) (f(m0n0) - f(n0) - f(m0)) 0, i.e.

f(m0n0) f(m0) + f(n0), ce qui contredit le choix minimal de m0. D'où
l'additivité de /. La démonstration du cas où / e Jt se fait de manière

analogue.

Remarque. Pour déduire la réciproque du théorème 2.2 dans le cas

de / et celui de /, en utilisant le théorème 5.5, il faut poser U — g 1:
V - V ~

on obtient alors successivement fA / en substituant * à *A et fA= /,
en substituant *w à *A.
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