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MOYENNES SUR CERTAINS ENSEMBLES DE DIVISEURS
D’UN ENTIER

par Jean-Marie DE KONINCK et Jacques GRAH!)

ABSTRACT. Given an arithmetical function f, we examine the
average value of f(d) as d runs through subsets of the divisors d of an

_ 1 A
integer n. In particular, we study the functions f(n) = —(—5 Y f(d), f(n)
T\N) d|n

1 -
= Y f(d) and f(n) = —— Y. f(d), where t(n) is the
2w (n) 4|8 D w(n) 4z
d squarefree d,n/d) =1

number of divisors of n and w(n) stands for the number of distinct prime
factors of n, and show that their arithmetic properties resemble those of f.

1. INTRODUCTION

Soit F I’ensemble des fonctions arithmétiques. On dit que f € F est
additive si f(mn) = f(m) + f(n) lorsque (m,n) = 1. Si n = g7'q5*...q}"
est la décoinposition canonique de n, alors les fonctions w(n) = Ep|n 1 =r,
Q(n) = Y,_,0; et logn sont additives. Lorsque I’égalité f(mn) = f(m)
+ f(n) est valable pour tous les entiers positifs m et n, on dit que f est
totalement additive. Si en plus d’€tre additive, f satisfait f(p®) = f(p)

pour chaque nombre premier p et tout o € N, on qualifie f de fortement
additive. |

Une fonction f € F est dite multiplicative si f(mn) = f(m) f(n) lorsque

(m, n) = 1. C’est le cas des fonctions A(n) = (— )™, 1(n) = [] (o, + 1),
i=1

d(n)y= Y 1l,0(n)= le d,1(n)=1Vn =1, 8§(n) = q:q>... g, (Quon
m<n d\n
(m,ny=1

1Y Travail supporté en partie par une subvention du CRSNG et une subvention du
programme FCAR. 1991 Mathematics Subject Classification: 11A25, 11N37.
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appelle «noyau de n»), de la fonction de Moebius pn(n) définie par

1 sin=1
nn) = 0 si p2|n pour un certain nombre premier p
(-1 sin=gqiq,...q,; q; premiers distincts

et enfin de la fonction E(n) qui vaut 1 si n = 1, et 0 autrement. Lorsque
I’égalité f(mn) = f(m) f(n) est valable pour tous les entiers positifs m
et n, f est dite totalement multiplicative. Une fonction multiplicative f telle
que f(p*) = f(p) pour chagque nombre premier p et tout o € N est dite
fortement multiplicative. On désigne par .# (respectivement par 7 .# et
par .%.#) I’ensemble des fonctions multiplicatives (respectivement I’ensemble
des fonctions totalement multiplicatives et I’ensemble des fonctions fortement
multiplicatives). De méme, on désigne par &, & .«/ et 7 o/ les ensembles
des fonctions additives, totalement additives et fortement additives.

Tres souvent, étant donné une fonction arithmétique f, on est appelé a
étudier des expressions de la forme

(1.1) Y f(a), Y f), Y f(d),
Al d Iibredclig carrés (d, na;idr; =1

ou, dans chaque cas, I’argument de f parcourt tous les diviseurs de 1’entier
positif # ou encore un sous-ensemble de ses diviseurs; la troisi¢me somme
de (1.1) parcourt ce qu’on appelle communément les diviseurs unitaires
de D’entier n. .
Notre étude portera d’abord sur les fonctions arithmeétiques f, fet f ,
associées a une fonction arithmétique f donnée, et définies respectivement par

_ 1 A 1
fy:i=— Y fd), fn):i=—— L f@),

(n) dln
(12) T(n) dln 2 d libre clie carrés
iWi——— Y f(@
f(l’l) : —5—0)—(’5 = .
(d,n/d) =1

En effet I’étude des sommes du type (1.1) et celle des sommes corres-
pondantes (1.2) s’averent €tre deux problémes analogues; toutefois les
sommes (1.2) ont ’avantage d’avoir une interprétation «plus naturelle» en ce
sens que chacune d’elles représente une moyenne de la fonction f lorsque
son argument parcourt un sous-ensemble particulier de diviseurs de ’entier n.
De plus, comme on le verra ci-dessous, les sommes du type (1.2) possédent
des propriétés arithmétiques qui rendent leur étude beaucoup plus facile
que celles du type (1.1).
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Les trois fonctions f, f et f représentent donc la moyenne des valeurs
de f prises respectivement sur les diviseurs de n, sur les diviseurs libres
de carrés et sur les diviseurs unitaires de n. Par exemple si f(n) = 29w
alors f(n) = t(n?)/t(n). Si f(n) = A(n) =logp si n=p" (pour un
certain p premier et m > 1), 0 autrement, alors f (n) = A(n) = A(n)
— log (8(n)) /29 et A(n) = log (n)/7(n). Il est également facile de vérifier
que  A(n) = E(n), () = ¥,up,a/(1+0) =) = T,u,1/1+0),
o(n) = o(n) = o(n)/2=Q(n) et que 1 =1= 1 = 1. Plusieurs autres
exemples seront exposés dans cet article.

Nous étudierons donc ici les propriétés arithmétiques des fonctions
f , fA et f . C’est ainsi qu’a la section 2, on démontre que, vues comme des
opérateurs sur I’ensemble F, ces fonctions «héritent» du caractere additif de
la fonction originale f, ou de son caractére multiplicatif, selon le cas.

Réciproquement, de (1.2), on montre que f hérite du caractere additif ou
multiplicatif des fonctions £, et f En effet, en utilisant la notation habi-
tuelle f *g pour désigner le produit de Dirichlet des fonctions arithme-
tiques f et g, et =, la restriction de * aux diviseurs unitaires, alors, si
f eF telle que fe o/, des égalités f = Tf*p et w*t =1, on déduit
facilement que f € .. Pour fe o/ les identités f = 2wf*u(— 1)* et
(- De=,29 =1 permettent d’établir I’additivit¢é de f. Lorsque les fonc-
tions f et f appartiennent a ./#, on obtient la multiplicativité de f direc-
tement a partir des formules d’inversion de Moebius sans faire appel aux
identités p*t =1¢et (— 1)®=*,2® = 1.

Nous traitons, a la section 3, des liens qui existent entre la valeur
moyenne de f sur un intervalle donné [1, x] et celles des fonctions f , f et f .
Ainsi on établit que lorsque f € % .o/ et satisfait certaines conditions de
régularité, alors f n’est pas nécessairement dans .7 .o/, mais pourtant f
posséde une valeur moyenne si et seulement si f en possede une. On
complete cette section avec I’étude du comportement des itérations

successives f, f, f, ...

La question naturelle de I’ ecart pour un entier naturel #n, entre f(n) et
chacune des quantités f(n), f (n) et f (n), est soulevée a la section 4. On
démontre que ces écarts, interprétés comme des fonctions arithmétiques,
préservent 1’additivité, ce qui permet d’analyser plus facilement leur ordre
de grandeur.

Enfin, & la section 5, étant donné une fonction arithmétique f, on
considere des sous-ensembles de diviseurs d’un entier n qui ont la propriété
d’étre «multiplicatifs» et on introduit la notion de moyenne des valeurs de
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la fonction f sur ces ensembles de diviseurs de n. Certains des résultats établis
dans cette section donnent d’ailleurs lieu a plusieurs identités surprenantes.

Les auteurs remercient le rapporteur dont les nombreuses suggestions leur
ont été utiles pour la version définitive de ce travail.

2. PROPRIETES ARITHMETIQUES DE f, f ET f

A

— A ~ — - A
On définit sur F les opérateurs 7, T et T par T(f):= f,T(f):= fet
I(f):=r.
Du prochain résultat, il découle en particulier que toute fonction arithmé-
tique est elle-méme la «moyenne» d’une autre fonction arithmétique.

THEOREME 2.1. L’opérateur T établit une bijection de ¥ sur F.
1l en est de méme pour ’opérateur T.

Démonstration. Pour chaque f € F,

7_"(f)=f_=%(l*f) si et seulement si f=p#*1f

et f(f) fz;; (1%, f) sietseulement si f= (— l)m*u2@f,

d’ou le résultat.

EXEMPLES. Ainsi il est intéressant de se demander quelles sont les images
par 'opérateur T-! ou par 1’opérateur T-1 de certaines fonctions arith-
métiques classiques, soit par exemple les fonctions w, A, A(n) et E(n). On
vérifie successivement que

o(n) = (o + k)(n), ou k(n) = Y. 1,
plln
sin=1,

~ 0
(n) = g(n) g(n) {(_l)m(n) Zp|nlog# sin>1,

A(n) = A(n)t(n?),
E(n) = p(n) = 0(n).
L’opérateur YA” n’est pas injectif. En effet, si on pose g,(n) = t(n)/n,

g,(n) = 2°M/n et g3(n) = 2°M™/n alors

A

A 1
g(n) =&(n) =g =—1][ 1+2/p)
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Les opérateurs T, YA“ et T préservent la multiplicativité et I’additivité.
On a en effet le résultat suivant.

THEOREME 2.2. Sz f est dans o (respectivement dans M), alors
les fonctions f f et f sont chacune dans < (respectivement
dans . /7).

Avant de donner la demonstratlon du théoréme, voyons par des exemples
les allures que prennent f f et f pour des fonctions f additives et mul-
tiplicatives.

EXEMPLES

1) On démontre facilement avec le théoreme 2.2 que
~ _ 1 sin=m?
A(n) = A(n)t(n) =

0 autrement,

soit la fonction caractéristique de I’ensemble des carrés parfaits.

2) Parfois, il arrive que f(n) = f(n); ainsi on a

T(n) = 1(n) = %6((':—)) =[] a+a/2)
o p%lin
et
Q(n) = QO(n) = Q;").

Démonstration du théoréeme 2.2. Si f € ./, la démonstration est presque
immédiate. Nous allons établir la preuve uniquement pour f dans le cas
ou f € .«7; les cas des fonctions f et f avec f € .7, sont presque identiques.

Soit donc f € ./ et soit n et m deux entiers positifs relativement premiers,
alors

_ 1
f(mn) = “(mn) dlz’:m f(d) = W d%n f(d.d,)
dy|m

1
R%?%gbuw”+ﬂ%»
d2m

1 1
. R— d) + ————
T(m)t(n) 5,%%” J(di) + t(m)t(n) dlz||n /()
s |m dy|m

1 1
=——— Y fW@) Y 1+—— Y f(d) ¥ 1

T(m)T(n) dy|n dy|m T(m)t(n) ay|m di|n

= f(n) + f(m) .

Llei résultat est ainsi démontré pour f.
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REMARQUE. La réciproque du théoréme 2.2, comme nous [’avons
montré dans l’introduction, est vraie pour f et pour f . Montrons par un
exemple que ce n’est pas le cas de la fonction f Soit f la fonction
définie par

Q(n) .
F(n) = {2 Lty
w(n) sinon .

Il est clair que f n’est pas additive; or il est facile de voir que f (n)
= &(n) = w(") € .o/, puisque f (n) est mdependante des valeurs de f(d)
ou d|n avec u(d) = 0. C’est pourqu01f e o # fe

1l est intéressant de signaler qu’en général f(n) # f(n). En effet, il est
facile de démontrer que, quelle que soit la fonction arithmétique f,

f (n) = f(n) pour tout n € N & f = ¢, pour une certaine constante c .

A -
La méme affirmation est valable dans le cas des fonctions f et f. Une
observation plus générale sera faite a la section 5.

Par ailleurs, si f € .7,

o

f(n) = % 2 f(pm),
A 1
flmy =2 ; f(p) = 5f(6<n))
1
et f(n) = —f(n)-

Si fe @, alors f(n) = f(n) = f(n)/2. Mentionnons également que
lorsque f € ¥ .7,

f(n)y= Y —f(p)—f(n)
pelln 1+

pelln 1+

en particulier, si f est a valeurs positives on a les inégalités % f(n) < f (n)
< f(n), ce qui est équivalent a f(n) < f(n) < 2f(n)
Par ailleurs si f € .#, alors

_ 1 o
fmy=—1] (1+ ) f(p’”)),

T(n) peiln m =1
A 1
f(n) = [T a+rw)
2(0(”) aln
- 1
et f(n)= [T a+rfpy).
200 Laly
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Lorsque f € .4,

f(n) = L [T (+afp)

T(n) pann

et f(n)=finy=—[1 (L +f(p)).

()p|n

Enfin si f € & .4, alors f(n) = 5563 e, 1+ f(0)*).

Il découle donc de ces observations que 7 préserve le caractere tota-
lement additif alors que YA“ applique les ensembles .o/ et .# respectivement
sur .%o/ et sur #.#. En particulier ¥ .o/ et ¥.# sont des ensembles
invariants par rapport a I’opérateur YA" en ce sens que pour chaque f € ¥ &7,
YA”(f) € .o/, et que pour chaque f e ¥4, YA“(f) e Y. #. Par ailleurs,
I’opérateur T préserve les caractéres totalement additif, fortement additif
et fortement multiplicatif des fonctions arithmétiques qui ont ces propriétés
avec la particularité que T = YA“ sur .% .« ainsi que sur .¥./#.

Le prochain résultat précise que si f € .# alors f(8(n)) est le quotient
de deux fonctions chacune d’elles étant une moyenne sur les diviseurs libres
de carrés.

THEOREME 2.3. Soit f e # telle que f(n)#0,Vn>=1 et posons
g=1/f, alors

2.1) f(n) = £(8(n) &(n) .

Sous les mémes hypotheses, on obtient I’équivalent de (2.1) pour f a
savoir

f(n) = f(n)g(n) .

Démonstration. Soit f e .# telle que f(n) # 0, Vn > 1, alors avec
la notation g = 1/f, on obtient

_ f(8(n)) 1
Fny = ;—) T a+ren =200 (1+_)

pln f(p)
S
_ M Y wid)g(d) = f(5(n)2(n) .

200 d|n

EXEMPLE. Si on pose f(n) = —ni alors g(n) = —— et f(n) _ d)(n)/\( )

I’I

suit immédiatement de (2.1). Comme ici f (n) = M Jw//f on a également

f(n) = f(n)&(n).
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o1

n

REMARQUE. Vu que si f(n) = alors f(n) = f(n) (n) et comme
’opérateur T est bijectif, il existe une fonction 4 € # telle que h(n)
=1/ ( )(n) On établit facilement (par la formule d’inversion sur les
diviseurs unitaires mentionnée ci-dessus) que A(n) = ] p]n(l - 2/2p — 1)).
C’est donc dire que q’( ) g’écrit comme le produit de deux moyennes sur les
diviseurs unitaires, pulsque, dans ce cas, 4’51”) = f (n)ﬁ (n). De facon
générale, grace a la bijectivité de T, on peut exprimer toute fonction
f € 4 comme produit de deux moyennes sur les diviseurs unitaires, I’une
d’elles étant f.

Désignons maintenant par © ’opérateur classique de composition des
applications. On peut facilement vérifier que (7_"0 f”)(u) = (TO T ) ().
Ce constat n’est pas exclusif a la fonction p, comme I’indique le résultat
suivant.

THEOREME 2.4. Soit ge o U M#, alors (To T)(g) =(To T)(g),
i.e. g=g. Enparticulier T et T commutent sur I’ensemble des combi-
naisons linéaires des fonctions ge o U M.

Démonstration. Nous allons maintenant établir la preuve dans le cas
ge #. Le cas g€ o/ se traite de maniére analogue et utilise le fait que les
operateurs T et T sont linéaires. Soit donc ge #, alors T(g) =g e .« et
T(g) =g € .#, avec

_ N 1
T(e)(p*) = 8(p") = —— E g(p™

1 m=20
N ) 1
et T(g)(p* =g(pa)=5(1 +g(p%))
d’ou

- - - - - 1 _
(ToT)(g)(n) =TIT(](n) =T(g)(n) = IIII 5(1 +&(p*))

Y e(pr ))

o+ 1 m=20

2.2) =2-om ] (1+

pe|ln

2" (1+a+ y g(p’”))-

T(n) peiln m=0



[
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D’autre part,

S = 1 o b
(ToT)(©) (m=TE@ M= 1] (q+1 E_:Og(pm)

pe|ln
1 o
2.3) =— 1[I ( 2‘1(1+g(p”’)))
(1) pefn \m=0
2—m(n) o
= I1 (1+0t+ D g(p’")).
T(n) pelin m=0

1’égalité entre (2.2) et (2.3) équivaut & g = g. Et le théoréme est
démontré.

EXEMPLES

T(n?)

T(n)

1) On a vu dans l’introduction que si f(n) = 29 alors f(n) =

d’ou

f(n)zzml(n) 11 (1+T(pza)) T (1+_0t__).

2(a+ 1)
D’autre part,

~ 3 w(n) _ 1 3 36
for= ()" @ w1450 - SRR
2 T(l’l) polln 2 203(’7)1-(”)
Or d’apres le théoréme 2.4 on a I’égalité f:(n) = f(n); donc en particulier
T(n36
p%||n

20mg(n) 2(0 + 1)
2) Comme

(1) = A(n)t(n) = {1 sin = m?,

0 autrement,

il suit du théoréme 2.4 que
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o A —~
3. VALEURS MOYENNES DE f, f ET f

Soit f une fonction arithmétique. S’il existe une fonction continue
monotone g définie sur [1, + oo et telle que Z f(n) ~ Z g(n), lorsque

n<x n<x

Xx = oo, on dit que g est une valeur moyenne (ou un ordre moyen) de f.
On dit qu’une fonction mesurable R: [2, + o[ > R* est une fonction a
variation réguliére s’il existe un nombre réel p > 0 tel que pour chaque @ > 0

R(ax
(@) = gf. Compte tenu de la nature des applications consi-

on a lim
s~ R(X)

dérées ci-dessous, nous n’étudions que les fonctions contintiment dérivables a
variation réguliere. Si p = 0, on dit que R est a oscillation lente. Désignons
par < D’ensemble des fonctions continiment dérivables & oscillation lente.
On peut montrer (voir le livre de Seneta [7], p. 2) que toute fonction a
variation réguliere R peut s’écrire sous la forme R(x) = x°?L(x), ou p € R
et L € . Il est démontré dans Seneta ([7], p. 7) que L € &£ si et seu-
L’ (x)
L(x)
réguliere pour signifier fonction a variation réguliere. Si la fonction g ci-dessus
est réguliere, on dit que la fonction arithmétique f possede une valeur
moyenne régulicre.

lement si = 0(1) lorsque x = o. Nous utiliserons I’expression fonction

Voyons maintenant dans quel sens on pourra dire que la valeur moyenne
réguliére de f est unique. D’abord signalons que si f posséde deux valeurs
moyennes monotones réguliéres R et S alors R et S sont asymptotiquement
équivalentes. En effet, soit R(x) = xP1L;(x) et S(x) = xP2L,(x) (ou L,
et L, sont deux fonctions & oscillation lente) telles que, lorsque x — oo,

x 'Y fm)~x-'' Y R(n) et x ') f(n)~x-' ) S(n).

n<x n<x n<x n<x

On ne restreint pas la généralité en supposant p;,p, > — 1. On

a alors Y, neiL;(n) ~ Y nP2L,(n), et il s’ensuit que 5 tp1 L (t)dt

n<x n<x 1

X
~ j tP2L,(t)dt. En utilisant un résultat classique di a Karamata (voir
1

Bingham, Goldie and Teugels [2], p. 26), on en déduit que

xPitl xP2tl . _ p1+1 L;{x)
Li(x)~ L,(x) et ainsi que xP1~P2 ~ .
p1 + 1 p2 + 1 Py + 1 LZ(X)
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. : o pr +1 Li(x) o(1) .
Mais puisque L, et L, € &, il vient = x°), ce qui permet
pr + 1 La(x)

de conclure que p; = p, + o(l) c’est-a-dire p; = pa, C€ qui implique
R(x) ~ S(x) lorsque x = .

Compte tenu de ces observations, on peut considérer que la valeur moyenne
réguliere, lorsqu’elle existe, d’une fonction arithmétique f est unique.
Dans un tel cas, ¢’est donc sans ambiguité qu’on désignera sa valeur moyenne
réguliére par VM (f).

THEOREME 3.1. Soit fe 7./. Alors:

(i) la fonction f posséde une valeur moyenne si et seulement si la
A
fonction [ en possede une;

(ii) la fonction [f posséde une valeur moyenne si et seulement si la
fonction f en posséde une.

De plus, si lI’'une ou ’autre de ces valeurs moyennes existe et est réguliéere, on a

3.1) VM(f) = 2VM(f) = 2VM(f) .

Démonstration. Les parties (i) et (ii) ainsi que les égalités (3.1) découlent
A ~
immédiatement du fait que f= f = -;— f pour toute fonction f € .7 .«/.

THEOREME 3.2. Soit f e 7.« telle que f(p)= R(p) pour chaque
nombre premier p, ou R est une fonction continiiment dérivable a
variation réguliere non décroissante qui posséde la représentation R (x)
=x°?L(x), avec p>=0 et L e & Alors la valeur moyenne réguliére

de la fonction [ existe si et seulement si celle de la fonction [ existe,
auquel cas

(3.2) VM(f) = 2VM(S) .

Avant d’entreprendre la démonstration du théoréme 3.2, nous établissons

d’abord un lemme d’intérét général qui s’avere crucial pour la démonstration
de ce théoréme.

LEMME 3.3. Soit ¢:[l, + o[> R* une fonction continue non
décroissante telle que lim,_ ,@(x) = +o. Alors

Yot
s 20 dr = o(ox)

1
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Démonstration. Soit ¢ une fonction satisfaisant les hypothéses du
lemme. Pour tout x assez grand, on pose

y(x):=inf{y:0(y) = Vo(x)}.

Il est clair que lim, -, y(x) = + oo.
Puisque ¢ est non décroissante on a

x ¢ y(x) X y(x) d X dt
s elf) =s wdws %thgm(y(X))s t—f+(p(X)§ —
y(x)

1 1 r? 1 y(x) t?
1 1 1
= 1] - — - _
Pr) ( e )) e (y(x) x)
1 1 1
< Vo(x) (1 - ——) + 0(x) (—— - ~)
y(x) y(x) x

o(x) + P _ o(p(x) ,
y(x)

car lim,- . y(x) = + o, ce qui complete la preuve du lemme 3.3.

DEMONSTRATION DU THEOREME 3.2. D’abord, puisque f € ¥ 7, il est
facile d’établir que

X X
(3.3) Y f(my= Y f(p) [—] = )Y R(p) [—] :
n<x p<x D p<x D
Par ailleurs, toujours parce que f € . <7, on a

fn)y=Y )

plln1 pllﬂ1

ce qui permet d’écrire

Y fn ) - ¥ ¥ (lm—a;l)R(p)

n<x n<x polin 1+ Q n<x pein
a=1

1
— — R ——s ]
2 nz<:x pzn (p) " ngx p%n (1((1 + 1) (p)
a=2

et donc d’obtenir

_ 1 1
B4 Y fm)==Y R(p F] + Y —R
2 p pe<x a(l

n<x p<Xx +(X)

p(l

oa>2
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Considérons d’abord le cas ou la fonction R(x) = xPL(x) est telle
que p = 0. On a alors

L
3.5 Y R(p) [il = ) L(p) [ﬁ] =x ) L) +0( ) L(p))-
p<x p p<x p p<x D p<X

Or, en utilisant le théoréme des nombres premiers sous la forme

Tt(x)z—x—+0( * ),ona

log x log?x

Lip) (YL L(?) <[ d (L(t))
“M ) 222 4dn(t) = —2 n(¢t - ) — |—) dt
P 5 O R R Chr o
P x LI
36 =9 oI L areay| A ED (1 ! (t)) dt
log x \log?x Jologt 12 L(1t)
L L o (EM) L as ey | B G mnyar,
log x log?x J, tlogt
‘ tL’'(1) . . .
oun(z):= — 0 lorsque ¢ — o, puisque L € <. Or, étant donné une

L(?)
fonction M € &, il a été démontré par De Koninck et Mercier ([3], lemme 3)

que
M)
M(x) = o (§ —t—dz) .

2

En utilisant ce résultat avec M (x) = £ (3.6) devient

logx ?

3.7) y Lp) =(1+o(l))s L@ ..
D

p<x , tlogt

Puisque le terme d’erreur O( D L(p)) qui apparait dans (3.5) est

pP<Xx

*L(1) . .
ol|x dt|, la relation (3.3) devient
, tlogt?

(3.8) Y f(m)=(1+0Q)xN(x),

n<x

T L)
, tlogt

dt.

ou N(x):=§

Par ailleurs il est clair que
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1 X L
(3.9) Z ———— L(p) [— < Xx Z () < X.
p‘1<2x a(o + 1) p° p p
o= a>=2

Enfin, puisque L est non décroissante, on a

N(x) = T L(D)
,tlogt , tlogt

= L(2)loglogx + O(1) » + o lorsque x = o .

X

dt

m>Lm§

En combinant alors (3.3), (3.4), (3.5), (3.8) et (3.9), on obtient le résultat,
incluant 1’égalité (3.2), dans le cas oU R = L € Z.

Il reste a considérer le cas ou R(x) = xPL(x), avec p > 0. Comme
x—-—1<[x]<x,ona

1 1
=) R(p)(ﬁ—l) <= Y R(p)

2P<X X p<x

R
Hex B2y

p<x D

et donc

1 1
V() - - ¥ R(® <= L R(p) [—g] SV ().

X p<x X p<x
Or en utilisant les représentations

Alg) =§ 5%aﬁr(t) et ), R(p)=§ R(2)dm(2)

p<x P ) p<x 2

et en utilisant le théoréme des nombres premiers, tout comme on 1’a fait
dans le cas R(p) = L(p) ci-dessus, on établit que, lorsque x = oo,

xP L(x) . 1 xP L(x)
€ s
p logx X p<x p+ 1logx

de sorte que les trois quantités y(x), }CZstR(p) et y(x) — i L, < R(P)
sont du méme ordre de grandeur. Ainsi, compte tenu des relations (3.3)
et (3.4), la démonstration sera terminée si I’on peut démontrer que le deuxiéme
terme & droite de (3.4) est o(xwy(x)). Le résultat sera donc démontré si
I’on arrive a établir 'implication générale suivante:

T(n) 20, @(x)— +o0, S := ) T(n) ~ex)
y T )

n<x

(3.10)

=o(p(x) .
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Or cette derniére somme peut s’écrire comme suit:

T(n) S(n) — S(n - 11 S([x1)
ngx n - né:x n ngx S(n) ( n + 1) * [X] + 1
(3.11)
-y 2o <x>)~§ 2D a1+ 0000
n<x n(n ) 1

Ainsi compte tenu de (3.11), I'implication (3.10) est une conséquence
immédiate du lemme 3.3. Ceci termine la démonstration du théoréme 3.2.

R.L. Duncan a montré (voir [4]) qu’en moyenne, la moyenne de o sur les
diviseurs de n est égale a %log log n. Plus précisément Duncan a démontré
qu’il existe une constante c telle que

1
x-1 Y ( Zco(a’))—x‘lZ(b(n)zéloglogx+0+0( )

n<x \T(n) 4 By log x

A cette fin, Duncan a utilisé la relation asymptotique bien connue

(3.12)
b
Y on)= Y Y 1= Y |=| =xloglogx + Cx + O(x/logx) ,
n<x n<x pln p<x LP

ou C:=vy + X, (log(l —p‘1)+})) et vy est la constante d’Euler. Bien
plus encore, Duncan a établi 1’égalité des ordres normal et moyen de ®(n).

Etant donne¢ f € F, il est naturel d’examiner le comportement de la
suite f, f f . Ainsi, pour un entier non négatif m fixé, on considére
I’itération T, definie par

Tu(f) = T(Tn () = oo = T i(T1(f)) = Tou_1(f)
ou 7_’1 = 7_" To(f)=f, et ou
(Tu(f) (1) = — Y (Tw1(S) @), n>
T( ) dln

Pour simplifier la notation, on désigne par f m Il 1rnage de f par Tm, i.e.
T (f) = fm. Nous définissons de méme les itérations fm et f m €t obtenons

alors par induction sur m, compte tenu des propriétés de T, T et T, I’énoncé
suivant.

THEOREME 3.4. Soit m.un entier non négatif et f une fonction
arithmétique. Alors Tm, T, et T préservent [’additivité et la multi-
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plicativité. En particulier si [ € &/ alors f,,,(n) = f(n)/2™ et fm(n)
= f(8(n))/2m.  Lorsque fe @, Fm(n) = fu(n) = f(n)/2m. Enfin
si feFd, fu(n)=fuln)=f(n)/2m= f(8(n))/2m.

Afin de généraliser le résultat de Duncan, nous aurons besoin du lemme
suivant qui est facile a démontrer.

LEMME 3.5. Soit f e «/. Supposons que f est constante sur [’en-
semble & des nombres premiers et qu’elle satisfait a f(p") — f(p™~1)
= 0(1) umformement pour p premzer et r=2. Alors les expressions
T = fuD™ ) fnp7) = fu(71) et Fu(p') = fulp'=) sont
également bornees umformement pour p premier et r>=2. De plus les
fonctions f s f,,, et f m SOnt constantes sur .

A chaque fonction g constante sur 27, on associe les constantes suivantes

cg:i=g@2) e D,i=c,C+ Y Y g(p")—g(p"l)’

rz2 p r

ou C est la constante de la relation (3.12).

THEOREME 3.6. Soit f une fonction additive satisfaisant les hypo-
theses du lemme 3.5. Alors

F () = Lloglogx + D; + O(1/logx),
Y Fa

n<x

Z fAm(n) = ;f; x 'Y ()= 2f loglog x + ;CJF O(1/log x),

n<x n<Xx

- D
Y fam(n) = %loglogx + 2—”]; + O(1/1og x).

n<x

Démonstration. Si g € o/ et est constante sur 2, on a

x 'Y gm)y=x1Y Y gpH=x1Y Y (ep)-gpr)

n<x n<x plln n<x pln
r>1
X X
=x7leg X [=] +x7t L (g(p)—g(pr ")) [—]
p<x LD pr<x p’

rz2
Alors la relation (3.12) et le lemme 3.5 permettent d’obtenir les égalités du
théoréme si on prend soin de remplacer successivement g par f,,, fm €t fim.
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EXEMPLE. Si f(n) =logt(n) et m = 1, alors

- log 2 log 2
x-1 Y f(n)=%loglogx+ —i—C

1 ((r+ 1)”
log

r!

+ X

_— ) + O(1/logx) .
r>2 p r(r+ 1p’

A —
4. MESURE DE L’ECART ENTRE f ET LES MOYENNES f, f ET f

Nous allons étudier le moment d’ordre deux (selon le sens des définitions
des moyennes f, f et f) de I’écart entre f(n), f(n) et f(n) et les valeurs
de f sur les diviseurs de n.

Etant donné une fonction arithmétique f, on Iui associe les trois
opérateurs

_ 1 _
Af(n):= — Y (f(d) - f(n)?,

(1) dln
A 1 A
Aftn)i= 25 T w2@) (f(@d) = F ),
d|n
- 1 -
Af(n):= Y (f@d)-fm)>.
2(0(11) d|n
(d,n/sd) =1
Ainsi on remarque que
_ 1 _ _
Af(n) = —— Y {f(@*+ f(n)>=2f(n)f(d)}
T(l’l) dln

1 _ )
=——~Z,ﬂw2+fmv—2ff;;.ﬂw
dln

T(n) dln T(

1 _
=—— ) f(d)?- f(n)?

‘r(n) dln

et donc que

_ 1 _ _ _
4.1) Af(n) = —— Y f(d)? - f(n)? = f3(n) — f(n)2,

T(n) dln

1 A - A
Y uX(d) f(d)? - f(n)? = f2(n) — f(n)2,

2aln) d|n

4.2) Af(n) =

4.3) Af(n) = Y fd? - f(n)? = f2(n) - f(n)?.

2m(n) dn
(d,n/d) =1
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Le procham résultat montre que tout comme T, T et T les opérateurs
A, Aet A préservent ’additivité. Alors qu’il est facile de vérifier qu’aucun
de ces trois opérateurs ne préserve la multiplicativité, on a le résultat suivant.

THEOREME 4.1. Si fe o/ alors Af, Af et Af appartiennent
aussi @ </, et en particulier on a

2

4.4 Af(n)= Y fpm2- % (E f(p”’)) :

pelin

3
1 e

pelln (1 + )2 m=1

A 1 _
4.5 Af(n) = f Y f(n)te ¥,

pla

(4.6) Af(n) = f(p®)?.

peiin

=

Démonstration. Nous allons faire la preuve uniquement pour A, les
autres relations se démontrant de maniére analogue. Soient m et n deux
entiers naturels relativement premiers et f une fonction quelconque choisie
dans .«Z, alors

— 1
Af(nm) = Y f(d)?~ f(nm)?

T(l’lﬂ’l) d|nm

1 _ _
= ———— ¥ {f(d) + f(d)) ~ (f(m) + F(m))?
T(n)t(m) d1||’7
d2 m

_ _ _ 2
= Af(n)+ A f(m)=2f(n)f(m)+ ———— ¥ f(d)f(d).
t(n)t(m) d|n

dy|m
C’est pourquoi le résultat suit de 1’égalité

1
——— Y f(d)f(dr) = (—- Yy fd ))(
t(n)t(m) d1||n (n) ayln

d2 m

X f(dz))

T(m) ay|m
= f(n)f(m) .
Et le théoréme est démontré.

COROLLAIRE 4.2. Si fe # ./, alors Af(n) = Z a(a +2)f(p)?

1
12

4 Z f(p)z—Af(n) et Af> Af. Par ailleurs, si f e 7 .o/, alors
p}n

Af—Af et de plus

1 _
i, 2 —f(p)2<Af(n)— EI (a f(p)2<Af(n)
% p*in
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REMARQUES

1) 11 découle du corollaire 4.2 que si f est tota_lement additive, ’écart
entre f(n) et f(n) est plus petit qu’entre f(n) et f(n), alors que si f est
fortement additive, c’est le contraire qui se produit.

2) A partir des définitions de A f, Af, Af et des égalités (4.1), (4.2)
et (4.3), il est intéressant de souligner que, pour toute fonction arith-

w—_p — ~ ~ s A
métique f, on a les inégalités f2 > f2, f? 2_f2 et f2A> 2, et qu’en
particulier sur les entiers libres de carrés, on a A f(n) = Af(n) = A f(n).

5. GENERALISATIONS ET EXEMPLES

Les fonctions f, f et f définies par les égalités (1.3), représentent
essentiellement trois moyennes de f évaluées respectivement sur les diviseurs,
les diviseurs libres de carrés et les diviseurs unitaires d’un entier. Nous
allons maintenant montrer comment certaines propriétés satisfaites par ces
trois fonctions demeurent valables lorsque les moyennes sont évalu€es sur
d’autres classes de diviseurs d’un entier.

Etant donné un entier naturel n, on désigne par D, I’ensemble des
diviseurs (positifs) de n. Soit alors A une famille d’ensembles A, tels
que A, C D, pour chaque n € N. Par exemple, en désignant par I,
I’ensemble des diviseurs impairs de ’entier positif », la famille 4 constituée
de tous les ensembles 7, est un exemple typique.

Etant donné une famille A := {A4,:n € N}, alors a chaque ensemble A4,
on associe son cardinal soit la fonction 1 4(n) définie par

Ta(n):= Y 1

dln
de A,

qu’on peut aussi écrire (1 *,41)(n), avec *, pour signifier que seuls les
diviseurs d de n qui appartiennent a A4, sont pris en considération. Nous nous
intéressons ici aux familles pour lesquelles les ensembles A, possédent une
fonction 1,4 multiplicative et jamais nulle.

EXEMPLES. Soit k € N et 2 < y € R. Définissons de plus P(l) =1
et P(n) = max{p:p|n}. Alors les ensembles
Au(k)y ={d:d|netd=p}'p32-- p*,0< a; <k}
= {d:d|n et dest k-libre}, k > 2,
B,(y) = {d:d|n et P(d) <y},

E,(k) = {d:dk|n et (dk,ﬁ) - 1}
dk
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donnent lieu a trois familles A, B et E de sous-ensembles de D, pour
lesquels les fonctions T4, T et Tz sont multiplicatives et jamais nulles.

Etant donné une fonction arithmétique f et une famille 4, on pose
maintenant

Sa(n) = Y f(d),
T4(n) dln
de A,
ce qui revient a écrire
S *al
(5.1) fai=—2
1*/_11

Aux cas particuliers *4 = *, %4 = %, (ou #*; est la restriction de * aux
dAiViseurs libres de carrés) et *, = *,, correspondent bien stir les fonctions f ,
fet f. ’

On a mentionné a la section 2 qu’en général f (n) # f(n). 11 en est
de méme pour sa généralisation f, en ce sens que 1’on peut facilement
démontrer que

fa(n) = f(n) pour tout n>1¢ f = c pour une certaine constante c;

auquel cas, si f est multiplicative on a ¢ = 1, alors que si f est additive,
onac=0.
Le prochain résultat généralise le théoreme 2.2.

THEOREME 5.1. Soit feF et A une famille d’ensembles A, C D,
et supposons que 7T4 € .#. Alors la fonction fs est multiplicative si
f e # etelle est additive si f € .

REMARQUES. Il est également possible de considérer les familles d’en-
sembles A4, pour lesquelles T 4(n) peut étre nulle pour certains entiers »; pour
ce faire, il suffit de remplacer (5.1) par

S*al .
141 0,
(5.2) fatny = { Tayp W S malim=
0 autrement .

Dans ce cas, seule la premiere partie du théoreme 5.1 reste valide i.e. si
f € .« alors la fonction f, définie par 1’égalité (5.2) est multiplicative. En
effet, soit (m, n) = 1 et supposons que f € #. Si 14(n) #0et t14(m) #0
alors f4(mn) = f4(m) f4(n); si par contre T4 (n) ou T4(m) est nulle alors,
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puisque T4 € #, t4(mn) =0, ie. fq(mn)=0= fy4(m)fa(n) car au
moins une des quantités f4(m) et f4(n) est nulle. Donc si f € .# alors
fA € M.

Pour montrer que la fonction f, de la relation (5.2) ne préserve pas
I’additivité sur certains ensembles de diviseurs, il suffit de considérer
A,={d:d|n,(d,2) =1 et (n/d,2) =1} et fe o« avec f(n) >0 pour
chaque n > 1. On a alors t14(3) =2, t74(4) =0 et 14(12) = 0. Il est clair
que f4(12) = f4(4) =0 alors que [f4(3) -—-% (3)>0. Ainsi f4(12)
* fa(d) + f403).

La définition de la fonction f4 a partir de la restriction du produit
de Dirichlet a certains diviseurs est basée sur la notion de A-convolution
introduite par Narkiewicz [6] (voir également Subbarao [8] et le chapitre 4
du livre de McCarthy [5]). Soit & et g € F alors pour une famille A de
sous-ensembles A4, de D,, on définit la A-convolution de % et g par

(h*ag)(n) := ) h(d)g(n/d),
fon,
qui de facon générale n’est pas commutative. C’est-a-dire qu’il arrive qu’on
ait, pour une certaine famille d’ensembles A, C D,
Y h(d)yeg(n/d)y # Y h(n/d)g(d).

d|n dln
deA, de A,

EXEMPLES. On a ainsi les cas particuliers suivants:

() Soit 4 = * alors f4(n) = f(n) = —— ¥ f(d).

T(n) din

(i) Soit +4 = * alors fa(n) = f(n) = 51—() Y uid)f(d).
o(m 4,

. ~ 1
(iii) Soit *4 = *, alors f4(n) = f(n) = Som Y f(d).
w(n dln
(d,n/ld) =1
(iv) Soit (a, b)* le plus grand commun diviseur unitaire de @ et p et
a

T4(n) = Y 1=1(n) [] , alors
d|n pefln 1+ @
(d,n/d)y* =1 o pair
Sa(n) = Y. f(d).

Ta(n) d|n
(d,n/d)* = 1
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(v) On pose wx(n):= Y. 1. Soit 1,4(n) = D 1 = 29« alors
pln dln;(d,k)=1
(p, k) = 1 (d,n/d) = 1
fa(n) = Y f@).
2060 gin; (d k) =1
(d,n/d) =1

(vi) Soit y un nombre réel fixe (y >2) et t4(n) = Y, n2(d), alors

P(Ccll)lnsy
fa(n) = Y, u2(d)f(d). Soit fe o alors fa(n) = - Z f(p).
Taln) alr 2 plr

En particulier, si P(n) < y alors f4(n) = f(n) et f4(n) =0sip(n) >y,
ou p(n) désigne le plus petit facteur premier de n, avec la convention

p() = 1.
(vii) Soit t4(n) = J] (o + 1) avec 14(2) = t4(1) = 1, alors
3
fa(n) = Y f(d). En particulier, si n est impair alors
TA(n) dln

d impair

fa(n) = f(n). Soit f e o, alors f4(n) =0sin=2"et

fa(n) = Y T Z f(p™) si n n’est pas une puissance de 2.
allp O + m=
o)
(viii) Soit T4(n) = ) 1 = 2#{p:pellnaveca=0(mod b)) glors
kln
(dk,s/dlk):1
1
fa(n) = Y S
Ta(n) d*|n
(dk, n/(d%) = 1
(ix) Soit y > 2 fixeet t4(n) = Y. 1, alors f4(n) = Y f(d).
dln T4(n) dln
P(d) <y P(d) <y

Soit f € o, alors f(n) = fa(n) + Y. Ny Z f(p™). En parti-
pelln O+ 1 m=1
pb>y

culier f4(n) = f(n) si P(n) <yet fqa(n)=20sipn)>y.
(x) La relation (5.2) est valable avec

[I,_ (w+1) sin=piips2-p>Il,.,q" (pi,k)=1et g ¥ (k, 1),
0 autrement.

T4(n) = {
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On peut méme démontrer un résultat d’un caractére un peu plus général
que le théoréme 5.1 en considérant une fonction arithmétique multipli-
cative g qui n’a aucun lien avec un ensemble de diviseurs. C’est ainsi qu’on
a le résultat suivant, dont le théoréme 2.2 devient un cas particulier.

THEOREME 5.2. Soit A une famille d’ensembles A, C D, telle que
la convolution *4 est commutative. Supposons de plus que t4 € 4. On
considéere U et g deux fonctions arithmétiques multiplicatives telles que
(Ux,2)(n) £ 0 pour chaque entier n > 1. Enfin, soit fe¥, alors

¥ Y Uf*a8
Ja=Jfalg, U):=

Us48
additive si f est additive.

est multiplicative si f est multiplicative, et

Démonstration. On sait que le produit de Dirichlet de deux fonctions
multiplicatives est multiplicatif (voir Apostol [1], p. 35). Cette propriété est
également vraie pour le produit *4 tel que défini ici. En effet, il est facile de
démontrer que si f et g sont multiplicatives, alors f *4 g est aussi multi-
plicative. Ainsi la premié¢re affirmation du théoréme est vraie.

Pour démontrer le cas additif, on procéde comme suit. Soit f € 7,
alors pour (m,n) =1

v Uf*ag)(m)(Uxag8)(n)  (Uf*48)(n)(Ux,g)(m)
falmn) = +
(Ux*,48)(mn) (U=*,4g)(mn)
_ (Uf x4 8)(m) N (Uf *48) (n) _ fA(m) N }A(n)’

(Uxyg)(m) (Ux4g)(n)
d’ou Padditivité de f.
REMARQUES

1) Pour déduire le théoréme 2.2 du théoreme 5.2, il suffit de poser
¥, =%, g=1 et de substltuer pour U les fonctions 1 et u , et cela afin
d’obtenir successivement fA = f et fA = f Pour obtenir fA = f, en plus
de poser g = U = 1, il faut considérer la convolution unitaire *,.

2) Nous avons vu que f ne satisfait pas la réciproque du théoréme 2.2.
De méme la réciproque du théoréme 5.2 n’est pas Vrale 11 suffit de choisir
%4 = %, U(n) = p?(n) et g(n) = 1(n) pour obtenir fA = f.

COROLLAIRE 5.3. Etant donné f € F, il existe une fonction h = h(f)
telle que f est liée a la fonction ¢ d’Euler par la relation

1
(5.3) f(n)y=—% h(d)o(d).

n din
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En particulier f e of (respectivement fe€ .#) si et seulement si
h e o (respectivement h e ).

Démonstration. On pose *, = *, U(n) =n et g(n) = u(n) dans le
théoréme 5.2 et on obtient ainsi la fonction

(5.4) f(n) = Y df(d)u(n/d) .

(n) dln
La fonction A cherchée est alors A = ]X, car (5.4) implique A(n)p(n)

= Z df(d)u(n/d), de sorte que, par l’inversion de Moebius, on en
din

déduit (5.3).

Avant d’énoncer le prochain corollaire, nous allons introduire la notion
de nombre k-parfait. Soit & un entier (k > 2). On dit d’un entier n qu’il est
k-parfait s’il existe m tel que n = m*; en d’autres mots si les exposants des
facteurs premiers (distincts) de n, dans sa décomposition canonique, sont
des multiples de k, i.e.

n=p4ps.--p% avec o;=0 (mod k) pour i=1,2, "",r.

COROLLAIRE 5.4. Etant donné un nombre réel r, il existe
une fonction arithmétique g, € .# définie en (5.5) telle que

n" =Y d-'o(d)g.(d), pour tout nombre naturel n. En particulier un
dln
entier positif n est k-parfait si et seulement si il existe m tel que

n= E d*-'o(d)gi(d). Pour des valeurs entiéres de k, la fonction
dlm

nk-1o(n)g,(n) est tout simplement la fonction indicatrice Jiy(n) de
1
Jordan définie par J.(n):= nk H (1 — —) , Soit une généralisation de

pln p*
la fonction ¢ d’Euler.

Démonstration. Soit r un nombre réel. On pose f(n) = n"~! dans le co-

rollaire 5.3. On a ainsi n” = ), h(d)$(d) avec h(n) = Y dru(n/d).

d|n (b(n d\n

En posant

— pl-r
55  gm:=1I (1+1p—p1—-) avec go(n) = E(n)
pln -

il vient
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1 _pl—-r
h(n) = Y dru(n/d) = H ptr—be (1 + —————) =n""lg.(n).
d(n) daln pelln p—1
Ceci permet de déduire lidentité n = Y, d"~'d(d)g.(d).

d|n

EXEMPLES. De ce dernier corollaire, on obtient facilement les identités
sulvantes:

q) —-1/2y -1
—L A +p-t=)-1,
I

P
o7 = ¥ dlo(d)eg (),
[10

_1)o@s(d
|y D@
dl|n d

v 0D oy

a2 d3? pla

n?= Y ¢(d) Y cn(d/c).
d|n cld
Comme on I’a mentionné dans la seconde remarque qui suit le théo-
reme 5.2, la réciproque de ce théoréme n’est pas toujours vraie. C’est dans
ce contexte qu’il est intéressant de mentionner qu’on a quand méme le résultat
suivant.

THEOREME 5.5. Soit 4 une A-convolution commutative telle que
t4y€ # et neA, pourchaque n>1. Soit Ue .# et ge 4 tels
que U(n)+0 e (U=x,g)(n)+0 pour chaque entier n > 1. Pour

\% U %
feF onpose f,= J*a8
Us,g

\4
et multiplicative si f4, est multiplicative.

. Alors [ est additive si [, est additive,

Démonstration. Soit f eF tel que jXA e . On a UQ) =g
= (Uxg)() =1 dot (Uf*sg)() = f(1) ie. fA)=/f(1). I faut
maintenant montrer que pour tout couple (m, n) d’entiers positifs relativement
premiers, on a f(mn) = f(m) + f(n). Supposons qu’il existe de tels couples
pour lesquels la relation d’additivité pour f ne tient pas. Soit m, le plus petit
elément de N pour lequel il existe au moins un entier positif # (premier
avec my) tel que f(mon) # f(my) + f(n). D’autre part soit n, le plus petit
parmi tous ces entiers n. Il est alors clair que:
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1 < my < ng avec (my, ng) =1, [f(mony) = f(mg) + f(no)

SUn)=f()+ f(n) pour tout net I (1 <l<my), (,n)=1

Sf(mor) = f(my) + f(r) pour tout r,1 <r<nget (my,r)=1.
D’autre part, puisque tout diviseur de mgn, est le produit de deux entiers

rglativement premiers, ’un divisant m, et ’autre divisant n,, et qu’en plus
fa€ o (avec (U*,4g)(n) #0,Vn > 1), il suit que

(Uf x4 g) (mong) = (Uf x4 g) (mg) (U *4 g) (o)
+ (Uf #4 g) (no) (U 4 g) (my) ,

soit 1’égalité

mono
Z U(d,d,) f(did>)g
dllno,dleAno dle
d2|m0,d26Am0

- ) U(d,)U(dy) (f(di) + f(dr))g (m°”°),
lrordieno e

qui peut également s’écrire

Y Uldid) (fldidy) - f(dy) = f(dn)g (’”O”O) 0.
;1l|"0,21 Ejno d,d,

Mais tous les termes de cette somme sont nuls sauf lorsque d; = ny et
dy=mg. Il suit que U(mgng) (f(mong) — f(ng) — f(my)) =0, i.e.
f(myny) = f(mo) + f(ng), ce qui contredit le choix minimal de m,. D’ou
I’additivité de f. La démonstration du cas ou fe .# se fait de manicre
analogue.

REMARQUE. Pour déduire la réciproque du théoréme 2.2 dans le cas
de f et celui de f, en utilisant le théoreme 5.5, il faut poser U =g = 1:

\2 — \4
on obtient alors successivement f4 = f en substituant * a *4 et fu = f,
en substituant *, a * 4.
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