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CHARACTERISTIC CLASSES, ELLIPTIC OPERATORS
AND COMPACT GROUP ACTIONS

by James L. HEITSCH')

0. INTRODUCTION

Our aim in this paper is to introduce characteristic classes of vector bundles,
to relate them to the indices of elliptic operators and the Lefschetz theorems for
such operators, and finally to show how to use these to prove the non-existence
of non-trivial actions preserving a Spin structure for compact connected Lie
groups. Specifically, we will show how to prove the following.

THEOREM 5.2 ([HL2]). Let F be an oriented foliation of a compact
oriented manifold M and assume that F admits a Spin structure. If a compact
connected Lie group acts non-trivially on M as a group of isometries taking
each leaf of F to itself and preserving the Spin structure on F, then the A
genus of F is zero.

In [HL 1] and [HL 2], we assumed that F admitted a transverse invariant
measure. In this paper, we show how to remove that rather restrictive hypothesis
by employing the Haefliger forms of F. In particular, the traces we use here
have values in those forms rather than in the complex numbers. A transverse
invariant measure defines a map from the Haefliger zero forms to the reals,
and applying it to the traces we use in this paper produces the traces used in
[HL 1] and [HL 2]. Note in particular that all the results of [HL 1] and [HL 2]
are still valid even if F does not admit a transverse invariant measure. One
need merely ignore the transverse invariant measure and interpret the traces
used as taking values in the Haefliger zero forms instead of the complex

') Partially supported by NSF Grant DMS 9400676.



266 J.L. HEITSCH

numbers. For another application of Haefliger forms and their cohomology,
see [He].
An immediate corollary is the following theorem of Atiyah and Hirzebruch.

THEOREM 5.3 ([AH]). Let M be a compact connected, oriented manifold
which admits a Spin structure. If a compact connected Lie group acts non-
trivially on M, then the A genus of M is zero.

Theorem 5.2 is an application of the Lefschetz fixed point theorem for
complexes elliptic along the leaves of a foliated manifold. We explain the
classical Lefschetz theorem for elliptic complexes and give an outline of how
to prove it. The original proofs of this theorem relied on the fact that the
underlying manifold was compact. We outline a proof which does not rely on
that fact, and so can be generalized to complexes defined along the leaves of a
compact foliated manifold. Note that such leaves are in general not compact,
but the fact that they come from a foliation of a compact manifold means that
they have uniformly bounded geometry. It is this property which allows us to
prove the foliation version of the Lefschetz theorem. We then show how the
Lefschetz theorem leads to Theorem 5.2. Finally, we give a brief explanation
of a very general rigidity theorem conjectured by Witten and proven by Bott
and Taubes.

This paper is based on lectures given at the conference Actions Différen-
tiables de Groupes Compacts, Espaces d’Orbites et Classes Caractéristiques,
held at the Université des Sciences et Techniques du Languedoc in Montpellier
in January, 1994. The author wishes to thank the organizers, especially Daniel
Lehmann and Pierre Molino, for extending the invitation to him to speak at
the conference and for making his stay in Montpellier so pleasant.

1. CHARACTERISTIC CLASSES AND MULTIPLICATIVE SEQUENCES

All objects considered in this paper will be smooth. Let £ be an n
dimensional complex vector bundle over the real manifold M. Denote the
space of smooth sections of £ by C°°(E). A connection on E is a linear
map V : C®(E) — C*(T*"M ® E) satisfying

V- -0)=df@a+f-Vo

for any ¢ € C®°(E) and f € C°(M), the smooth functions on M. T*M
denotes the cotangent bundle of M.
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If o4,...,0, is a local basis of C*°(E) on an open set U, the local
connection form 6y (which is an n x n matrix of 1 forms) is defined by

n
=1

The local curvature form Qg is the n x n matrix of 2 forms
Qu =dfy — 0y NOy.
It is not difficult to show that if 71,...,7, is another local basis on the open

set V with 7, =) g;jo; on UNV, with g; € C*°(UNYV), thenon UNYV
=1

j
(1.1) Qu = gQyg~!
where g = [g;].

Now consider the local differential form on U, det(! — 5= Q). Because
of (1.1), this is actually a well defined global form on M. This form depends
only on V and it is closed, so it defines a cohomology class c(E), the total

Chern class of E, which actually takes values in the real de Rham cohomology
of M. This class depends only on E and we may write

c(E) =14 c1(E) + - + cp(E)

where ci(E) € H*(M,R) is the kth Chern class of E.
If £ is an n dimensional real vector bundle over M, it is easy to show
that ¢y 1(E ®r C) = 0, and the kth Pontrjagin class of E is defined to be

Pi(E) = (= 1fcu(E ®g C).
For more on this see [KN] and [M].

Let Q(z) = Y b;z' be a formal power series in z. Associated to () 1is the

i=0
multiplicative sequence K = (Ko, K1, K>,...) where each K; is a polynomial
in j indeterminants, K;(o1,...,0;) given as follows. Denote by Q; the degree

J part of Q(z1)...Q(z), where each z; has degree 1. Q); is a symmetric
polynomial in the z; so it can be written as a polynomial in the elementary
symmetric polynomials oy,...,0; in zi,...,z, ie.
Qj = Kj(o1,...,0)).
For example, if Q(z) = 14z, then Q; =z, .. .zj = 0; and Kj(oy,...,05) = 0.
O
If Q(z) is an even power series, Q(z) = S~ byiz?%, then the degree 2j
i=0
part of Q(z1)...Q(z;) can be written as a polynomial in the elementary

symmetric polynomials ~;,...,7; in z:f‘, e ,z}. We set K;(v1,...,7;) to be
this polynomial.
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DEFINITION 1.2. (a) Let E be an n dimensional complex vector bundle
over M and ()(z) a formal power series with associated multiplicative
sequence K = (Ko, Ki,...). The K genus of E, K(E) is the de Rham
cohomology class

KE) =) Ki(ci(E),...,¢E).
j=0

(as K;(c1(E),...,c;(E)) € H¥(M,R), this is actually a finite sum).

(b) Let E be an n dimensional real vector bundle over M and
Q(z) an even formal power series with associated multiplicative sequence

oo
K = (Ko,Ki,...). Then the K genus of E is K(E) = >_ K;(p1(E), ...,p;(E)).
j=0

K is called a multiplicative sequence because K(E| D E,) = K(E) - K(E»).

IMPORTANT EXAMPLES

1. Q@) =1+z. Then

Kz)=14ci(E)+cy(E)+---=c(E).
2. () = z/tanh(z), which is even and gives the L genus of Hirzebruch.

Recall that the signature Sign(M) of a compact oriented 4k dimensional
manifold M is the signature of the quadratic form on H*(M,R) given by

a,fr— [a- 3.
M

THEOREM 1.3 (Hirzebruch [H]).

Sign(M) / Li(pi(TM), ..., pe(TM))
M

where TM is the tangent bundle of M.

Thus Sign(M) is completely determined by the Pontrjagin classes of M.
3. Q)= z/(l —e7%), gives the Todd genus 7d.

Let M be a compact, complex n dimensional manifold and V a holomorphic
vector bundle over M. Recall the Dolbeault complex of V

an—l

0 — A%y 2% A0y 2, L ARy =5 0




CHARACTERISTIC CLASSES 269

where A%9(V) is the space of differential forms on M of type 0,g with
coefficients in V. H9(M,V) = kernel Eq /image Eq_l and it is finite dimen-
sional (and isomorphic to H(M,O(V)) where O(V) is the sheaf of germs
of holomorphic sections of V).

A fundamental invariant of V is its Euler class

XM, V)= (=D)?dimHI(M, V).
g=0
The Riemann-Roch problem is to calculate this integer from topological
information about M and V. The solution is given as follows. Suppose

dimension V = k. % + .-+ % is symmetric in the z; so may be written
k

as a power series in oy,...,0x, i.e. Y e% =k+chi(o1) + chy(or,02) + - -
i=1

where

k
chi(01(1, -, 2), -5 0321, 5 5)) = szé/j!.
i=1
Set ch(V) = k + chy (c1(V)) + cha(c1(V), c2(V)) + - - - .

THEOREM 1.4 (The Riemann-Roch Theorem, [AS]).

(M, V) = / Td(TM) - ch(V).
M

Thus x(M,V) is completely determined by the Chern classes of M and V.

4. Q(z) = (z/2)/sinh(z/2) = z/ (¢¢/2 — ¢=%/?) is an even function and gives
the A genus.

Recall that Spin(n) is the simply connected double cover of SO(n). A Spin
structure on an oriented Riemannian manifold M of dimension n is a principal
Spin(n) bundle P over M and an isomorphism of oriented bundles

P X Spin(n) R" ~ TM.

Spin(n) has a complex representation space A of dimension 2". See [ABS],
[LM]. If n = 2k, A may be written as A = AT @ A~ where AT are
irreducible representations of dimension 2"7'. Set E*¥ = P x Spin(y AF .
The metric connection on M defines one on E = ET @® E—, denoted V.
The Dirac operator DT : C®(ET) — C*(E™) is defined as follows. Let
c: COO(T*M ® E) — C°°(E) be Clifford multiplication (we identify T*M
with TM using the metric on M). Then D = ¢ -V : C®(E) — C®(E) and
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D maps C®(ET) to C*®(E~) and vice-versa, since ¢ does. Thus we may
write

0 D™
1. —
0[5 5]
where DT : C®(E*) — C(ET). (See [AS] or [LM]). Now kerDt
and cokerDV(~ kerD~) are finite dimensional and the Spinor index
of M,

Spin(M) = dimker D™ — dim cokerD™ .
THEOREM 1.6 ([AS]). If M is a Spin manifold of dim 2k then
Spin(M) = / A(TM) .
M

In particular, if 2k = 2(4), then Spin(M) = 0 as /T(TM) involves only
the Pontrjagin classes of M and these occur only in dimensions = 0(4).

More generally, we may construct the twisted spinor complex. For
this, let F be a complex bundle over M with hermitian metric and
connection. Combining the connection on E with that on F we ob-
tain a connection on E ® F. Composing this with Clifford multi-
plication

c:C(ITMMQQEQRF) — C*(EQF)

we obtain the twisted Dirac operator Dp on E ® F. As before Dpg
interchanges ET ® F and E- ® F and we get the twisted Spin
complex

+
0— C¥(ET®F) 2 C¥(E- @ F) — 0.

The kernel and cokernel of Di are finite dimensional and the twisted spinor
index is
Spin(M, F) = dimker Df — dim coker D} .

THEOREM 1.7 ([AS]).

Spin(M, F) = / A(TM) - ch(F).
M
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2. THE INDEX OF AN ELLIPTIC COMPLEX

An elliptic complex (E,d) over a closed, oriented, n dimensional Rieman-
nian manifold M consists of :

a) a finite collection of finite dimensional complex vector bundles

E07E1 "')Ek

b) a collection of smooth differential operators

di : C(E;) — CP(Eit1)

c) The operators d; are required to satisfy

dix1-di =0

and an additional technical condition called ellipticity. This condition makes
possible the construction a virtual bundle, i.e. the formal difference of two
vector bundles, over TM which carries a great deal of information about (£, d).
This virtual bundle o(E,d) is called the symbol of (E,d) and it defines a

class |o(E,d)], also called the symbol, in the K theory with compact supports
of TM.

EXAMPLES

1. The de Rham complex, where

TcM = complexified cotangent bundle of M
E; = A'TEM the ith exterior power of TeM
C*°(E;) = smooth complex i forms on M

d; = the usual exterior derivative

2. The Dolbeault complex
3. The Signature complex (see [AS])
4. The twisted Spin complex.
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SOME FACTS ABOUT ELLIPTIC COMPLEXES
Set H'(E,d) = kerd;/image d;_;. If M is compact, then dim H'(E,d)
< 00, and we may define

k
Index(E,d) = > (—1)' dim H'(E,d) .
=0

This is a very important invariant. Special cases of (E,d) yield the
1. Euler class x(M) of M (de Rham complex)

2. Signature of M (Signature complex)

3. Euler class x(M, V) (Dolbeault complex)

4. A genus of M (Spin complex).

The Atiyah-Singer Index Theorem tells how to compute this invariant from
topological information about M and (E,d). In particular, it says

THEOREM 2.1 ([AS)).

Index(E, d) = / Td(TM ®@x C) - ch (o(E,d)) .
M

The theorems quoted above are all special cases of this theorem. We now
give an idea of how to prove this deep and important theorem.

On each E; choose an Hermitian inner product denoted ( , );. This induces
an inner product ( , ); on C*°(E;) by the formula

(s1,52)i = /(S1(X),Sz(X))idX-

M

Using ( , ); we define the adjoints
d; : C(E;) — C™(Ei—1)

by
(s1,d]s2)i—1 = (di—151, $2)i

where
s1 € CP(Ei—1), 52 € CT(E).

The Laplacian A; : C*°(E;) — C°°(E;) is defined by
A,‘ = di_ld? -t d;k+1di ,
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and it extends to a densely defined operator of L?(E;), the space of L? sections
of E;, as follows. A; is a diagonalizable operator, and any eigenvalue A of
A; must be real and nonnegative. If M is compact there is a sequence of real
numbers

O= X< i< <, hm)\j:oo

J—00
such that for each E; there is a sequence of finite dimensional subspaces of
C™(E;), denoted
Ei(/\O)aEi()‘l)aEi(/\2)7 + e

so that for any s € E;()\))
Ais = Ajs.

In addition

LE) = D E).-

j=0

Thus each element in L?(E;) can be written as a (possibly infinite) sum of
eigen functions and we may think of A; as the infinite diagonal matrix

_O —

A2

OTHER PROPERTIES OF A;

1) E;j(Ao) =kerA; C kerd; and the inclusion of E:(M\o) in kerd; induces an
isomorphism
Ei(N) ~ H(E,d),
SO

k
Index(E, d) = Z(— 1) dim E;(\) .
=0
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2) For each A\; > 0, the sequence

0= Eo(\) S B0 25 - 25 B(y) — 0

1S exact.
As a corollary, we have immediately

k
D (—1)Y dimE;(\) =0

i=0

for all A; > 0. These results rely on the fact that M is compact. For a general
reference for the above facts, see [Wal.
The fact that A; is diagonal implies that for any function f : R — R, we
may define
FA) - LE) — LXE,)

by : for each s € E;())) set f(A))s = f(\)s. i.e. the “matrix” of f(4;) is

[ f(0)

F(0)
F(AD)

f(A)

Note also that if f(x) goes to zero rapidly enough as x — oo, then the trace
of f(A;), thought of as the usual trace applied to the infinite matrix above,
will be a finite number. In this case, we say f(A;) is of trace class. See [RS].

We are interested in the family of functions f;(x) =e™™, ¢ > 0. In fact,

A makes sense and we have

even if M is not compact, e~
THEOREM 2.2 (Seeley, [S]). For t >0, e~ ™ is a smoothing operator on
L*(E;) and so if M is compact it is of trace class.

Let m; : M x M — M be projection on the jth factor, j = 1,2. To say an
operator A on L*(E;) is a smoothing operator means that there is a smooth
section k(x,y) of the bundle Hom(m; E;, 77E;) over M x M, so that for all
s € LX(Ey).
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49 = [ Kxn)s0)dy.
M
Note that k(x,y) is a linear map from E;,, the fiber over y, to E;,, the fiber
over x, so k(x,x): E;y — E;, has a well defined trace. The section k(x,y)
is called the Schwartz kernel of A. Any smoothing operator on a compact
manifold is of trace class and its trace is given by tr(A) = f tr k(x,x)dx.

M
To see this for =™, note that its Schwartz kernel ki(x,y) must be given as
follows : For each ); choose on orthonormal basis ¢?, v=1,..., dimEi(}\)
of EI(A]) Then
Kx,y) =Y ™™ Zabj’(x)cb}’(y)J .
Jj=0 v

Here kj(x,y):E;y — E;, acts on w € E;, by

ke yyw =) " e™™ {Z@;f@), w), - cé}’(x)} :

j=0 v

The trace of ki(x,x) is then given by

S ey [Z (670, qﬁ}’(x)),}

Jj=0 v
and the result follows by integrating over M.

k
Now, since e = 1 for all 7, we have e ™ S (—1) dimE;()\) =
i=0

k
Index(E,d), for all 7. In addition e~ 3" (1)’ dim E;()\;) = 0 for j > 0, and

i=0
for all 7. Thus we have

THEOREM 2.3. If M is compact, then for all t > 0,

k
D (=™ dim E(\)

™3

Index(E, d) =
=0 Li=0
k| oo
= D (—1e™™ dim Ei(\)
i=0 L_j=0
k
=Y (=1ir e,
i=0
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The Index Theorem now follows from two other results.

1)

2)

k

Set k/(x) = >_(—1)'tr ki(x,x). Then for ¢ near 0, k,(x) has an asymptotic
i=0

expansion of the form

k()= > ¥ a;x).

jz—n

As [ k(x)dx = Zfzo(—l)itr e~ = Index(E,d) is independent of t,
M
we have

Index(E,d) = / ao(x)dx .
M

Now, for any twisted Dirac operator D} , one can prove that the differential
n form ap(x)dx 1s the degree n part of the form constructed from the
connections on TM and F which represents A(TM)-ch(F). Thus, we have

Index(D}) = / A(TM) - ch(F) .
M

Index (E,d) depends only on the K theory class [o(E,d)]. Given this and
the formula above for Index(D}?), one may use well known arguments
in K theory to extend the result in 1. to all elliptic complexes. The
essential fact is that the symbols of twisted Dirac operators generate the
K theory with compact supports of TM as an algebra over the K theory
of M.

The difference between the formula in 1. and that in the Atiyah-Singer

Index Theorem is accounted for by the fact that for the twisted Spin complex
(E* ® F,Dp),

ch(o(E* ® F,D¥)) = ch(E*, D) - ch(F)

and

Td(TM ®g C) - ch(o(E*, DY) = A(TM).
For more on this see [ABP], [B], [G], [Gi1], and [P].
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3. THE LEFSCHETZ FIXED POINT FORMULA

ENDOMORPHISMS OF ELLIPTIC COMPLEXES

A collection T = (Ty,...,Ty) of complex linear maps 7; : C°(E;) —
C°°(E;) is an endomorphism of the complex (E,d) provided

Tiy1-di=d; - T;
for all i. The T; then induce linear maps
T : H(E,d) — H'(E,d).

When M is compact, H'(E,d) is finite dimensional, and we may form tr(77").
We define the Lefschetz number L(T) of the endomorphism 7' to be

k

L(T) =) (~D'u(T}).
i=0
We are interested in the so called geometric endomorphisms. To define
these, let f : M — M be a smooth map and for i = 0,...,k, suppose that
A;: f*E; — E; 1s a smooth bundle map. Then for each x € M, we have a
linear map
Ai,x . Ei,f(x) —* Ei,x

from the fiber of E; over f(x), which is the fiber of f*E; over x, to E;, the
fiber of E; over x. For any s € C*°(E;), we define T;s € C*(E;) by
(Tis)(xX) = Ay - s(f(%)) -

We assume that the A; are chosen so that the 7; define an endomorphism of

(E,d). For a geometric endomorphism associated to f, the Lefschetz number
is denoted L(f).

TwWO EXAMPLES

1) The classic example is that of a smooth map acting on the de Rham
complex. Then we have

(E,d) = the de Rham complex of M
f = an arbitrary map.
A; = ith exterior power of the adjoint, df*,
of the differential df of f, extended to T¢g M
Aix = Ndff - NTEMpy — NTE M.
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Then T; is the familiar f* : Co°(A'TEM) — CO(AN'TEM)

2) An action of a compact Lie group G on a Spin manifold M is an action
of G by orientation preserving isometries which preserves the given Spin
structure on M. G then acts on ET and E~ and so also on C*®°(E™)
and C*°(E~) and this action commutes with DV . Thus each g € G is
an endomorphism of (E*,D%) and g — L(g) defines a character of the
group G. When g = 1, this is just the Spinor index of M.

Our aim is to relate the Lefschetz number of a geometric endomorphism
to invariants defined on the fixed point set of f. To do so we need f to be
non-degenerate along its fixed point set in the sense that at each fixed point
p, df, : TM, — TM, has no eigen vectors with eigenvalue +1 in directions
transverse to the fixed point set. Such fixed points are called non-degenerate.
Note in particular that f = idy, satisfies this condition !

THEOREM 3.1 (The Lefschetz Theorem, [AB], [AS]). Let f and (E,d)
be as above and T a geometric endomorphism of (E,d) for f. Assume that
M is compact and oriented and let My be the fixed point set of f. Then L(f)
is given by an integral over My of characteristic cohomology classes on My
determined by local data on M;.

The general formula for L(f) is quite complicated. We will give the formula
for the Spin case (see [AH], p. 20). Let G be as in 2. above acting on a
compact Spin manifold M of dimension n = 2¢. Fix g € G. The normal
bundle V, of M, in M has a canonical decomposition invariant under g,

Ve = Vs
A
where A € S' € C and ¢ acts on V,()\) by multiplication by A. Only a
finite number of A\ actually occur and we assume A = —1 does not occur.

(In applications it does not). Thus V, is a complex bundle and V, and M,
are canonically oriented. For every complex number z # 1, set

Q:(x) =272 (1 —ze™).

Denote the associated multiplicative sequence by B( ,z). Because of the factor
of z!/2, it is only defined up to sign. In [AH], p.21 it is explained how to
remove this ambiguity. Then

L(g) = (—1)f/ft(TMg) 1BV, ) .
M, A
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OUTLINE OF THE PROOF OF THE LEFSCHETZ THEOREM

We outline a proof which does not rely in an essential way on the
compactness of M. This allows us to generalize these results to complexes and
endomorphisms defined along the leaves of a foliation of a compact manifold
even though the leaves may be non-compact. A general reference for the
material in this section is [RS].

We begin by redefining e~". Let C be the curve in the complex plane

C={z=n|y=x+1}

and set

1 e—t/\
= dX
¢ i / M — Ay
c
l.e. i
(e ig) (x) = — /e_”\ [(/\I — Ai)_ls} (x) d\
27l
C

for s € L*(E;). A Riemannian manifold has bounded geometry if its curvature
is bounded and its injectivity radius is bounded away from zero. On any
complete manifold of bounded geometry, (AI — A;)~! is a bounded operator
on L*(E;) for all A € C so e " is defined.

Note that when M is compact, this agrees with our previous definition.
To see this, use Cauchy’s Theorem to show that the two definitions agree on
an orthonormal basis.

SOME FACTS ABOUT e /A

Assume that M is a complete manifold of bounded geometry. Then

1. As before, e~™ is a smoothing operator with smooth Schwartz kernel
Ki(x,y) (ref. [S]), so if M is compact, it 1s of trace class.

2. Tyers;» the projection onto the kernel of A;, is a smoothing operator, so
if M 1s compact, it is of trace class. |

3. rl—lglo e "™ = Tyerp, in the strong operator topology, so if M is compact,

it follows that

lim tr(e ™) = tr(7rye, A7)
t— 00

4. Let T; be as in the Lefschetz Theorem. Then Tie~" is a smoothing
operator with Schwartz kernel

k(x,y) = Ap ki (F(x),y)
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and if M is compact it has trace

te(T; - e™) = / tr (k] (x, x))dx .

M

5. As t — 0, if x # y, ki(x,y) — O to infinite order and this convergence

1s uniform in distance (x,y). Roughly speaking, this is because as ¢t — 0,

e ™™ — I, and its Schwartz kernel is converging to the distribution on

M x M which on each {x} x M is the Dirac § distribution at x. Thus if
f(x) # x, we have

lim tr (k" (x, %)) = lim tr(Aj <k; (f0), x)) = 0,
and given € > 0, this convergence is uniform for all x with distance
(x, f(x)) > €.

Now suppose that M is compact and consider

k k
AW =D (-D)'(T; - ey = (=1) / tr (kT (x, x))dx
i=0 i=0 M

By 5. above, lin(l) A(?) can be computed by integrating only over a neighborhood
—

of the fixed point set My of f. This integration can be done using only local
information about (E,d), f and T; on My. Thus lirréA(t) gives the right hand
—

side of the Lefschetz Theorem.
6. By 3. above and the fact that kerA; ~ H'(E,d) we have

lim tr(Tie™™) = (T} - Mern,)
— 00

2
- tr(Ti ) 7TkerAi)
= tr(TrkerAi ) Tl : 7TkerA,-)

Then lim A(r) gives the left hand side of the Lefschetz Theorem, so to
—00

complete the proof of the Lefschetz Theorem we need only show :

k
THEOREM 3.2. A(t) = > (—=1)itr (T; - e~") is independent of t.
i=0
Proof. Set
P(A) = e — e = Asp(A)
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where iy
e ¥ g~

P(x) =

Now formally we have

k k
Z(—thr(T,-e—“Af) ~ Z(—l)itr(T,-e—’zAf)
i=0

i=0

k
= (=D'u(Tid(A))
i=0

k
=3 (-~ Dur(TiAp(A))

i=0
k k-1
=S~ Dte(Tidimadip(a)) + > (= D't (Tidfy 1 dip(A)
i=1 i=0

We now show that the first sum is the negative of the second.

k
> (= Dyitr(Tidio1d; p(A))

i=1

k
_ Z(— D'tr(dio1 Tiodi p(A)
i=1
k u
=S~ Dte(Tim1d (A1)
i=1

k
— Z(— D) te(Ti—1df dim1p(Ai—1))
-

k—1
= (DM u(Tidf dip(A)

i=0
and done. Of course this manipulation is purely formal and must be justified
as we are working with operators on infinite dimensional spaces and not on
finite dimensional ones. For this, see [ABP] and [HL 1]. Note also that in order
to have a Lefschetz Theorem for complete manifolds of bounded geometry, it
is only necessary to find an appropriate trace for which the above results hold.
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4. THE LEFSCHETZ THEOREM FOR FOLIATED MANIFOLDS

Let M be a compact m dimensional manifold and F a dimension n
foliation on M. Then F is an n dimensional subbundle of TM such that for
any two sections X, Y € C*®(F), [X,Y] € C°°(F). The Frobenius Theorem
says that for each x € M, there is a neighborhood U of x and a diffeomorphism

p:R"xXR? - U n+gqg=m
so that for all z € R"” x RY.
dp(TRY) = Fy .

Such a (U, ¢) is called a foliation chart. Given x € R?, the submanifold
¢(R" x {x}) is called a plaque, and is denoted PY. It is a local integral
submanifold of F. The submanifold ¢({0} x R?) is denoted R}, and is
called the transverse submanifold of (U, ¢).

A leaf L of F is a maximal integral (i.e. 7L, = F, for all x € L)
submanifold of M. Thus dimL = n. The Frobenius Theorem implies that
through each point x in M, there passes a unique leaf, denoted L,. Each leaf
is a complete manifold of bounded geometry and the bounds are uniform for
all leaves.

We now extend the Lefschetz Theorem for compact manifolds to a
Lefschetz Theorem for foliations of a compact manifold. This is joint work
with Connor Lazarov [HL 1]. In fact, we show how to improve the results
of [HL 1] by removing the assumption that F admits a transverse invariant
metric. For a K-theory version of this result, see the thesis of M-T. Benameur,
[Be].

Choose a smooth metric on M. This induces a smooth metric on each
leaf L, and L is complete with respect to this metric. Two different metrics
on M induce quasi-isometric metrics on L.

HAEFLIGER FORMS

Let {U;} be a finite cover of M by foliation charts. For x € U;, denote
its plaque by P.. If U;NU; # @ we define a local diffeomorphism f; from
R}, (hereafter denoted RY) to R}‘-’ as follows :

f() =y if and only if P,NP, # .

The f; generate the holonomy pseudogroup, denoted H, which acts on the
transversal space T = U;RY. We may (and do) assume that the R are disjoint.
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Recall the following construction due to Haefliger [Ha]. Let Q’g(T) be the
space of bounded measurable complex valued k forms on T with compact
support. Denote by QX(T/H) the quotient of Qf(T) by the vector subspace
generated by elements of the form o —h"« where h € H and o € QX(T) has
support contained in the range of h. Give Q (T/H) the quotient topology of
the usual sup norm topology on Q(7). Note that Q¢ (T/H) does not depend
of the choice of cover used to define it.

Denote by QP1*(M) the space of bounded measurable complex valued
p+k forms on M. As the bundle TF is oriented, there is a continuous open
surjective linear map,

/ L QPR M) — QNT/H) .
F

It is given as follows. Let w € QPT¥(M) and let {¢;} be a partition of unity

subordinate to the cover {U;}. Set w; = ¢w. We may integrate w; along the

fibers of the submersion 7, : U; — R? to obtain @; € QX(RY). Define [ w
F

to be the class of X@; in QY(T/H). It is independent of the choices made in
defining 1it.

DIFFERENTIAL COMPLEXES ON M ELLIPTIC ALONG F

A differential complex on M along F consists of :

a) a finite collection of finite dimensional complex vector bundles Ey,. .., Ex
over M

b) a collection of smooth differential operators
di : C(E;) — C*(Ei+1)
with diy) -d; =0
¢) each d; differentiates only in leaf directions.
For the sake of simplicity we assume that each d; is first order.

Each of the classical complexes mentioned above (de Rham, Dolbeault,
Signature and Twisted Spin) gives a leafwise complex on M provided that
the leaves have the required structures and that these structures are coherent
from leaf to leaf (i.e. come from a global structure on M ). For example, in
the twisted Spin case, we require that the Spin structure on the leaves comes
from a principal Spin(n) bundle P over M with P Xgpini,) R" ~ TF, and that
the leafwise auxiliary twisting bundle come from a bundle over M.
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For a fixed leaf L, denote E;|, by EF and by C§°(EF) the space of smooth
sections of EF with compact support. The operator d; induces one, denoted
also by d;,

di : CO(E}) — C3°(Ei)

and on L we have the complex

0 — CP(ED & cgoEd 4 - 22 cpo(Eb) — 0.

We say that the complex (E,d) is elliptic along F provided that for each leaf
L, the above complex is elliptic. We assume that (E,d) is elliptic along F.

L? COHOMOLOGY OF (E,d)

Choose a smooth Hermitian metric on each bundle E; over M. These
induce metrics on each EF and these metrics are unique up to quasi-isometry.
Using these metrics we construct df : C3°(EF ) — C°(EF) just as we did
before. We then construct

Al - CE(ER) — CER(ED)
and we extend A; to
Af : L(ED) — LX(E])

just as before.

DEFINITION 4.1. The ith L*> cohomology of (E,d) along the leaf L,
denoted H:(E,d) is
H,(E,d) = ker A

The ith L?> cohomology of (E,d) is denoted H'(E,d) and it assigns to each
leaf L the ith cohomology of (E,d) along L,H:(E,d).

SOME FACTS

1. H.(E,d) consists of smooth sections and dimc H:(E,d) may be infinite
but is always countable.

2. mi, the projection of L*(EF) onto Hj(E,d), is a smoothing operator (on
L) with smooth Schwartz kernel k;(x,y).

% ki(x,y) is measurable as a function of L and bounded independently of

L. In particular, tr k;(x,x) is a bounded measurable function on M whose
restriction to each leaf L is smooth.

4. Because of 3. above, we may define the dimension of H'(E,d) to be the
zero dimensional Haefliger form
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dim(H'(E,d)) = / tr(kj (x, x)) dx ,

F

where for any leaf L we denote the volume form obtained from the metric
on L by dx. We may also define the Euler class of (E,d) as

k
X(E,d) =Y (—1) dimH'(E,d).
i=0
GEOMETRIC ENDOMORPHISMS

Let f: M — M be a diffeomorphism and assume that for each leaf L of
F, f(L) C L. For each i, let

A,’ Zf*E,‘ — E,’

be a smooth bundle map. We assume that T; : C°°(E;) — C°°(E;) where
(Tis)(x) = A; xs(f(x)) satisfies

Tidiy = di1T;-1 .
The T; then induce maps

T} : CP(EP) — C5O(ED)

satisfying

Tld, | =di\TH,.

We call such a family T = (Ty, ..., Tx) the geometric endomorphism of (£, d)
defined by f and A = (Ay,...,Ar). The T,-L extend to uniformly bounded
linear maps

TL . LX(EF) — L*(EF).

LEFSCHETZ NUMBER OF A GEOMETRIC ENDOMORPHISM

Set Tf, = wF - TF - 7f and denote its Schwartz kernel by K (x,y).
Then kz’ (x,y)is globally bounded, smooth on L X L, and measurable. Thus

tr(sz* (x,x)) is a bounded measurable function on M which is smooth on
each leaf L. We define the Lefschetz class of the geometric endomorphism
T to be the Haefliger zero form

k
LT) =3 (1) / (k) (x, %)) dx
i=0 F
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For our Lefschetz Theorem we shall also need two restrictions on the fixed
point set, N of f. We require :

1. N =|JN, is a finite disjoint union of closed, connected submanifolds

N, , each transverse to F.
2. for each x e NNL =|JNL where Nt = N, NL, df; has no eigen vector

(in TL,) with eigenvalue +1 in directions transverse (in L!) to Né.

Note in particular that f = idy, satisfies these conditions.

FIXED POINT INDICES

Let {U;} and {t;} be as above. Suppose that for each L and o we are
given a differential form af defined on N.. We define the Haefliger form

[a as
/a—z > v

L NLﬂP #gb NLmPl

Note that for any plaque P., only a finite number of N satisfy NN P! £ ¢.

As f wiaé is a differential form on the transversal RY of U;, we may
NLNPL
also consider it as a Haefliger form for F. As above, it is not difficult to

show that the Haefliger form [a does not depend on the choices made in
N
defining it.

THEOREM 4.2 (The Lefschetz Theorem for Foliations [HL 1]). Let M,
F, f, T, A and (E,d) be as above. To each Né C N we may associate a
differential form ak which depends only on local data on N% so that

L(T) = /a

N

The proof follows the outline given above for the classical case, done leafwise.
There are some very formidable technical obstacles, but these can be overcome
(see [HL 1]).

If (E,d) is the de Rham, Dolbeault, Signature or Twisted Spin complex
of F, and f = idy, and T = id, then aj’f 1s the usual local integrand formula
(computed on each leaf, not on M) given by the Atiyah-Singer Index Theorem.

We thus have an index theorem for foliated manifolds for these operators.
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(Note that Connes has also proven an index theorem for foliated manifolds,
(see [C]). As he works on the holonomy coverings of the leaves of F, his
theorem is related to ours as the L? covering index theorem is related to
the ordinary index theorem.) If we take the codimension O foliation of M
which has one leaf (namely M), we recover the Atiyah-Singer Index Theorem

for these operators. In general, i.e. f # idy, T = f*, a* is the usual local

j
integrand (computed on the fixed point set in each leaf, not in M) given by
the Atiyah-Singer G Index Theorem. If we take the codimension O foliation,
we recover the Atiyah-Singer G Index Theorem and the Atiyah-Bott Lefschetz

Theorem for these operators.

5. GROUP ACTIONS AND THE LEFSCHETZ THEOREM

Let F be an oriented 2k dimensional foliation of a compact, oriented,
Riemannian manifold M. Assume that F admits a Spin(2k) structure. That
is, there is a principal Spin(2k) bundle P over M and an isomorphism of
oriented bundles

P X Spin (2k) RZk ~TF.

We may then construct the bundles E* = P X Spin (2k) A% . The leafwise Dirac
operator DT is constructed using the Riemannian structure on the leaves of
F which 1s induced from M.

Let G be a compact, connected Lie group acting by isometries on M,
taking each leaf of F to itself. G then acts on TF. We assume that G also
acts on P (commuting with the action of Spin (2k)) so that the induced action
on P Xgpin 2k) R* ~ TF is the given action on TF. G then acts on the bundles
E* and it commutes with the operator DT, i.e. G is a group of geometric
endomorphisms of the complex (E*, D).

Recall the A genus defined in Section 1.

DEFINITION 5.1. The A genus of F is the Haeﬂiger.zero form
A(F) = / Ao (TF) .
F
In particular, if k is odd, ,Z(F) = 0.

Note that we have defined X(F) as the zero th order part of [ ,Z(TF).
F

For an interpretation of the higher order terms of f A\(TF ), see [Hel.
F
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The Lefschetz Theorem for Foliations applied to the case f = idy, T = id
says that /Al(F ) 1s equal to the index of the leafwise Spin complex, which is
just L(I). The Connes Index Theorem [C] says that it is also equal to the
index of the holonomy covering leafwise Spin complex.

We now prove the theorem of the introduction, namely

THEOREM 5.2 ([HL2]). Let F be an oriented foliation of a compact
oriented manifold M and assume that F admits a Spin structure. If a compact
connected Lie group acts non-trivially on M as a group of isometries taking
each leaf of F to itself and preserving the Spin structure on F, then the A
genus of F is zero.

As a corollary, we have the well known result of Atiyah and Hirzebruch.

THEOREM 5.3 ([AH]). Let M be a compact connected oriented manifold
which admits a Spin structure. If a compact connected Lie group acts non-
trivially on M, then AM) = [ A(TM) is zero.

M

Of course, this theorem and its proof were the inspiration for Theorem 5.2.

Now let G be a compact connected Lie group acting on M by isometries
taking each leaf of F to itself and preserving the Spin structure on F. We
quote two results from [HL 2] and refer the reader to that paper for the
proofs. Note that in [HL 1] and [HL 2], we assume that F admits a transverse
invariant measure. A careful reading of those papers shows that in fact we
may disregard the invariant transverse measure and consider the traces used
as taking values in the Haefliger zero forms of F and all the results remain
valid. See the remarks on this in [HL 3].

LEMMA 5.4. The fixed point set of the action of G is a closed submanifold
of M which is transverse to F.

THEOREM 5.5. The Lefschetz number L(g) is a continuous function
on G.

Proof of Theorem 5.2. We may assume G = S! C C. Let N be the
fixed point set of G, N, a connected component of N, L a leaf of F' and
y € N, N L. The normal bundle to N, "L in L at y can be written as oV ,
where V{; is a complex vector space and z € G acts on V§ by multiplication
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by 7" for some positive integer m;. It follows that the V/ are complex G
vector bundles on N, N L.

Now let z € C, z# 1 and consider the function R(x,z) =1 / (1—ze™). It
can be written as a formal power series in x whose coefficients are rational
functions in z having a pole only at z = 1, and no pole at z = co. To see
this, write

o0 00
i—l—:;:Z(Ze_x)k:ZZke_kx: (1+Z+Z2+Z3+"')
— Z€ —t —

— @427 +327 +
+(z+2227 432 + X7 /2!

Set fop) =14+z+22+-- = 1/(1 —2), and for n > 1, set f,(z) = > Kk,
k=1

Then (—1)"f,(z)/n! is the coefficient of x" in R(x,z) and it is obvious that

fur1(@ = zf!(z). An induction argument then shows that f,(z) is a rational

function of z with a pole only at z =1 and no pole at z = co. By induction
we also have that z!/2f,(z) has a pole only at z = 1 and, as it is O(z~'/?)
at z = oo, 1t has no pole at z = oo.

Now for fixed z # 1, set Q(x,z) = z!/2¢~*/?R(x,z), which is a formal
power series in x. Denote the corresponding multiplicative sequence by
B( ,2) = (Bo( ,2),Bi( ,2),.-.).

Let z € G = S! be a topological generator (i.e. z generates a dense
subgroup). Then the fixed point set of z is N and z acts on V/ by multiplication
by 2. Let d; be the complex dimension of V/ and set

B(V',z) = B4(V/,2").

B(V/,z) is a cohomology class on N, N L whose coefficients are rational
functions of z having poles only at roots of unity and no pole at z = co. Set

B(No NL,2) = |[B(V,2).
J

As B(V/,z) contains the factor (z"4)'/2, B(N,NL) contains the factor (z4)!/2,
d = myd;, and so is defined only up to sign. The choice of sign is determined
as in [AH], page 21.

The Riemannian connection on TM over N, N L preserves the bundles
V/ and is a complex connection on each V/. Using this connection and the
Riemannian connection on T(N, ML), we may construct the differential form
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wf;(z) on N,NL which represents the cohomology class /T(Na NL)B(N,NL,z).
Then wk(z) is the form af given in the foliation Lefschetz theorem for z
acting on the leafwise Spin complex, and it defines a smooth form w,(z) on
N, . Thus for z € S', z not a root of unity, we have

L(z) = / wz) =) / Wa(z).
N Y Ny

Now notice that the right side of this equation defines a function A(F,z) on
the complex plane with values in the Haefliger forms of F. Also note that
A(F,z) has poles only at roots of unity and no pole at z = oo, since wq(z)
has poles only at roots of unity and no pole at z = co. Because of the factor
of (zH)!/2, A(F,0) = 0. For z € S, z not a root of unity, A(F,z) = L(z).
But L(z) is defined for all z € S' and by Theorem 5.5 it is continuous on
S'. Thus A(F,z) has no poles at all. Since it is analytic and bounded, it is
constant and hence is identically zero. Therefore L(z) = 0 for all z € S, but
L(1) = /T(F) so we are done.

The compactness of G is essential, as in [HL 2], we give an example of
an infinite discrete group acting by leaf preserving isometries on a compact
oriented foliated manifold M, F and G preserves a Spin structure on F. The
foliation F admits an invariant transverse measure which defines a map from
the Haefliger zero forms of F to C. The image of JZ(F ) under this map is
Non-zero, SO le\(F) #=0 .

6. THE RIGIDITY THEOREM OF WITTEN

In 1986, Witten [W] predicted rigidity theorems for the indices of certain
elliptic operators on manifolds with S' actions. The genesis for Witten’s
conjecture was his study of the Dirac operator on the free loop space LM (an
infinite dimensional manifold) of a Spin manifold M. LM admits a natural S'
action whose fixed point set is diffeomorphic to M. The sequences of bundles
R(g) and R'(g) described below were derived from the normal bundle of M
in LM and from the formal analogue on LM of the fixed point formula for
the Dirac operator in the finite dimensional case.

Let D : C*®(E{) — C*°(E,) be an elliptic operator on a compact manifold
M and suppose M admits an S' action preserving D. Then as noted above, .
Index (D) is a virtual S' module and has a decomposition into a finite sum
of irreducible complex one dimensional representations
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Index(D) = Z a,L"

where z € S! acts on L™ by multiplication by z”. D is called rigid if all
the a, for m # 0 are zero, i.e. if the representation L™, m + (0 occurs In
kernel D with multiplicity a then it occurs in cokernel D with the same
multiplicity a.

Denote by SKT) and M(T) the kth symmetric and exterior powers of
T =TM and set

So(T) = > d'SKT)
k=0

Ao(T) = dND).

k=0

Let R, and R, be the sequences of bundles defined by the formal power
series

R@) =D q'Ri = QD)X Se(D)
£=1

n=0 m=1

R@ =Y qR, = Q) 2D Se(D)

n=0 f= e m=1

[Se] 18

2

Now suppose M is a 2n dimensional compact Riemannian Spin manifold
and denote by DT the Dirac operator of M. For each n we may form the
operators

DY®(ET®E)®R, and D' Q®R,.

THEOREM 6.1. These operators are rigid under any S' action on M by
isometries, i.e. the induced action on the index of any of these operators is
the trivial action.

This is the theorem conjectured by Witten and first proven by Taubes [T].
A beautiful proof of it appears in [BT].

Roughly speaking Bott and Taubes’ proof goes as follows. First they show
that the Signature operator ds = DT ® (E* @ E™) is rigid by an argument
similar to that presented above. Combining this result with the power series
R(g) and interpreting ch(Index (ds ®R(q)) as a meromorphic function on the
complex torus T,z = C*/ g°, they show that it has poles only at roots of unity
and no poles on a certain circle S' C T,». The Spin hypothesis then implies
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that it has no poles at all and hence is constant. Thus the character of S!
given by its action on Index(ds ® R(g)) is constant, and so the action must
be trivial as claimed. They then give separate arguments to extend this result
to DT QR!.

These results all extend in a straight forward way to S! actions preserving
a foliation (see [HL 2]).

[AB]

[ABP]

LABS]

[AH]

[AS]
[Be]
[B]

[BT]

[C]

[G]

[Gi]
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