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DOUBLE VALUED REFLECTION IN THE COMPLEX PLANE

by S.M. WEBSTER!)

INTRODUCTION

Single valued global reflection in straight lines and circles in the com-
plex plane, introduced into function theory and developed mainly by
H.A. Schwarz, has been used to great effect. Local reflection in real analytic
curves as given by Schwarz and Caratheodory also plays a very important
role. To many such curves one can associate global reflections, which are
however multiple valued. While Caratheodory, for example, was certainly
aware of this for the ellipse, the systematic theory of multiple valued
reflection in one complex dimension seems to have gone undeveloped
until now.

In this paper we consider the simplest curves y in the complex plane C
which are invariant under a double valued reflection. These include the
conics, which are considered in section 2, and certain cubic and quartic
curves given in section 1. We then characterize the situation intrinsically in
section 3. The data consists of a pair {1, T,} of holomorphic involu-
tions on the complexification I' of y, with T, = pt,p, where p is the
anti-holomorphic involution of I fixing y. Actually, double valued reflections
were first studied in several complex variables, in the context of non-
degenerate complex tangents [8]. The importance of studying the dynamics
of the reversible map ¢ = 1,7, was brought out in [8]. Some of the simpler
results of [8] are used here to classify involution pairs when I is the Riemann
sphere. As an application we show how some of the classically known Riemann
maps, in somewhat different form, follow systematically from our theory.

We then go on to consider involutions on a one dimensional complex
torus in sections 5 and 6. This is mostly classical in nature, although the
realization by explicit algebraic equations of the kind needed here does not
seem to be in the literature. In the final section we consider a special case

1Y Partially supported by NSF grants DMS-9201966 and DMS-9504452.



26 S. M. WEBSTER

involving a rectangular lattice. We give the Riemann map for the domain
bounded by one branch of the associated real quartic (elliptic) curve in
terms of a Weierstrass sigma quotient and the £7-function.

1. DOUBLE VALUED REFLECTION

To place our work in context, we first consider, somewhat informally,
the general concept of an anti-holomorphic involutive correspondence, or
multiple valued reflection, on a complex manifold %. This is an assignment
z— Q,, of a complex subvariety Q, C % to each point z € %, such that

(1.1) weQ,ezeQ,.

The variety Q. depends antiholomorphically on the point z in a way
which can be made precise. The “fixed point set” is the set

(1.2) y={ze %|zeQ,}.

Such a correspondence is double valued if each Q, is generically zero
dimensional and contains two points. Starting from a generic point
Zo € %, we have Q. ={z:,z{}. Choosing z;, we get Q. = {z¢,22},
Q., = {z1,z3}, ... Thus we generate a sequence

(1.3) 202122230,

with z,, and z,x, locally determined and depending holomorphically, res-
pectively, antiholomorphically, on z,. If we choose z{, then Q. = {z0,25},
Q4 ={z1,23}, ..., and we generate a similar sequence

(1.4) ZozZ Pz,

A basic problem of the theory is to understand the dynamics of this
process. We shall make the foregoing more precise, but only in the case
where % 1is an open subset of the complex plane.

Let r(z, ) be holomorphic on % X % where

(1.5) wcC, %=1{z|lze %},
which satisfies

(1.6) rop=r, p(z0)=(Qz).
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We set

(1.7 I={(z,e%x %|rzt) =0},
(1.8) y={ze #|r(z,z) =0},
(1.9) O, =1{ze %|r(z,w) =0}.

By (1.6) r(z,z) is real on #, and vy is a real analytic curve. I', the
complexification of v, is invariant under the anti-holomorphic involution p,
which has T n {{ = z} = v as fixed-point set. We denote the projections,
restricted to I', by

(1.10) ni(z,8) =2, 12(2,0) =8, ma =711 p.

The multiple valued reflection z — Q, on % is derived from the single
valued reflection p on I' by

o @)= (@)~ mi(p(ny () = 0.

If zoevy and r.(zo,29) # 0, then the holomorphic implicit function
theorem gives a unique w near z,, depending anti-holomorphically on z
near z,, and satisfying r(z, w) = 0. The map z — w is the local reflection
in v in the form emphasized by Caratheodory [1].We are merely considering
this from a more global point of view.

DEFINITION. The real curve vy admits double valued reflection, if the two
holomorphic maps n;: I = %, n,: I’ = 4 are twofold branched coverings.

(In case I' has singularities, we may replace it by its Riemann surface in
this definition.)

The maps which interchange the fibers of the maps =; are denoted
by t;:I'=T1,i=1,2,

(1.11) nctu=n,0)=id,i=1,2;1,0cp=pcT.

They are holomorphic maps which don’t commute in general. Their
commutator is 62,

(1.12) 6C=7T;C15.

The map o© is reversible, i.e. conjugate to its inverse via an involution:
6 l=1,7,=1,071;.

We can now explain the sequences (1.3) and (1.4) more precisely in terms
of ¢. From

r(zo,21) = r(z,,21) = r(22,23) =0,
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we have 1,(z¢,21) = (22, 21), and

6(20,21) = 71(22,21) = (22, 23) .

Hence, the map z, z, is the first component of (z¢,2z:1) 6 (20, 21).
Thus, we are led to studying the iterates o* of a reversible holomorphic
map ¢ on a Riemann surface I'.

In this paper we shall concentrate on the algebraic case. Thus, we
assume % = C, and take r(z,{) to be a holomorphic polynomial of two
complex variables. For a double valued reflection we must have

(1.13) deg,r = deg,r = 2, degr < 4.

The condition is thus very restrictive. In fact, one can give give a complete
classification. We write

(1.14) r(z,z) = by + b127 + b,z22> + 2Re(apz + a,2* + a,2%z2) ,

where the b’s are real, the a’s complex, constants. The form of r is invariant
under linear transformation z+ cz + d. The form of the equation r =0
is also invariant under inversion

(1.15) z—z - Lr(z,2)~ (z2)%r(z" L, 270,

and hence, under all Moebius transformations. (1.15) results in the change
of coefficients

(1.16) (bo, b1, ba5a0,a1,a,) (b, by, bo; ay,0a,,a) .

The family of curves r = 0 includes the conics, the lemniscates (inversions
of hyperbolas), cuspidal cubics (inversions of parabolas), as well as certain
elliptic curves.

If we assume that y is non-empty, then a translation results in b, = 0.
An inversion then results in b, = 0. We assume that degr = 3, so that
a, # 0 (otherwise, we have a conic, which case we shall treat in the next
section). If both by = 0 and a, = 0, we can still invert and reduce y to a
conic. Thus, we assume that either b, # 0, or ao # 0. The translation
zZ— z + c results in

a1|—>a1+c_‘a2,

so that we can make a; =0 by a unique choice of ¢. Now we can make
the changes

7= cz, reAnA=A#0,c#0,
which result in

a, — )\‘ngaz .
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We make @, = 1 and then restrict to ¢ = ¢, Ac3 = 1. If by # 0, we can
make b, = 1, which gives the normal form, under the Moebius group,

(1.17) r=14 bzz + 2Re(az +z%?2),beR,aeC.
If b, = 0, we have
a,— Acay = ¢ 2ay .

We make | ao| = 1, after which we must restrict to ¢ = =1, A = F L.
The normal form is

(1.18) r=bzZ + 2Re(az + z%2),|a|l=1,b>0.

In summary we have proved the following.

PROPOSITION 1.1. Suppose that the (non-empty) real algebraic curve
v C C admits double valued reflection. Then, under Moebius transformation
vy is equivalent to a conic section, or to a curve =0, where r s
given by either (1.17) or (1.18).

A different normal form will appear later from the intrinsic point of view.

We note that if deg,r = 1, then we have a circle, and the above process
reduces to transforming it to a straight line. These are the cases of global single
valued reflection.

2. CONIC SECTIONS

In this section we shall describe the relevant geometry of real quadratic
curves in the complex plane. This should give a clearer idea of the possible
dynamics in (1.3) and (1.4). The description is only ‘“local” in that it
depends on making certain branch cuts, so that the double valued reflection
falls into two single valued reflections. In the next section we shall give a
more coherent treatment, essentially by passing to a two-sheeted Riemann
surface, namely I', on which the double valued reflection becomes a single
valued one, namely p.

The conic with foci + a,a > 0, and parameter b > 0 is given by
(2.1) lz+a|l+e|lz—a|=be2=1.

This is an ellipse if € = + 1, b > 2a, and one branch of a hyperbola
if € = —1, b <2a. The other branch is gotten by replacing » with — b.
Squaring and simplifying twice gives the equation
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(2.2) r(z,z)=Bzz — A(z*+2z>) -1 =0,
where

4a? 4(p2 — 2
2.3) A a B— (b 2a),

b%(b? — 4a?) b%(b? — 4a?)
44

(2.4) = —  p? = 4 .

B? — 442 B —2A

(2.3) shows that (2.1) is an ellipse when A > 0 and a hyperbola when
A < 0. (2.4) shows that B — 2A4 is always positive, and that 4, B + 2A4,
and B? — 4A? all have the same sign. Conversely, if (2.2) represents a conic
with foci on the x-axis (z = x + iy), then we must have B — 24 > 0. It is
an ellipse when B + 24 > 0, hyperbola when B + 24 < 0, with vertices
at +a,,

(2.5) a, =B~ 2A .

The complexified conic I" is given by ({ = w)
(2.6) r(z,w) =Bzw — A(z?+w?) - 1=0.

For each fixed z we get two values of w, except when the discriminant
2.7 A =(B?*-4A4%)z> - 44

vanishes, i.e. when z = =+ a is a focus. If we cut the z-plane from one focus
to the other along a segment on the Riemann sphere P;, the Riemann
surface 7,:I" — P, falls into two sheets and the double valued reflection
splits into two single valued ones, which we denote by p.,p_. They are
most easily visualized via the sine transform

2.8) z=asint =a(sint cosht” + icost’sinht”),t =1t + it" .

For the ellipse we make the cut from + a to + o along the positive real
axis and from — oo to — @ along the negative real axis. The remaining open
set is the biholomorphic image of the strip |#'| < m/2 under (2.8). For
c¢” > 0, the pair of segments t”" = + ¢’ are transformed into one confocal
ellipse, denoted E..., while for | c’| < /2, the vertical line #' = ¢’ is mapped
to one branch H.. of a confocal hyperbola. For

B+ 2A4
4A

b

(2.9) cy = cosh~! (ﬂ) = cosh ~!
a
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E . 1is our original ellipse. It follows that in the f-coordinate the above
mentioned reflections p, are given by

(2.10) p.(t,t")=(t, £2c) —1t"),
while the first component of ¢ is given by
(2.11) p_op.(t,t")=(t,t" —4cy).

Note that these maps preserve each confocal hyperbola branch, while
~ permuting the confocal ellipses. By successive reflections in ¢ = ¢’ and
t" = —cy, a suitable analytic function defined inside the original ellipse
can be extended to a larger and larger domain, eventually to the entire
cut z-plane.

Note that by reflecting the segment ¢ = ¢, in the segment ¢ = — ¢/,
and vice-versa, we see that to each point of E.. there is a unique point
21(z) € E3p (lying on the same confocal hyperbola), with r(z,z:(z)) = 0.
These points z; sweep out the first “self reflection” of the original ellipse.

For the hyperbola we cut the z-plane along the finite segment from — a
to + a on the real axis. We set

. a, . 4A
(2.12) co=sin"!|—] =sin~! e
a B+ 2A

Then (2.8) maps the lines " = ¢;, and ¢’ = n — ¢{, onto H, and the
line t" = n/2 two-to-one onto [a, + o). The two local single valued reflec-
tions are now given by

(2.13) po(t) = QReo—t,t"),p_ (1) = Q(n—cy) —t',t"),
in which we may restrict to #”” > 0, and
(2.14) p_opi(®)={"+2n—4cy, t").

By the 2n-periodicity of the sine function, these maps are single valued
on the cut z-plane. They preserve each confocal ellipse and permute the
branches of the confocal hyperbolas.

We can easily compute the maps t; for conics. If (z',w’) = 1,(z, W),

then z" =z, and r(z, w’) = 0, r(z, w) = 0. Substracting these two equa-
tions gives

(2.15) T1(z, W) = (z, BA- 1z —w).

Similarly,

(2.16) To(z, w) = (=2+ BA-"'w, w),
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and
(2.17) 0(z,v_v)=(—z+BA‘1v_v,—BA‘lz—l—(BZA—Z—l)v_v).

It is only the restrictions of these maps to r(z, w) = 0 which has intrinsic
meaning. We have proved the following.

PROPOSITION 2.1. a) For the ellipse (2.1), € = + 1, let the z-plane be
cut along the semi-infinite segments (— o, —al and [+ a, + ©) of the real
axis. Then the z-component of ¢ becomes single valued and preserves each
confocal hyperbola branch while permuting the confocal ellipses. It is
conjugate, via the sine transform (2.8), to the translation map (2.11) of the
infinite strip. b) For the hyperbola, ¢ = — 1, let the z-plane be cut along
the finite segment [—a, +a] of the real axis. The z-component of ©
becomes single valued and preserves each confocal ellipse while permuting
the confocal hyperbola branches. It is conjugate to the map covered by the
translation map (2.14) on the upper half plane.

The proposition demonstrates a certain vague principle first brought out
in [8]: elliptic geometry leads to hyperbolic dynamics, while hyperbolic
geometry leads to elliptic dynamics.

Finally, we consider a parabola with focus at z = 0, vertex at z = a/2, and
directrix line Rez = a > 0,

a— Rez=|z]|.

Simplifying as before, we get
(2.18) r(z, wy=(z—-w)?—4da(z+w) +4a*>=0,
with discriminant A = 8az. Proceeding as before we find
2.19) t,(z,w) = (2,22 — W+ 4a), 1,(z, w) = (— 2+ 2w + 4a, w) ,
and
(2.20) c(z,w)=(—z+2w+4da, —2z+ 3w+ 12a) .

Again these maps must be restricted to the curve (2.18).

The squaring map z = 2 plays the role analogous to the sine transform
above. We may cut the z-plane from 0 to + oo along the real axis, and consider

the reflections in ¢’ = }fa/2, t" = —)/a/2, t"” > 0. The parabolic nature
of the dynamics becomes clear.
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3. THE INTRINSIC THEORY: GENUS ZERO

From the intrinsic point of view we start with a pair of holomorphic
involutions t,:T =T, i= 1,2, on an abstract Riemann surface I'. The
quotient spaces I'/1; = I'; have natural analytic structures [4], and T, is the
covering involution for the branched covering n;: I' = I';. If

(3.1) Ty =PT1P

for an anti-holomorphic involution p on I, then there exists an anti-
biholomorphic map 0:T, — I, with pom, =m,op. We are mainly con-
cerned with the case I'; = I', ¢ P, although one could study real analytic
curves on an arbitrary Riemann surface I';. If T' is compact, and I'; = P,
then I' is hyperelliptic. The existence of the two functionally independent
2-fold branched coverings =;: T = P, forces I' to be either an elliptic or
rational curve [4]. We shall restrict to these two cases, in this paper.

In the genus zero case, I' = P, which we consider in this section, the
holomorphic involutions are fractional linear maps. A single one tT(¢) can
be normalized so that its fixed points are 7 = 0, oo, and hence has the
form t(#) = — 7. The theory of a pair of such involutions is still elementary,
but somewhat involved, so we shall refer to [8] for some details.

For a pair of holomorphic involutions 1, T,, let the fixed-point sets be
(32) FP(Ti):{thi}! i:132~

If 7, and 7, have the same fixed-point sets, they are equal. They have a
single common fixed point in the parabolic case. We first consider the general

case in which the four points {p,, q,, p», ¢»} are all distinct. We may form
their cross ratio,

(p1—p2) (g1 — q2)

(3.3) K = .
(P1— q2) (g1 — p2)

Interchanging 1, and t,, or p; with g;, or p, with g, results in (at most)
the change « = 1/x. Thus, the conditions ¥k > 0, Kk < 0, Rex = 0, kK = 1,
for example, are intrinsic conditions on the pair t;. The first two occur
when 1, and 71, are intertwined by an anti-holomorphic involution p.
The significance of the second two conditions is still rather mysterious
at this point.

The maps 71,,7, may be represented in homogeneous coordinates

(§,m) € C? for P, by a pair of linear involutions. As in section 2 of [8]
they may chosen as follows,
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Tl(ga n) = (7\'11, }\'_1&), TZ(&; Tl) = (7\'—1“3 )\4&),
0(&,ﬂ)=(ui,u_lﬂ), u:}\«z.

In the non-homogeneous coordinate ¢ = /7,

(3.4)

(3.5) L0 =2, nm = L, e = et
t e
Since
(3.6) FP(t;) ={\, = A}, FP(12) = {A-1, —=A"1},
we have
3.7) K = (1_”)2.
1 +p

An anti-holomorphic involution p of P, is given by reflection in some
circle, which is anti-linear in homogeneous coordinates. Thus, lemma 2.2
of [8] applies directly to give the following.

LEMMA 3.1. The normal form for the triple t,,7,,p, With T,p = pTy,
falls into two cases. The =t; are still given by (3.4) or (3.5), while

(3.8) A=2Aa>1, pE,m) =78, p()=1/7,
or
(3.9 AA=1, O<argh<mn/2, p(,n)=(E,1n), pt)=7.

(3.11) is the elliptic case with k¥ > 0. (3.12) is the hyperbolic case, where

K < 0.
Next we consider the problem of realizing the data t; by means of an

analytic curve,
(3.10) z=mn(f), w=m(), m; o1, =7,

This amounts to finding suitable functions m; invariant under t;. We
shall also impose the reality condition

(3.11) T,=m 0p.

In general we can try n; = f + f © 1;, for any analytic or meromorphic
function f. Taking f(¢) = t leads to the “Zhukovsky functions”,

(3.12) z=9(z+5),w=9(r+i),
2 t 2 wit



DOUBLE VALUED REFLEXION 35

where o, p are constants. Computing z2, w2, zw, and eliminating ¢ leads
to the equation

4 1y _ 1 no_ 1\?2
(3.13) — v +—=)zw -4 |— 722+ —w?] = |pn— —| .
afp i pa? B2 U
Ngxt we choose the constants so that (3.11) holds. For the case (3.8) we
take p = apn, o = 1, so that

1 _ 1
(3.14) =+ 2} w1+ 2,
2 t 2 nr

and (3.13) becomes (2.6) with

:M’A:L’B_ZA: 4 )
(1—-n?? (1 —p?)? 1+ p?
Since the last two numbers are positive, we have an ellipse with foci on

the real axis.

For the case (3.9) we choose p = a, and o = A, so that the coefficients of

z? and w? in (3.16) are equal. We get

(3.15) B

A T} A 1
(3.16) z=—|t+ =), w=—-|t+ —),
2 t 2 ui
and equation (2.6) with
4(p+p 4 4(p+p—2
a7y BoWFW 4 g o tetr-2
(b —p)? (b —p)? (n—p)?

It follows that 4 < 0, and B — 24 > 0, since —2 < p + p < 2, by (3.9).
Thus we have a hyperbola with foci on the real axis.

In the parabolic case we may assume that ¢, = ¢, = o, and p, = 1,
p2 = — 1. Then

(3.18) ()= —1t+2, 1,(t)= —-t—-2.
If we take
(3.19) p(t) = —1,

then 1, = pT,p. We can satisfy (3.13) and (3.14) if we take n, = f + f o 1,
where f o p = f. Thus we take f(¢) = 072, o = q,

(3.20) z=20(t-1)2 w=20(+1)2.
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Adding and subtracting to eliminate ¢ gives
(3.21) r(z,w) =(z—w)?2 — 16a(z + w) + 6402 =0,
which is (2.18) with a = 4a.

REMARK. In the above examples we chose the simplest non-trivial
rational functions f(¢), which led us back to the examples of section 2.
Other choices of f would lead to more complicated rational curves.

4. RIEMANN MAPS

The deeper geometric and analytic properties of a simply connected
proper subdomain D C C are brought out in the problem of mapping it
conformally onto the unit disc A, or right half plane H. In this section we
shall indicate by example what role double valued reflection plays in this
problem.

Thus, let the boundary d.D be a branch of a real algebraic curve admitting
double valued reflection. The Riemann map, f: D — A, continues to some
neighborhood of the closure D, and so maps a curve with double valued
reflection to one with single valued reflection. This forces f to possess
additional symmetry properties. Roughly speaking, if f could be continued
globally, then the two reflected points of any point z would have to map
to the single reflected point of f(z). This is decisive in determining an
explicit expression for f.

We first consider the domain D inside the ellipse (2.2). The first map,
z = m,;(¢), in (3.14) takes the annulus 4% = {1 <|¢|< p} onto D, as a
two fold covering

4.1) n,: Ay = D,
branched at the points 1 = + L € A} . We have
(4.2) nol(y) =347 =iV,

where vy, is the fixed point set of p, and y, = 7,(y,) is the fixed point
set of p, = T1P7T1,

(4.3) p(t) = 1/F, pu(t) = u/i.
The Riemann map,

(4.4) ftD—->H, (= f(z),
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will, of course, be as given by H. A. Schwarz [10], [9], except that we choose
to map to the right half plane H: Re( > 0, rather than to the unit disc.
We assume that f maps the vertex —a; to 0, and the vertex +a; to oo.
It follows that A = f o m; will have simple zeros at © '(—a;) and simple
poles at m, "(a;). Since A4 is purely imaginary on the boundary of A%,
we can extend it to successively larger and larger annuli by the two reflections

(4.5) h=pohop, h=pohop,, p)=-C.
It follows by (3.1) that the extended function 4 must satisfy
(4.6) h=hop,op=ho(tpty)op=hoo.

This extended function # must also remain invariant under t; by analytic
continuation of functional relations. Equivalently, /4 is invariant under both
7, and t,. Hence, we seek #4(¢) meromorphic for 0 < |#| < oo, satisfying

hoo(t)=h(ut)=h(),
hot (1) =h(u/t)=h(t),

and having simple zeros at ¢t = —1, —pu, and simple poles at ¢ = + 1,
+ 1, (1> 1).

We set
4.7) r=es, o(s) = h(e’).

Then ¢ is to be doubly periodic with respect to the lattice

(4.8) A={now +nw|n,ne2},
where
4.9) w, =2logp >0, w,=2mi.

It is to have simple zeros at points congruent, mod A, to
(4.10) a, = 2ni, a,=w,;/2,
and simple poles at points congruent to
4.11) by =mi, by=mni+ 0,/2.

Since a; + a; = by + b,, ¢ can be represented as the Weierstrass Sigma
quotient [5], [6]

S(s—a1)S(s —ay)
S(s—b))S(s—b,)’

(4.12) 0(s) = ¢
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where

@13 Se=s I (1—i)exp(i+

weA-{0}
The map 1, is covered by the map
4.14) Ti(8)= -5+ /2.

¢ and ¢ © T, have poles and zeros at the same points, with the same orders.
Hence, @ © T,/¢ = ¢;, where cf = 1, since T, is an involution. Since the
sum of the residues at the two poles of each is zero, one can see, using the
form (4.14), that ¢; = + 1. Hence, ¢ is automatically 7,-invariant. We have
proved the following equivalent of the theorem of Schwarz [10].

THEOREM 4.1. The Riemann map (4.4) of the ellipse D onto the right
half plane H has the form

(4.15) f(z) = o(log(z /22— 1)),
where ¢ is given by (4.12), (4.13).

As another example we consider the conformal map f from the domain D
to the right of the right branch of the hyperbola (2.1) onto the right half
plane H. That this problem is more ‘“unstable” than the previous one
may be seen by making the inversion z 1/z. The hyperbola goes into
the lemniscate

(4.16) Bzz — A(z*> + z?) = z%27?%,

and D goes into one of the bounded domains D which (4.16) bounds. D has
a corner at 0 with angle g,

B-2A4
4.17) tang = |/ ——— .
~B-24

The mapping problem is rather sensitive to the rationality properties
of ¢ relative to w. The two branches of the lemniscate at O lift to different
sheets of the branched covering z = n;(¢), (3.19), the whole curve being
the image of the real ¢-axis.

7, maps ¢t > 0 onto the right branch of the hyperbola, i.e. onto 9D.
The sector

(4.18) S ={0<argt<2a=argu},\ = e
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is mapped 2-to-1 onto D, with the branch point A going to the focus z =2a.
If we commence to extend 4 = f o m; by reflecting in the sides of S o s
we are likely to get a multiple valued map. Hence, we set

(4.19) t = e2es/n s =g, + ISy, 9(s) = h(e*'"),
so that 0 < s, < m is mapped to Séa. The maps ¢ and 1, are covered by
(4.20) 6(s) =5+ 2mi, T,(8) = — s+ mi.

Thus, ¢ is 2mi-periodic, purely imaginary for Im s = 0,7, and
o(— s+ mi) = ¢(s). The function ¢(s) = sin(is) satisfies these conditions.
Thus, [9]

(4.21) f(z) = sin (;—l log[A(zx] 22— D] .
a

If & =§ is rational, then one can avoid the transcendental functions

IS

in (4.21). We set
4.22) t=sP9, 0(s) = h(s?’9) .

Then ¢ reflects across the real axis and has simple zeros at s = * 1
and simple poles at s = 0, . Thus, ¢ (s) = ci(s — s~ 1), and we get

(4.23) f(@) =cil(Mzx) 22-1))9? — (AMz =] 22— 1))P/9] .

All the above maps are, of course, well known. The point here is that they
follow naturally from our theory, as also does the Riemann map of the
inside of a parabola using (3.20). One might hope to “explain” all such
explicit maps within the current framework.

In place of the Riemann map we may consider the Green’s function. We
briefly consider the case of the ellipse D. Let G(I, to) be the Green’s func-
tion for A}, with pole at ¢z, . We have

(4.24) G(t,(2), T (%) = G(1, 1) ,

since T, is an involutive automorphism of A . It follows that

1

4.25) G(t, to) = = [G(t, to) + G(t,7,(1))]

— DN

=~ [G(t, 10) + G(x1(D), 10)]

[\
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must descend to the Green’s function of E°. For the annulus G may be
constructed, for example, by the method of electrostatic images, using the
reflections (4.3) in the boundary circles of A% (see [2], [7]).

The lemniscate (4.16) may serve as a useful model for domains with
corners.

5. INVOLUTIONS ON A TORUS

We return to the situation at the beginning of section 3, but with a
non-simply connected Riemann surface I'. Let n:T =T be the universal
covering space, and A C Aut(f) be the group of covering transformations.
We consider liftings

(5.1) T,p:T—-T
of t;, p. For each vy € A there is a y; € A with
(5.2) POY=Y10p,

and similarly for t;. Also

(5.3) | T, pre .

In this section we take I’ = C, and A a group of translations, which we
shall also identify with an additive subgroup of (C, +) of rank one or two
over Z. We shall determine what restrictions on A are forced if I' is the
complexification of a real curve admitting double valued reflection. We are,
of course, interested in the corresponding objects on I' = C/A.

We drop the tilde notation and let ¢ € C. In view of (5.3), we consider

(5.4) (t) =gt +c,el=1,(e,+ DeieAi=1,2;
(55) G(t):TITz(t)=8182Z+C] +81C2;
(5.6) p(t) =at + b,ad.=1,b+abeA .

In case T, = pT;p, We have
(57) 81=82,C2=a(815+51)+b.

The constants c¢;, b are only determined mod A. For each t;, either
g; = — 1 and ¢; € C can be arbitrary, or ¢, = + 1 and 2¢; € A.
We set
(5.8) a=e2¢ 0<a<m,p.(t) = at,
I, = {rei®| L e R} = {t|Re(ie~*t) = 0} .
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p, is the reflection the line /,. If we apply the condition (3.3) we get

(5.9) Pa(A) = A .
Thus, A must be symmetric about /,. Clearly, b + ab e [y, so (5.6) gives
(5.10) b+ab=woeANnl,

and b lies on the line perpendicular to /, and passing through %0)0. This
line has the equation

(5.11) 2Re(e~(t — wy/2)) = e “(t+ at — ) =0 .

If A satisfies (5.9) for some angle o, we choose wy € A n [,, for example
o = 0. We then choose b satisfying (5.10), and construct p. If we replace b
by b+ 0w, 0s € A N[, then w, gets replaced by w, + 2w 4. Hence, there
are at most two inequivalent choices for w, on /.

A point ¢, € C represents a fixed-point of p if and only if it lies on a
line of the form

(5.12) t—at—-b=wjeA.

Since ¢ — at is orthogonal to e’®, ®/, must lie on the line perpendicular to
l, and passing through — %(Do,

(5.13) I+ at+w,=0.

If there is an w, € A on this line, then the fixed-point set FP(p) of p
is non-empty, and is given by (5.12) for all such w;. (5.12) is the line
parallel to /, and passing through %(b+ ®,); hence, there are at most two
inequivalent choices of .

First consider the very simple case

(5.14) A ={2nkilkeZ)}.

From (5.9) we can only have a = 0, or o = n/2. In the first case, /, is
the real axis, ¢ = 1, and wo =0, b = ib, is purely imaginary. We may
take wy = 2ki, k = 1, 2; thus

(5.15) p(t) = [+ iby, FP(p) ={Im t = by/2}y U {Im t = b,/2 + m} .

In the second case /, is the imaginary axis, @ = — 1, and we may take
either g = 0, or wy = 2mi. Then, either b = bieR, or b=5pH,+in. In
the first case we have w; = 0, while in the second case there is no Wy .
Thus,

(5.16) p(t) = — ¢ + by, FP(p) = {Ret = b,/2} .
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Of course, I' = C*, and the covering projection m:C — 1T 1is just
C=m(t) =e!. The first choice of p gives reflection in the two rays
arg{ = %bz, %bz + m. The second gives reflection in the circle | (| = e?:.
We must still make a choice of T, as in (5.4), and find a “minimal”
function F which is t,-invariant. Relative to { we have 71,({) = n?®1,
w=et,Forg, = -1, wetake F=f+ fot, =0+ pl- 1. Forg, = +1,
¢, =mi, we take F=f+fot, = —_(? We have already used these in
the case of conics.

Next we consider a rank two lattice (4.8), and after a coordinate change
if necessary, choose a normalized basis ®; = 1, ®, = o,

1
(5.17) Im o > 0, —£<Re(o< , lo|=1,

N | =

lo|=1=Rew >0.

We consider those A which satisfy the reality condition (5.9) [3], [5].
Since a = p,(1) € A, we have a = n; + n,®, and

l=aa=n>+n>|w|>+2nnReo
(5.18) >ni+n;—2|nnReo|

=
2]711‘24—|n2|2—|n1n2|>'n1n2|.

There are two cases. If nyn, =0, then either a= +1, or ||

=1 and a = + . Otherwise, |n;|=|n,| =1, and we have the equa-
lities in (5.18). Equality in all three places implies |w| =1, Re w = -;—,
nin, <0, and |n;| =|n,|. Hence, n,= —n; = =1, and a = + (0 — 1).

lo|=]w —1|=1 implies that o = (1 +1/3i)/2. If a = + 1, then both
®,®, and hence 2Rew are in A. It follows that either Rew = 0, or
Rew = %

In summary we have the following classical result.

LEMMA 5.1. Suppose that C/A admits the reflection (5.8). Then the
possibilities for A and a are

I. Reo=0,|o|>1,a= x1;

2. Reow=;,|lo|>1,a=+1;

3. |lo|=1,0<Rew<j3,a=+o;

4. w=ia= +1, +i;

5. o=0+)3)/2,a= 1, to, +(o—1).
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In particular, it follows that J(w), the elliptic modular function [5], is
real at ®. In each case one has to determine the possible reflections p,
determine their fixed-point sets, and add a suitable 1;.

We consider the rectangular case (1) of the lemma, for application in
the next section. Let

(5.19) w;=1,o,=0=Ii0",n”" >1

be a normalized basis. For a = 1, /, is the real axis, wg =0, or wo = 1,
b=iby,, or b=3;+ib;, 0<by<w®”. In the first case @, =0, or
®, = o, while there is no ®} in the second case. Thus, we have

(5.20) p()=t+ib,, FP(p)={Imt=>by/2} u{Imt= (b, +®")/2}.

For a = —1,/, is the imaginary axis, wo=0 or wy=®, b = b,
or b=>b,+in"/2, 0< b, <1. w;j=0,1 in the first case, and there is
no m, in the second case. We have

(5.21) p(t)= —t+ by, FP(p) ={Ret =b;/2} U{Ret = (b, +1)/2}.
If e, = — 1, then
(522) FP(TI) = {C1/2, (Cl + (01)/2, (Cl + (Dz)/z, (C1 + w; + 0)2)/2} .

If we have g, = + 1, 2¢; € A, c; ¢ A, then 1, has no fixed points. T, is
then the deck transformation of an unbranched covering of another torus.

6. EMBEDDING OF TORI

We turn to the problem of concretely realizing the data of the previous
section in the main case. Given a complex torus I' = C/A, with a pair of
holomorphic involutions induced by

(6.1) Ti(t)=—-t+c¢,i=1,2,

we look for a pair of two-fold branched coverings

(6.2) ni:F—->P,mot,=mn;,i=1,2.
The problem is immediately solved by taking

(6.3) 2i=ni(t)= P(t—-c¢/2),i=1,2,
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where
(6.4) Pt =~ + ) (——1—- - —1—)
12 wen-(op \(1—®)?2 2
i1s the Weierstrass #-function [5], [6]. We set
(6.5) n (1) = (m: (1), m2(2)) -
If n(syg) = n(ty), Sog # ty, then so = —fy + ¢;, mod A. Thus n will be

one-to-one, as a map into P; x P, if we assume
(6.6) c,—Ci A .

To represent m as a map into P, with homogeneous coordinates
C,z1=0,/C0,2,=105/Cy, we again use the sigma function (4.13). We
have [6]

(6.7) Z(t) = —0’logS(t) = — s, A=S()S"(t) - S'(1)?.

S(1)*
Since A(0) = — S’(0)? # 0, we may write 7 as

Co= S(t—c1/2)?>S(t—cy/2)?
(6.8) Ci=A({t—c/2)S(t—cy/2)2
(o= A(t—cy/2)S(t—c1/2)?

The branch points of the map m; are given by (5.22), with w; = 1,
and w, = w. By (6.6) the curve m has no finite singular points. Since m;(¢)
has a pole of order two at ¢ = ¢;/2, i = 1, 2; the plane curve has two cusps
on the line at o corresponding to these two parameter values. Such curves
are considered in [3], for example.

To find the equation G(z,,z,) = 0 of this plane curve, we change the
variable, r = ¢t — ¢,/2, so that G(Z(t), Z(t + ¢)) = 0, where
(6.9) c=(c;—c¢c)/2.
We set
x=Z({t+c),p= Z),p = Z'(),
6.10) ( /)p ,()/{9 (7)
B=Z)B = 7).

The addition theorem and differential equation satisfied by # [6] give

x+p+[3=i(p’—g’
-

2
) , p'2=4p* — g,p — g3
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We rewrite these as

(p,_ B’)Z :A(xsp):plz = B(p) ’

and eliminate p’. This gives

(6.11)  F(x,p)=F(x,p,B,B)=A-B-p"?)?-48"”B=0.

Note that A — B is quadratic in p, and B'? = B(B). Since F is an even
function of B, and # is an even function, changing ¢ to — ¢ shows that
we also have F(p, x) = 0. Since the coefficient of x2 in F is 16(p — B)?2,
we must have

F(x,p) = G(x,p) (p —B)*.
Expanding in powers of p — B gives
F(x,p)=0,0,F(x,p) =0,

G(x,p) = (1/2)8,F(x,B) + (1/6)8,F(x, B) (p — B)

(6.12) )
+ (1/24)8F(x, B) (p — B)? .

After some computation we get

G(z1,22) = (21 = B)* (22— B)* + Bi(z1 — B) (22— B)

(6.13)

+ Ba(z1+ 2, —2B) + B3,
where
(6.14) Bi= —(12B> - &)/2, B, = - B(B),

Bs = (12B2 — g,)> - 3BB(B) .
Next we consider the reality condition (3.11). From (5.9) and (6.4) we get

(6.15) 2(t) = a? P (ai) .

By definition g, = 60G,, g; = 140G5, where [6]

1
O

It follows from (5.9) that G, = a*cGy, so that
(6.16) g2 =a'g,, g3 =a‘g; .

By (5.7) we have ¢ = (¢, —ac, — b + ab)/2, so that a¢ = — c. Hence,
(6.17) BZGZB,Bl =a4l31,[§2=a6[32,[§3=a8[33.
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To satisfy (3.11) we redefine

(6.18) n;(t) =aZ(t—-ci/2),
and set

(6.19) Go(z1,22) = a*G(z,/a,z,/a) ,
so that

(6.20) Go(z1,22) = Go(2,721) -

In summary we have

PROPOSITION 6.1. Let A =C/A have the holomorphic involu-
tions (6.1) intertwined by the anti-holomorphic involution (5.6). Then
(I', p, t;) is realized by the map (6.5), (6.18) onto the quartic curve
Go(z1,22) =0 given by (6.13), (6.14), (6.19). If the fixed-point set of p is
non-empty, then this is the complexification of the real curve Gy(z,z) = 0.

7. A RECTANGULAR LATTICE

We consider the special case of A, p,T; as given in (5.19), (5.6), (6.1),
with

(7.1) a=+1,b=0,co=c,=c]+ic{,c=icy.

From (6.16), (6.15) it follows that g,, g3, B are real, and B’ is purely ima-
ginary. Thus, the coefficients B;,B,,B; of G(zi,z,) are real. With
t=1t"+it", we have

(7.2) FP(p)={t"=0}u{t’ =w"/2},
(7.3) {7 =0 ={t"=c}, n{t" =" /2}={t"=¢c/+0"/2} .

Let us assume that 0 < ¢;" < ®”/2. Then the torus A is divided into
four annuli

A/ ={0<t”"<ci}, Ay ={c/'<t"<w0"/2},
As={0"/2<t"<c{+0"/2}, As={c] +0"/2<t"<w"}.
The fixed points of t; are, by (5.22),

(7.4) c1/2,(c;+1)/2 € Ay,
(7.5) (cir+in"")/2,(c;+1+in")/2 € A;.
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For the map z = m;(#) (6.3), we get
(76) Dj:ﬂ:l(Aj), CjzaDj, 1<]<4

Then the z-plane is the disjoint union of D,, D, = D,, D3, Cy, and Cs.
7, maps each of A4, and A, biholomorphically onto D,, which is topo-
logically an annulus with boundary C, = C; — C5. w; also gives twofold
branched coverings of A4; onto D;, i = 1,3, branched at (7.4), (7.5). In
particular, D, is unbounded, containing 7;(¢;/2) = oo in its interior, and C|
and C; are symmetric with respect to the real axis. m;(#) is real on the two
horizontal lines through (7.4) and (7.5). It is also real on the two vertical
lines {¢' = ¢{/2}, {¢t' = (c{ + 1)/2}, which intersect A4, in the points

1 1
7.7 a,=-c¢,a,=—c; +icy,
( ) 1 5 1 2 D) 1 1
and
1 1 )
(7.8) b1+1:£(c{+1), b2=-2—(c{+1)+zc{’.

ni(a;) =m(a;)) eC;n R and 7 (b; +1) =7m,(b,) € C, "R are the
“vertices” of C;.

The “annular” domain D, has the same conformal type as A4,, which
is determined by %o)" — c¢{ . This depends on both A and ;.

Finally we consider the Riemann map, { = f(z), of D, onto the right
half plane H, which takes m;(a;) to zero and n;(b; + 1) to . We extend
S omi(¢) to the entire #-plane by reflection in the lines {#”” = 0} and

{t" =c{'}. This gives a doubly periodic meromorphic function ¢ with
period module

(7.9) A={n-1+n,-2¢"i|n,neZ}.

¢ has the representation in terms of the sigma function § relative to /A\,
S(t—a)8(t - ay)

S(=b)S(t~by)

The invariance (f) o1, = (f) follows as in section 4, since 1,(a,) = a,,
T1(b1) = by. Since z = Z(t — ¢,/2), we have

(7.10) 0 =

THEOREM 7.1. Let A be the lattice with periods (5.19), and let
D, CP, be the simply connected domain above. The Riemann map,
C=f(z), of D, onto the right half {-plane H is given by

@i 1=0(P@) + /),
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where (f) is the sigma quotient (7.10) relative to the lattice (7.9), and
Z#~1(z) is the elliptic integral of the first kind, in Weierstrass normal form,
relative to A.

REMARK. We have seen that double valued reflection places a severe
restriction on a real algebraic curve in the complex plane. In fact our results
should provide the basis for a complete and explicit classification. We have
also seen how double valued reflection may be used to explicitly determine
Riemann maps. Apparently, all known such examples can be so explained. The
result in the above theorem seems to be new. It would be interesting to work
out more examples in the genus one case.

REFERENCES

[1] CARATHEODORY, C. Conformal Representation. Cambridge University Press
(1952).

[2] Courant, R. and D. HILBERT. Methods of Mathematical Physics, vol. 1.
Interscience, New York (1953).

[31 Du VaL, P. Elliptic Functions and Elliptic Curves. Cambridge University Press
(1973).

[4] Farkas, H. and 1. KrRA. Riemann Surfaces. Springer-Verlag (1980).

[51 Frickg, R. Elliptische Functionen. B.G. Teubner, Leipzig und Berlin (1916).

[6] Hurwitz, A. and R. COURANT. Functionentheorie. Springer-Verlag (1964).

[71 KELLOGG, O.D. Foundations of Potential Theory. Dover Publications,
New York (1954).

[8] MOSER, J.K. and S.M. WEBSTER. Normal forms for real surfaces in C? near
complex tangents and hyperbolic surface transformations. Acta Math. 150
(1983), 255-296.

[91 NEeHARI, Z. Conformal Mapping. Dover Publications, New York (1975).

[10] ScHwaRrz, H.A. Gesammelte Mathematische Abhandlungen, vol. 1I. Berlin
(1890).

(Recu le 15 mai 1995)

S. M. Webster

University of Chicago
Department of Mathematics
5734 University Ave.
Chicago, IL 60637

U.S.A.



	DOUBLE VALUED REFLECTION IN THE COMPLEX PLANE
	Introduction
	1. Double valued reflection
	2. Conic sections
	3. The intrinsic theory: genus zero
	4. Riemann maps
	5. INVOLUTIONS ON A TORUS
	6. Embedding of tori
	7. A RECTANGULAR LATTICE
	...


