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DEFINITION 3. We say that H/(M; C) vanishes uniformly if for all r > 0,
there is an R(r) > r such that for all m € M,

(2.11) Im (K (Bg(y(m); C) — H (B,(m);C)) = 0.

PROPOSITION 3 (Pansu [25]). Consider a Riemannian manifold M of
bounded geometry such that for some k > 0, H/(M; C) vanishes uniformly
for 1 <j<k. Then within the class of such manifolds,

1. ﬁfz)(M) and H‘(’2)(M) are coarse quasi-isometry invariants for 0 < p < k.

2. Ker(Hy ' (M) — H*'(M;0)) and Ker(HS'(M) — HY'(M;0)) are
coarse quasi-isometry invariants.

3. GENERAL PROPERTIES OF L2?-COHOMOLOGY

In this section we give some general results about the L?-cohomology of
complete Riemannian manifolds. First, we give a useful sufficient condition
for the reduced L?-cohomology to be nonzero.

PROPOSITION 4. For all p, Im (H’g(M; C) — H (M, C)) injects into
Hep)(M).

Proof. Suppose that w is a smooth compactly-supported closed p-form
which represents a nonzero class in H?(M;C). By Poincaré duality, there
is a smooth compactly-supported closed (dim(M) — p)-form p such that
[ W ANp#0.

As w 1is compactly-supported, it is square-integrable and so represents an
element [w] of ﬁfz)(M). Suppose that [w] = 0. Then there is a sequence
{ni}2, in Q7~Y(M) such that w = lim; .. dn;, where the limit is in an
L?-sense. It follows that

—00

(3.1) /w/\p: lim dn,-/\p:_lim/d(m/\p)zo,
M M e M

which is a contradiction. Thus [w] #0. [
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COROLLARY 2. Let N* be a compact manifold-with-boundary with
nonzero signature. Then if M is any complete Riemannian manifold which is

diffeomorphic to int(N), ﬁ?g(M) # 0.

Proof. By definition, the signature of N is the signature of the intersection
form on

(3.2) Im (H*@,0N;C) — H*(WV; C)) = Im (H(M; C) — H*(M; 0)) .

If the signature of N is nonzero then Im (ka(M ;C) — HZk(M ; C)) must be
nonzero. The corollary follows from Proposition 4. [

EXAMPLE. Let N be CP? with a small 4-ball removed. Then N satisfies
the hypothesis of Corollary 2.

We now show that the middle-dimensional reduced L?-cohomology is a
conformal invariant of M.

PROPOSITION 5. If M?* is even-dimensional then Ker(/\y) is conformally-
invariant.

Proof. Suppose that g and e?g are conformally equivalent Riemannian
metrics on M, with ¢ € C*°(M). We use the fact that the action of the Hodge
duality operator * on A¥(M) is independent of ¢. If w is a k-form on M,
its L*-norm [, w A *w is independent of ¢. Thus the Hilbert space A*(M)
is independent of ¢. Furthermore,

(3.3) Ker(A\r) = {w € A¥M) : dw = d*w = 0}
= {w e AM) : dw = £ xd x (w) = 0}
(3.4) = {we AWM) :dw=d*(w)=0}

is independent of ¢. [

EXAMPLE. Take M = H?. Then M is conformally equivalent to a
Euclidean disk D. The harmonic square-integrable 1-forms on D are of the
form fi(x,y)dx + fo(x,y)dy, where f; and f, are square-integrable harmonic
functions on D. There is clearly an infinite number of such functions,

and so dim(ﬁ(lz)(Hz)) = o0o. The same argument applies to H%*, to give
dim (i, (H2)) = oo.

In the case of functions, one has a good control of when zero is in the
spectrum of the Laplacian.
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LEMMA 4. Ker(Ag) # 0 if and only if vol(M) < oo.

Proof. If vol(M) < oo then the constant functions on M are square-
integrable and harmonic. Conversely, if f € Ker(/A\o) then by Lemma 2, f is
constant. If f is nonzero and square-integrable then vol(M) < 0.

DEFINITION 4. M is open at infinity if there is a constant C > 0 such

that for all domains D in M with smooth compact closure, arf;((‘?)l)) ) >C.

EXAMPLES.

1. R" is not open at infinity, as can be seen by taking large balls for D.
2. H" is open at infinity.

PROPOSITION 6 (Buser [3]). Let M have inﬁnite volume. Suppose that
there is a constant ¢ > 0 such that Ricciy > . Then 0 ¢ o(Ly) if and
only if M is open at infinity.

Proof.
1. Suppose that M is open at infinity. By Cheeger’s inequality,

area(@D))2 0

(3.5) inf (0(Ao)) > inf - ( vol(D)

2. Suppose that M is not open at infinity. The bottom of the spectrum of
Ao is given in terms of Rayleigh quotients by

2
(3.6) inf(a(Ao)) mf fMl 4|
0 Juf*
M
where f ranges over compactly-supported Lipschitz functions on M. We want
to find compactly-supported Lipschitz functions on M of arbitrarily small

Rayleigh quotient. By assumption, for all ¢ > 0O there is a domain D such

that areal((%l)” < ¢. Put

(3.7) N\(OD)={meM:m¢ D and d(m,0D) < 1}.

Define a function f, which approximates the characteristic function of D, by
1 itmeD

(3.8) f(m)=< 1 —d(m,0D) if m € Ni(OD)
0 if m¢ D and m ¢ N{(OD).
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Clearly f o 2 > vol(D). As f has nonzero gradient only in N;(0OD), where

|df| = 1 almost everywhere, we have [, |df |2 = vol(N1(8D)). If D is nice
and round then we expect that

(3.9) vol(N{(8D)) ~ area(dD)

Ll 4fT”
Juf?
The only problem with this argument is that D may not be nice and round,
but may have long thin legs coming out of it, like an octopus. Then (3.9)
may not be valid. The content of [3] is that if this is the case, we can cut the
legs off of D to come up with a new domain for which the above heuristic
argument is valid. We refer to [3] for details. [

and the Rayleigh quotient will be comparable to e.

COROLLARY 3 (Brooks [2]). Let M be a normal covering of a compact
manifold X with covering group T'. Then 0 € o(Xg) on M if and only if T
is amenable.

Proof. If T is finite then 0 € 0(Ao) and I" is amenable. If I" is infinite
then by Proposition 6, 0 € o(4Ag) if and only if M is not open at infinity.
Let § be a finite set of generators of I'. Let G be the Cayley graph of I,
constructed using S. There is a notion of G being open at infinity which
is similar to Definition 4. As M is coarsely quasi-isometric to G, M is not
open at infinity if and only if G is not open at infinity. However, this is one
of the characterizations of amenability of T".  []

We now prove a result about manifolds which, roughly speaking, are at
least as large as Euclidean space.

DEFINITION 5. M is hyperEuclidean if there is a proper distance-
nonincreasing map F : M — RI™M of nonzero degree.

REMARKS.

1. A map is proper if preimages of compact sets are compact. Instead of
requiring that F' be distance-nonincreasing, we could require that F* have a
finite Lipschitz constant. By postcomposing F with a dilatation of RYm®)
the two conditions are equivalent.

2. If M is hyperEuclidean then a compactly-supported modification of M is
also hyperEuclidean.
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3. Examples of hyperEuclidean manifolds are given by simply-connected
nonpositively-curved manifolds M. Namely, fix mp € M and put F =
eXp;y. -

4. There was once a conjecture that all uniformly contractible manifolds are
hyperEuclidean (with a degree-one map to R¥™™)) but this turns out to be
wrong [11]. There is still an open conjecture that a uniformly contractible
manifold of bounded geometry is hyperEuclidean, and in particular, that
the universal cover of an aspherical closed manifold is hyperEuclidean.

PROPOSITION 7 (Gromov [15, p. 238]). If M is hyperEuclidean then
0 € o(A)) for some p.

Proof. Put n = dim(M). First, suppose that »n is even. We will construct a
vector bundle £ with connection on R"” which is topologically nontrivial but
analytically trivial, in a sense which will be made precise. Then assuming that
zero is not in the spectrum of M, we will apply the relative index theorem
to F*E in order to get a contradiction.

Recall that K°(S") = Z @ Z. If £ is a (virtual) vector bundle on S”, the
two Z factors correspond to rk(£) and f o Ch(E), respectively. This means that
for some N > 0, there is a CY-bundle £ on S§* with fsw ch(€) # 0. Fixing
a point oo € §", we can trivialize £ in a neighborhood of oo. Furthermore,
we can put a Hermitian metric and Hermitian connection on &£ so that the
connection 1s flat in a neighborhood of .

Let E be the restriction of £ to R" = 5" —{oo}. Let V be the restriction
of the Hermitian connection on £ to R". Then E is trivialized outside of a
compact set K C R" and V is flat outside of K.

As R" is contractible, there is an isomorphism of Hermitian vector bundles
i:R"x CV — E. Then i*V can be considered to be a u(N)-valued 1-form
w on R". The curvature of w is the u(N)-valued 2-form Q = dw + w?. The
nontriviality of &£ translates to the facts that

1. Q vanishes outside of K and

2. The de Rham cohomology class of the compactly-supported form
Tr (e—z—?,—,-) — N

is a nonzero multiple of the fundamental class [R"] € H(R";R).

In fact, we can take w to have a finite L®-norm | w ||o,. For example,

if n =2, take N =1. Let f € C;°([0,00)) be a nonincreasing function such
that if x € [0, 1] then f(x) = 1. Put w = —i(1 — £(r)) df. Then
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(3.10) Q=dw=if'(rdrNdb.

We have || w [loo= sup,s 22 and [, [Tr (e‘%> - 1} =1.
Returning to the case of general even n, for ¢ > 0, let ®, : R* — R" be
the map ®.(x) = ex. Put w, = ®w and Q. = dw, + w?. Then

| welloo = € ]| @ Jloo and / Tr (e %) - ]
- fle#) w0

We now turn our attention to M. Suppose that 0 ¢ o(4A,) for all p.
Consider the self-adjoint operator d +d* on A*(M). As (d+ d*)* = A\, it
follows that 0 ¢ o(d + d*). In other words, d + d* is L*-invertible. Define
an operator u on A*(M) by saying that if w € AP(M) then

(3.11)

 n—1) pip—1)
(3.12) pw)=1i 7z (1) 7 *x(w).
One can check that p?> =1 and w(d +d*) + (d+d*)pu = 0.
Clearly the operator (d+d*)®Idy, acting on A*(M)®CY, is also invertible.
Consider the u(N)-valued 1-form F*w. on M. As F is distance-nonincreasing,

(3.13) | F*we [loo<|| we loo=€ || w ||oo -

Let e(F*w,.) denote exterior multiplication by F*w,, acting on A*(M)® CV
and let i(F*w.) denote interior multiplication by F*w.. By making ¢ small
enough, the operator e(F*w.) — i(F*w.) has arbitrarily small norm and so the
operator ((d + d*) ® Idy) + e(F*we) — i(F*w,) is also invertible.

Put D = (d ® Idy) +e(F*w,.). Then D is exterior differentiation, using the
connection F*w., and

(3.14) D+ D" = ((d+d") @ Idy) + e(F*we) — i(F we) .

As (d+d*)®Idy and D+ D* anticommute with p ® Idy, they have well-
defined indices which happen to vanish, as the operators are invertible. On the
other hand, let L(M) be the Hirzebruch L-form. The relative index theorem
of Gromov and Lawson [10, 16] says that

ind(D + D*) — ind((d + d*) ® Idy)
(315) / __F*Q.
— LM N T 2mi —N .
000 [T () =]
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F*Q

As F is proper, the de Rham cohomology class of Tr (e—‘?ﬁ“> —N =

F* [Tr (e_%f“f) — N] is well-defined as a multiple of the fundamental class

[M] € HA(M;R). As the series for L(M) starts off as L(M) =1+ ..., we
obtain

ind(D + D*) — ind((d + d*) ® Idy) = /M [Tr (e—?iiﬁ ) = N]

(3.16) _ /MF [Tr (e*‘ﬂ —N}

= deg(F) [Tr (e_%> —le #£0.
R
This contradicts the vanishing of ind(D + D*) and ind((d + d*) ®IdN). Thus
zero must be in the spectrum of M after all.
Now suppose that n is odd. As M is hyperEuclidean, so is R x M. With
respect to the decomposition A*(R x M) = A*(R) ® A*(M), the Laplace-
Beltrami operator on R x M decomposes as

(3.17) Arxmy = (Ar @)+ T @ Apy).
Then
(3.18) o(Arxym) = {Al + Xt A €10, 00) and My € O'(AM)}

From what has already been proved, 0 € o(Arxpn). It follows that
0co(ly). U

REMARKS.

1. We have shown that if M is hyperEuclidean then 0 € o(4,) for some p.
One can ask whether the number p can be pinned down. In general, when
computing the index of the operator d + d*, the differential forms outside
of the middle dimensions do not contribute. This is a reflection of the fact
that the signature of a closed manifold can be computed using only the
middle-dimensional cohomology. So this gives some reason to think that

if dim(M) is even then 0 € o (Aw)
2

Unfortunately, the operator (D + D*)* does not preserve the degree of a
differential form and so we cannot use the above proof to reach the desired
conclusion. However, with a more refined index theorem [28, Theorem 6.24],

one can indeed conclude that 0 € o (Aw) if dim(M) is even and that

Oco (A,ﬁ,,;mg)ﬂ) if dim(M) is odd.
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2. If M is an irreducible noncompact globally symmetric space G/K, with
G = Isom(M) and K a maximal compact subgroup, then one can say more

about the bottom of the spectrum. If rk(G) = rk(K) then Ker (AM> is

infinite-dimensional and the spectrum of /\ is bounded away from zero
otherwise. If rk(G) > rk(K) then Ker(A) =0 and 0 € g(4,) if and only
if

dim(M) B rk(G) — rk(K) dim(M)  rk(G) — rk(K)
2 2 2 + 2
[19, Section VIIB].

Finally, we state a result about uniformly contractible Riemannian
manifolds.

DEFINITION 6 [15, p. 29]. A metric space Z has finite asymptotic dimension
if there is an integer n such that for any r > 0, there is a covering Z = UiEI C;
of Z by subsets of uniformly bounded diameter so that no metric ball of radius
v in Z intersects more than n+ 1 elements of {C;}icr. The smallest such
integer n is called the asymptotic dimension asdim,(Z) of Z.

PROPOSITION 8 (Yu [33]). If M is a uniformly contractible Riemannian
manifold with finite asymptotic dimension then 0 € o(,) for some p.

The proof of Proposition 8 uses methods of coarse index theory [28].

4. VERY Low DIMENSIONS

In this section we show that the answer to the zero-in-the-spectrum ques-
tion is “yes” for one-dimensional simplicial complexes and two-dimensional
Riemannian manifolds.

4.1 ONE DIMENSION

As a one-dimensional manifold is either S' or R, zero is clearly in the
spectrum. '

A more interesting problem is to consider a connected one-dimensional
simplicial complex K. Let V be the set of vertices of K and let E be the set
of oriented edges of K. That is, an element e of E consists of an edge of
K and an ordering (s.,f,) of Je. We let —e denote the same edge with the
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