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Definition 3. We saythat H'(M; C) vanishes uniformly iffor all >0,
there is an R(r) > r such that for all

(2.11) Im (Hj(Bm(myX)— =0.

PROPOSITION 3 (Pansu [25]). Consider a Riemannian manifold M of
bounded geometry such that for some 0,H '(M; C) vanishes uniformly

for 1 <j<k. Then within the class of such manifolds,

1. H(2)(M) and H^2)(M) are coarse quasi-isometry invariants for 0 <p < k.

2. Ker(H(2j'(M) ->• H*+1(M; C)) and Ker(H*2+1(M) -> Hi+1(M;)) are

coarse quasi-isometry invariants.

3. General Properties of L2 -Cohomology

In this section we give some general results about the L2 -cohomology of
complete Riemannian manifolds. First, we give a useful sufficient condition

for the reduced L2 -cohomology to be nonzero.

Proposition 4. For all p, Im (H£(Af;C) Hp(Af;C)) injects into

H\2)(M).

Proof Suppose that uj is a smooth compactly-supported closed p-form
which represents a nonzero class in EP(M;C). By Poincaré duality, there

is a smooth compactly-supported closed (dim(M) — p) -form p such that

As to is compactly-supported, it is square-integrable and so represents an
element [cuj of H^2)(M). Suppose that [uj] 0. Then there is a sequence

{Vi}i in QP-\M) such that uj lim/_,oo drji, where the limit is in an
L2 -sense. It follows that

(3.1) / uj A p lim / drji A p lim / d(rji A p) 0
JM ^°° JM i->°° JM

which is a contradiction. Thus [uj] 0.
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COROLLARY 2. Let N4k be a compact manifold-with-boundary with

nonzero signature. Then if M is any complete Riemannian manifold which is
2k

diffeomorphic to int(A0, H(2)(M) 7^ 0.

Proof By definition, the signature of N is the signature of the intersection
form on

(3.2) Im (H2*(N, dN; C) -* H2k(N;C)) Ê Im (Hf(M; C) -> H2k(M; C)).

If the signature of N is nonzero then Im (H2k(M; C) —» H2k(M; C)) must be

nonzero. The corollary follows from Proposition 4.

Example. Let N be CP2 with a small 4-ball removed. Then N satisfies

the hypothesis of Corollary 2.

We now show that the middle-dimensional reduced L2 -cohomology is a

conformai invariant of M.

PROPOSITION 5. If M2k is even-dimensional then Ker(A^) is conformally-
invariant.

Proof Suppose that g and e^g are conformally equivalent Riemannian
metrics on M, with <fi G C°°(M). We use the fact that the action of the Hodge

duality operator * on Ak{M) is independent of f. If u is a k-form on M,
its L2-norm fM cc A *cj is independent of f. Thus the Hilbert space Ak{M)
is independent of f. Furthermore,

(3.3) Ker(A^) {uj e Ak(M) : du d*u - 0}

{u e Ak(M) : du ± * d * (u) 0}

(3.4) ={u e Ak(M) : du d * (u) 0}

is independent of f.

Example. Take M H2. Then M is conformally equivalent to a

Euclidean disk D. The harmonic square-integrable 1-forms on D are of the

form f\(x,y)dx+f2(x,y)dy, where f\ and f^ are square-integrable harmonic

functions on D. There is clearly an infinite number of such functions,

and so dim(H(2)(//2)) 00. The same argument applies to H2k, to give

dim(H(2)(tf2*)) 00.

In the case of functions, one has a good control of when zero is in the

spectrum of the Laplacian.
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LEMMA 4. Ker(A0) f 0 if and only if vol(Af) < 00.

Proof If vol(M) < 00 then the constant functions on M are square-

integrable and harmonic. Conversely, if / G Ker(Ao) then by Lemma 2, / is

constant. If / is nonzero and square-integrable then vol(M) < 00.

DEFINITION 4. M is open at infinity if there is a constant C > 0 such

that for all domains D in M with smooth compact closure, A C.

Examples.

1. Rn is not open at infinity, as can be seen by taking large balls for D.

2. Hn is open at infinity.

Proposition 6 (Buser [3]). Let M have infinite volume. Suppose that

there is a constant c > 0 such that Ricci^ > — c2. Then 0 a(Ao) if and

only if M is open at infinity.

Proof.

1. Suppose that M is open at infinity. By Cheeger's inequality,

».

2. Suppose that M is not open at infinity. The bottom of the spectrum of
Ao is given in terms of Rayleigh quotients by

(3.6) inf (cr(A0)) inf >^ JMJ

where / ranges over compactly-supported Lipschitz functions on M. We want
to find compactly-supported Lipschitz functions on M of arbitrarily small

Rayleigh quotient. By assumption, for all e > 0 there is a domain D such

that Put

(3.7) Ni(dD) {m e M : m £DandOD) 1}.

Define a function /, which approximates the characteristic function of D, by

{1
if m G D

1 - d(m, dD) if m G NfidD)
0 if m f: D and m N\ (dD).
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Clearly JMf2 > vol(D). As / has nonzero gradient only in NfdD), where

\df\ l almost everywhere, we have JM\df\2 — vol(Afi(dD)). If D is nice
and round then we expect that

(3.9) vol(Afi(<9D)) ~ area(<9D)

and the Rayleigh quotient Mr will be comparable to
JmW_i2

U2
The only problem with this argument is that D may not be nice and round,

but may have long thin legs coming out of it, like an octopus. Then (3.9)

may not be valid. The content of [3] is that if this is the case, we can cut the

legs off of D to come up with a new domain for which the above heuristic

argument is valid. We refer to [3] for details.

COROLLARY 3 (Brooks [2]). Let M be a normal covering of a compact
manifold X with covering group T. Then 0 G cr(Ao) on M if and only if F
is amenable.

Proof If r is finite then 0 G cr(Ao) and T is amenable. If T is infinite
then by Proposition 6, 0 G cr(Ao) if and only if M is not open at infinity.
Let 5 be a finite set of generators of F. Let G be the Cayley graph of F,
constructed using S. There is a notion of G being open at infinity which
is similar to Definition 4. As M is coarsely quasi-isometric to G, M is not

open at infinity if and only if G is not open at infinity. However, this is one
of the characterizations of amenability of T.

We now prove a result about manifolds which, roughly speaking, are at

least as large as Euclidean space.

DEFINITION 5. M is hyperEuclidean if there is a proper distance-

nonincreasing map F : M —> Rdim(M) of nonzero degree.

Remarks.

1. A map is proper if preimages of compact sets are compact. Instead of
requiring that F be distance-nonincreasing, we could require that F have a

finite Lipschitz constant. By postcomposing F with a dilatation of Rdim(M),

the two conditions are equivalent.

2. If M is hyperEuclidean then a compactly-supported modification of M is

also hyperEuclidean.
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3. Examples of hyperEuclidean manifolds are given by simply-connected

nonpositively-curved manifolds M. Namely, fix mo E M and put F

4. There was once a conjecture that all uniformly contractible manifolds are

hyperEuclidean (with a degree-one map to Rdim(T0 ^ but this turns out to be

wrong [11]. There is still an open conjecture that a uniformly contractible

manifold of bounded geometry is hyperEuclidean, and in particular, that

the universal cover of an aspherical closed manifold is hyperEuclidean.

Proposition 7 (Gromov [15, p. 238]). If M is hyperEuclidean then

0 E cr(Ap) for some p.

Proof Put n dim(M). First, suppose that n is even. We will construct a

vector bundle E with connection on R" which is topologically nontrivial but

analytically trivial, in a sense which will be made precise. Then assuming that

zero is not in the spectrum of M, we will apply the relative index theorem

to F*E in order to get a contradiction.

Recall that K°(5") Z®Z. If £ is a (virtual) vector bundle on Sn, the

two Z factors correspond to rk(£) and fs„ ch(£), respectively. This means that
for some TV > 0, there is a CN -bundle £ on Sn with fs„ ch(£) 0. Fixing
a point oo E S", we can trivialize £ in a neighborhood of oo. Furthermore,
we can put a Hermitian metric and Hermitian connection on £ so that the
connection is flat in a neighborhood of oo.

Let E be the restriction of £ to R Sn — {oo}. Let V be the restriction
of the Hermitian connection on £ to Rn. Then E is trivialized outside of a

compact set K C R" and V is flat outside of K.
As R" is contractible, there is an isomorphism of Hermitian vector bundles

1 : R"xCN ^ E. Then /*V can be considered to be a u(N)-valued 1-form
uj on R The curvature of cu is the u(N)-valued 2-form Q du + uo2. The
nontriviality of £ translates to the facts that

1. Q. vanishes outside of K and

2. The de Rham cohomology class of the compactly-supported form

is a nonzero multiple of the fundamental class [Rn] e H"(R7?;R).

In fact, we can take lj to have a finite L°°-norm [] cu H^. For example,
if n 2, take TV 1. Let / E C§° ([0, oo)) be a nonincreasing function such
that if x E [0,1] then f(x) m 1. Put uj -i(l -/(r)) dO. Then

eXPmo' •
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(3.10) Q duo if (r)dr A dO

We have u; loo- supr>0
i -m and fjR2 Tr (e- - 1 1.

Returning to the case of general even n, for e > 0, let Oe : Rn —» Rn be

the map Oe(x) ex. Put ue and Cle due Then

e üü and

(3.11)

Tr (e~&/) -Al]

/ R!
Tr — N f 0.

We now turn our attention to M. Suppose that 0 ^ cr(Ap) for all p.
Consider the self-adjoint operator d + d* on A*(M). As (J + J*)2 A, it
follows that 0 ^ a(J +J*). In other words, d + d* is L2-invertible. Define

an operator p on A*(M) by saying that if uj G AP(M) then

n(n — 1 pip— 1)

(3.12) p(uf) i 2 (-l)-^-*(cj).
One can check that p2 1 and p(d + J*) + (d + J*)/i 0.

Clearly the operator (d+d*)®ldN, acting on A*(M)OCiv, is also invertible.
Consider the u(N)-valued 1-form F*ue on M. As F is distance-nonincreasing,

(3.13) II F*u>e ,<ll ^
Let e(F*(jje) denote exterior multiplication by F*ue, acting on A*(M) 0 CN

and let i(F*uje) denote interior multiplication by F*ue. By making e small

enough, the operator e(F*ue) — i{F*uje) has arbitrarily small norm and so the

operator ((«d + d*) ® Id//) + e(F*uje) — i(F*ue) is also invertible.

Put D (d® IdN) + e(F*üüe). Then D is exterior differentiation, using the

connection F*cj, and

(3.14) D + {{d + d*) <g> Id//) + e(F*ue) - i(F*uje).

As (d d*) <g> Id// and D + D* anticommute with p (g Id//, they have well-
defined indices which happen to vanish, as the operators are invertible. On the

other hand, let L(M) be the Hirzebruch L-form. The relative index theorem

of Gromov and Lawson [10, 16] says that

ind(D + D*)-ind((J + ® Id*)
(3.15)

/ L(M)A
JM

Tr N
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As Fis proper, the de Rham cohomology class of Tr
F*n*

2-k'I -N
Tr e - n] is well-defined as a multiple of the fundamental class

G H"(M;R). As the series for L(M) starts off as L(M) 1 + we
F*

[M_

obtain

ind(D + D*)-ind((<i + <g> Idw)

(3.16)

deg(F)

JM

F*ne
Tr e l7vi -N

/ F*
JM

Tr -N

/R"
Trie N ^0.

This contradicts the vanishing of ind(T) + Z)*) and ind((J + d*) 0 Id^). Thus

zero must be in the spectrum of M after all.

Now suppose that n is odd. As M is hyperEuclidean, so is R x M. With

respect to the decomposition A*(R x M) A*(R) 0 A*(M), the Laplace-

Beltrami operator on R x M decomposes as

(3.17) ARxM (AR 0 /) + (/ ® AM)

Then

(3.18) ct(Arxm) — {Ai + A2 i Ai G [0, 00) and À2 G ct(Am)}-

From what has already been proved, 0 G ct(Arxm)- It follows that

0 G ct(Am) • n

Remarks.

1. We have shown that if M is hyperEuclidean then 0 G <r(A/;) for some p.
One can ask whether the number p can be pinned down. In general, when

computing the index of the operator d + d*, the differential forms outside

of the middle dimensions do not contribute. This is a reflection of the fact
that the signature of a closed manifold can be computed using only the

middle-dimensional cohomology. So this gives some reason to think that

if dim(M) is even then 0 G cr ^A dim(M) ^

Unfortunately, the operator (D + D*)2 does not preserve the degree of a

differential form and so we cannot use the above proof to reach the desired
conclusion. However, with a more refined index theorem [28, Theorem 6.24],

one can indeed conclude that 0 G a ^A^wi^ if dim(M) is even and that

0 G CT ^ A. clim(M)dz 1 ^ if dim(M) is odd.
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2. If M is an irreducible noncompact globally symmetric space G/K, with
G Isom(M) and K a maximal compact subgroup, then one can say more

about the bottom of the spectrum. If rk(G) rk(K) then Ker «M)j is

infinite-dimensional and the spectrum of A is bounded away from zero
otherwise. If rk(G) > rk(K) then Ker(A) 0 and 0 G a(Ap) if and only
if

dim(M) rk(G) - rk(K) dim(M) rk(G) - rk{K)
2 2 '

/

[19, Section VIIB].

Finally, we state a result about uniformly contractible Riemannian
manifolds.

DEFINITION 6 [15, p. 29]. A metric space Z has finite asymptotic dimension

if there is an integer n such thatfor any r > 0, there is a covering Z IJi<ei Q
of Z by subsets of uniformly bounded diameter so that no metric ball of radius

r in Z intersects more than n + 1 elements of {C/}/G/. The smallest such

integer n is called the asymptotic dimension asdim+(Z) of Z.

PROPOSITION 8 (Yu [33]). If M is a uniformly contractible Riemannian

manifold with finite asymptotic dimension then 0 G cr(Ap) for some p.

The proof of Proposition 8 uses methods of coarse index theory [28].

4. Very Low Dimensions

In this section we show that the answer to the zero-in-the-spectrum question

is "yes" for one-dimensional simplicial complexes and two-dimensional
Riemannian manifolds.

4.1 One Dimension

As a one-dimensional manifold is either Sl or R, zero is clearly in the

spectrum.
A more interesting problem is to consider a connected one-dimensional

simplicial complex K. Let V be the set of vertices of K and let E be the set

of oriented edges of K. That is, an element e of E consists of an edge of
K and an ordering (se,te) of de. We let — e denote the same edge with the
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