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KLYACHKO’S METHODS AND THE SOLUTION OF EQUATIONS
OVER TORSION-FREE GROUPS

by Roger FENN and Colin ROURKE

SUMMARY. The question we are concerned with here is the following:
Let G be a torsion-free group and consider the free product G *(t) of G

" with an infinite cyclic group (generator t). Let w be an element of G * 1) — G

and «wY> denote the normal closure of w in G=<(t), then is the natural
homomorphism

G- G = (1)
Lwy

injective?

Klyachko’s paper: “Funny property of sphere and equations over groups” [KI]
contains a proof that it is injective in the case in which the exponent sum of ¢ in w

is 1. If the exponent sum is not + 1 then G«*W<>;> has a non-trivial cyclic quotient. So
the following is implied:

COROLLARY (Kervaire conjecture for torsion-free groups). Let G be a non-

.. . EXOR ..
trivial torsion-free group then <<w<»> is non-trivial.

The proof for exponent sum 1 is based on Klyachko’s “funny property of
sphere”. This is the following: Let K be a cell subdivision of the 2-sphere with at
least one l-cell. Let a car drive round the boundary of each 2-cell in an anti-
clockwise sense (the cars travel at arbitrary speeds, never stop and visit each point
of the boundary of the cell infinitely often). Then there must be at least two places
on the sphere where complete crashes occur (a complete crash is either a head-on
collision in the middle of a 1-cell or a crash at a vertex involving all the cars from
neighbouring 2-cells).

Klyachko describes this property as ‘‘suitable for a school mathematics
tournament”. The property is used to show that the diagram for a potential
counterexample to the Kervaire conjecture must have at least one interior vertex
with all labels being the same element of G, hence this element has finite order.

In this paper we shall give an exposition of Klyachko’s methods and theorems. We
use his techniques to give a positive answer to the question for other exponents under
a technical condition on the 7-shape of w, for details here see section 5.
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1. INTRODUCTION

In [KI] Klyachko gives a proof of the Kervaire conjecture in the situation
where the groups involved are torsion-free. Unfortunately the paper suffers
from defects. Apart from a deficiency in the use of English many theorems
are ill-explained and even wrong unless interpreted exactly. The blame
for this situation must be attributed to the editors of the journal. In
this paper our aim is to state all his results carefully and explain the
proofs in detail. Moreover using his methods we shall generalise his main
theorem.

We consider the free product G =*<¢) of G with an infinite cyclic
group generated by . Let w e G=* (f). Then w has a unique expression
of the form gyt91g,¢92...g,_,t9»g, where g; e G are non-trivial for
0<i<n and g; are non-zero integers for each i. We call ¥ g, the
exponent sum of t in w, denoted ex(w), and Ele | q; | the t-length of w.
The unreduced word ¢9:1¢92... t9» obtained by deleting the elements of G
from w is called the 7-shape of w.

Let {w)) denote the normal closure of w in G * {(¢).

The two main problems with which we shall be concerned are the Kervaire
problem and the adjunction problem, which we now state.

THE KERVAIRE PROBLEM. Suppose G is a non-trivial group. Is it

B G * % %
possible for W% to be trivial?

The negative answer to the Kervaire problem is known as the Kervaire
conjecture after a conversation between M. Kervaire and G. Baumslag c. 1963
[Ke, p. 117, MKS p. 403] and it has been proved for large classes of groups,
for example compact topological groups, locally residually finite groups
[GR, Ro], locally indicable groups [H,, Sh]. In general however the problem
is still open.

Now think of w = 1 as an equation in the ‘“‘variable” ¢ with ‘““coefficients”
the elements g;. We say that w = 1 has a solution over G if there exists
a group G with G embedded in G and an element x € G such that w(x) = 1
where w(x) is the result in G of substituting x for ¢ in w. It is easily seen
that w(x) =1 has a solution over G if and only if the natural map
G- 9(% is injective.

THE ADJUNCTION PROBLEM. Under what circumstances does the
equation w =1 have a solution over G?
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Clearly it is necessary that w € Gty — G. However even if w¢G
then G may still fail to embed in %’%%2 as the following example shows.
Let G be the cartesian product of a cyclic group of order p, generated
by x, with a cyclic group of order g, generated by y, where p and g are

coprime integers and let w = xt !yt then X s infinite cyclic and G

Lw
fails to embed.

Notice that this example has exponent sum zero and that the group G
has torsion. If ex(w) # 0 then the adjunction problem is also open in general.
It is known that a solution exists in the case ex(w) = 1 for the same classes
of groups as for the Kervaire conjecture (listed above). Indeed a positive
answer to the adjunction problem when ex(w) = 1 would imply the Kervaire
conjecture, since if ex(w) # =+ 1 then %%Z has a non-trivial cyclic quotient.
It is also known that a solution exists if |ex(w) | is the #-length of w [L]
and if ex(w) # 0 and 7-length < 4 [H,;, EH]. The problem considered here
is a special case of the more general adjunction problem considered by
Neumann, [N], which considers the effect of adding finitely many new

generators and relators.

The main result proved here solves both problems when G is torsion-
free for a large class of words, the amenable words. These are words
whose 7-shape satisfies a technical condition, and includes all words with
ex = =+ 1, for details see section 5.

THEOREM 1.1. Let G be a torsion-free group and let w € G * {t) — G
be an amenable word. Then w =1 has a solution over G.

COROLLARY 1.2. (Klyachko: The Kervaire conjecture for torsion-free

groups.) Let G be a non-trivial torsion-free group and let w be an

element of G+ <ty — G. Then 9{”1—;) Is non-trivial.

Klyachko’s paper [KI] contains the proof of theorem 1.1 in the case in
which the exponent sum of 7 in w is 1. (As observed above, this is the case
which implies the Kervaire conjecture.) In this paper we shall take a direct
path to theorem 1.1, the proof of which is given in sections 4 and 5.
Klyachko proves some further results on solving equations over groups in

a variety of other circumstances, and for completeness we shall give these
results in section 6.

ACKNOWLEDGEMENTS. We are grateful to M. Kervaire and S. Eliahou
for their helpful comments, which have improved the exposition of this paper,
and to the Fonds National Suisse de la Recherche Scientifique (FNSRS).
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2. THE CRASH THEOREMS

In this section we prove the crash theorems, which are the main tech-
niques used by Klyachko for his applications.

SOME PRELIMINARY DEFINITIONS. Let p:R — S! be the universal
covering map of the circle given by p(¢):= e?"! ¢t e R. A function
J:R— S! is called proper, monotone or strictly monotone if its lift
f :R — R is proper, monotone or strictly monotone. A monotone function
is called anticlockwise if its lift is increasing and clockwise if its lift is
decreasing.

Now let K be a cell complex subdividing the 2-sphere. We shall assume that
the 2-sphere has the usual orientation and that each 2-cell is oriented so that
its attaching map is anticlockwise.

To help explain the crash theorems we will call each 2-cell a country,
each 1-cell a road and each O-cell a junction. Let ¢.:S! — 0c denote the
attaching map of a country c. A traffic flow on K is defined to be a set of
proper, monotone, anticlockwise functions {f.:R — S'}, one for each
country ¢ in K. We will think of # € R as a time variable and the point
K:():= ¢. 0 f.(1) as the position of a car, belonging to ¢, on the boundary
of ¢ at time 7. We will say that a car is on the road r if it is in the interior
of the 1-cell r. The order of a junction is the number of ends of roads
which are at that junction.

If two or more cars (from neighbouring countries) occupy the same point
on a road or the same junction at the same time ¢, then a crash is said
to occur at time £.

A complete crash occurs if either:

(1) Two cars (from neighbouring countries) occupy the same point on a
road at the same time. This is called a road crash.

(2) n cars (from all the neighbouring countries) occupy a junction of
order n at the same time. Note that it is possible for n =1 so that,
paradoxically, a complete crash may involve only one car (crashing into
the end of a dead-end road)!

We would like to talk about traffic flows being in ‘‘general position”. Such
a flow would mean that no two cars are at a junction at the same time.
There is an obvious notion of a ‘“nearby” flow in which the motion is
changed by an amount uniformly less than some positive but small number.
However it is important that the result does not increase the number of
crashes. The precise statement of the result we need is the following:
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LEMMA 2.1. Suppose for a traffic flow there is an interval of time
to < t < t, with no complete crashes in some open region R of the sphere.
Suppose further that cars in R are at junctions for just one moment s,
where ty<s<t,. Then there is a nearby traffic flow, which is unaltered
outside R and outside the time interval ty <1t <t,, Wwith no crashes
in R for to<t<t andsuch that no two cars in R are at junctions
at the same time t for (o <1< 1.

Proof. Suppose there are a number of junctions involved. Then by a
small change we can assume that the cars which arrive at the different
junctions arrive at different times, without introducing any new crashes,
complete or otherwise. So now restrict attention to one junction J in R and
consider a small neighbourhood N of J in R. Since by hypothesis there is no
complete crash at J for 7, < ¢ < ¢; we can assume that the number of cars
which meet at J at time s is less than the order of J. A car arriving at a
junction turns left. Choose a car x so that the left turn at J leads to a road
whose intersection with N has no car on it. Now hurry x along so that it
arrives ahead of the other cars and completes the turn first. Repeat this
process for the remaining cars so that no crashes of any kind occur in N
(and note that no new crashes have been introduced outside of N). By
adjusting the speeds afterwards we can assume that the flow is unaltered
outside of the time interval given. [

THEOREM 2.2. (Basic Crash Theorem.) Let K be a cell decomposition
of the 2-sphere with at least one I-cell. Then any strictly monotone traffic flow
on K has at least 2 complete crashes at two different places.

Proof. The hypothesis that K contains at least one 1-cell implies that
each 2-cell is attached to one or more 1-cells and that at nearly all times
cars will be disjoint and away from junctions. Let 7, be such a time.
Construct an oriented graph I', embedded in the 2-sphere, called the cross-
traffic graph, by the following procedure. (It may be helpful for the reader
to consult figure 1 at this point. The cross traffic graph is in heavy print.)
For each country c¢ pick some point in the interior as its capital C. The
capitals will form the vertices of I'. Suppose that ¢’s car . is on the road
forming a common boundary with country ¢’. Join the capitals C and C’
by an edge of I oriented from C to C’ passing radially outwards in ¢ from C

to k. and then radially inwards in ¢’ to C’. (It may happen of course that ¢
1s ¢’ and so the edge is a loop.)
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Cy

K4

Ch

FIGURE 1
The construction of the cross-traffic graph

Notice that I' is essentially a subgraph of the dual cell subdivision.

Since every capital has an exit path in I" it follows that I' will contain
coherently oriented simple closed curves. If o is such a simple closed curve
let L, denote the disc with boundary o which is on the left of o when
traversed in the direction of orientation. Similarly denote the complementary
disc by R, . Traffic flows info L, as time progresses and out of R, .

Let D be a minimal nested disc amongst the discs L, and R, for all
loops a of the cross-traffic graph. We shall prove that a complete crash
occurs at some time in the interior of D. Since there are at least two such
minimal discs (with disjoint interiors) this proves the theorem.

For definiteness assume that D = L, for some o and watch what happens
as time flows forwards. (If D = R, then we let time flow backwards.) As
time proceeds either a road crash occurs or D shrinks upon itself in a
continuous fashion until some car inside D comes to a junction at time s say.
At this point we have to redefine I'.

Fither there is a complete crash inside D at time s (as required) or by
the lemma we can assume that the cars in D arrive at junctions one at a
time and we consider the new graph I' after the first car has passed a
junction. There are two possibilities, either the car involved is part of the
circuit o or it is not.

If the car is part of a then the corresponding edge breaks the circuit and
passes inside D and eventually gives a new circuit defining a new innermost
disc inside D. (It can be checked that this is again an Ly for some [3.)

If the car is not part of a then either D is still minimal and we proceed
or we now have a new minimal disc inside D and we again proceed (in fact
the minimality of D implies that the edges of I' inside D form a forest and
it can then be checked that this latter case is impossible, but we shall not need
to do this).
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Eventually we arrive at a situation where o comprises just one or two
edges. In the first case « is a loop around a dead-end junction and a com-
plete crash occurs there and in the second case two cars are approaching each
other either on the same road or on two roads with a common junction
of order 2 and a complete crash occurs. [

REMARK. In fact it can be seen that there must be infinitely many
complete crashes and moreover we can find a subset of these crashes occurring
at times ¢;, i € Z with ¢; < f;,, such that, for each i, the crash at time ¢, is
at a different place to the crash at time #;. ;.

TRAFFIC FLOWS WITH STOPS

If we consider traffic flows on a cell decomposition of the 2-sphere which
are monotone but not strictly monotone, i.e. have stops, then it is possible
to avoid complete crashes. The following example should make this clear.
Consider a neighbourhood of a junction O which we take as the origin and
four roads joining O which we take as the coordinate axes. As usual let the
increasing direction of the x-coordinate be from west to east and the
increasing direction of the y-coordinate be from south to north. Suppose
now that there are four cars E, N, S, W approaching O along these roads
which in the normal course of events would have a complete crash at O.
If stops are allowed then complete crashes can be avoided as follows.

Let £, N and S come to O and crash (incompletely) while W slows
down. Now whilst N and S stop at O let E continue south. Now W comes
to O and another incomplete crash occurs. The cars can now continue their
journey and by adjusting their speeds accordingly can be made to travel as
though nothing had happened.

The problem here was that the two stopped cars N and S are next to one
another if you ignore E and W.

We shall need to assume that cars which stop at a given vertex do so
each time they visit that vertex. The following definition for such a traffic
flow with stops avoids the problem described above and allows a genera-
lisation of theorem 2.1 to be proved.

DEFINITION. Let v be a junction and let ¢, ..., ¢, be the countries, listed
in anti-clockwise order about v, whose cars x,, ..., K, actually stop for a
positive time at v. Let T; be the union of the intervals of time that K; stops
at v. We say that the flow has separated stops at v if, for the stopping
countries ¢;, ¢; where | i — j| = 1 mod n, the unions of intervals 7, and T,
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are disjoint. (Note that under these circumstances, more than one car
stops at v and there cannot be a complete crash at v.)

We can now prove a generalisation of the original crash theorem in which
cars are allowed to stop.

THEOREM 2.3. (Crash Theorem with Stops.) Let K be a cell decompo-
sition of the 2-sphere with at least one I-cell. Then any monotone traffic
flow on K with separated stops at each stopping vertex has at least 2
complete crashes at two different places.

Proof. Let us use the notation developed above. So v is a junction
and c,, ..., ¢, are the countries, in anticlockwise order about v, whose cars
K, ..., K, actually stop for a positive time at v. The idea is to change K by
blowing up each such junction v to a disc D and defining a strictly monotone
traffic flow on a new subdivision K’. This is done as follows. Define the
portion of K lying in the interior of D to be a new country. The boundary
of D is naturally subdivided into junctions (of order 3) and roads by inter-
section with the countries adjacent to v. Now collapse to junctions all roads
of the boundary of D which are on the boundary of a country whose cars
do not stop at v (see figure 2).

C2 ‘ Ci

FIGURE 2
The construction of the new cell complex K’

The motion of the original cars which stopped at v can be extended to K’
without stops by having them move monotonically along the boundary of D
during the time when they originally would have been stopped. The motion
of the original cars which do not stop at v is extended to K’ in the
obvious way.

Now we define the motion of a car kp in an anticlockwise manner
around the boundary of D. This will be done in such a manner that no
complete crashes occur on the boundary of D. We will use the following
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notation. Let r; be the road common to the boundary of D and the country
with stopping car ;. Let the end junctions of r; be v; and v; 4 in anticlock-
wise order i = 1,2, ... . Suppose k; is on the road r;. Then by hypothesis
the roads r;,, and r;_, are free of the cars K;.; and x;_, respectively
(see figure 3).
Vi4-2
Ti41
Vi41

Vi—-1

FIGURE 3
The motion of car Kp

As k; traverses r; from v; ., to v; let xp traverse r;_; from v;_; to v;.
Let the cars meet at v; at time ¢. This will not be a complete crash since
K;_, is missing. Again by hypothesis k;,; will not be at v;,, at time ¢.
Let r be largest such that x,., is not at v;,,,; at time ¢. Then xp has
enough time to arrive at v;,,,; just as x;,, does. If there is no such r then
let k;., be the next car to arrive at D and let xp go once round the entire
boundary and arrive at v,,,,, just as x;,, does. Keep repeating this
strategem to define the motion of kp.

Now we are in a situation corresponding to the first crash theorem and
the result is proved. [

3. TWwWO TRANSVERSALITY LEMMAS

In this section we use transversality (cf. [BRS, F]) to prove the existence
of diagrams of van-Kampen type for the two situations that we shall meet
in the applications to group theory of the crash theorems (in sections 4, 5
and 6). These lemmas need to be stated very carefully and a failure to do so
is one of the major weaknesses in Klyachko’s version. The lemmas use the
idea of a corner of a 2-cell in a cell subdivision K of the 2-sphere. This can
be regarded as the (oriented) angle formed by the two adjacent edges meeting
at a O-cell in the boundary of the 2-cell. If all the corners of a 2-cell are
labelled by elements of a group, then a word can be read around the 2-cell
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boundary by composing these elements either unchanged or inverted according
as the orientation of the corner agrees or disagrees with that of the 2-cell
boundary. Similarly if all the corners at a 0-cell are labelled then a word can
be read around that O-cell. We shall always orient corners clockwise, thus if
the above words are read clockwise for O-cells and anticlockwise for 2-cells,
then no inversion is necessary (see figure 4).

g2 g1
gn [951

M
AN

g2

. Gn
D ]

FIGURE 4
Multiplying the corner labels to get g; g5 -+ - g, for a O-cell and a 2-cell

Let w € A * B be an element in the free product of two groups. We shall
only be interested in w up to cyclic reordering and thus (cyclically reordering
if necessary) we can assume that either w =1 or we A u B —1 or wis
written uniquely as a,b,a,b, - a,b, where a; and b; are non-trivial
elements of A, B alternately. These non-trivial elements a;, b; are then called
the (cyclic) factors of w.

LEMMA 3.1. Let A,B be two groups and let N = (W?)) be the
the normal closure in A+*B of some subset of elements W C A * B.
Suppose N n A +{1}. Then there is a cell subdivision of the sphere S?
such that each corner of each 2-cell is labelled by an element of A U B
with the following properties.

1. The corner labels of a 2-cell are the cyclic factors (in anticlockwise order
and up to cyclic rotation) of some w or w~-! where we W.

The corner labels at a O-cell are either all in A or all in B.
3. The (clockwise) product of the corner labels at a 0-cell is 1 (in A or B)

except for one special 0-cell where the product is a non-trivial element
of AuB.

Proof. Let K ,Kp be two disjoint 2-dimensional complexes such that
(K4, *4) = A and 7;(Kp, *p) = B. Join the base points *4, and *p by
an arc o with central point *. Let K= K4 U a U Kz. Then m;(K, *)
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= A = B. Attach 2-cells 6, to K by the words w € W to form the complex L.
If ae Nn A — {1} there is a map f:D?, S' = L, K from the 2-disc to L
such that the restriction f|S' to the boundary represents a. Make the
map f transverse to the centres of the 2-cells ¢,,. It follows that the inverse
images of small neighbourhoods of these centres is a collection of disjoint
discs Dy, ..., D,, in the interior of D2. By a radial expansion of f on these
discs we may assume that each image is the whole of one of the o,. It
follows that the punctured disc P=D?-D;u -+ u D, is mapped
by f to K. Make f | P transverse to *. Then f~!% is a 1-manifold Z properly
embedded in P. By a radial expansion along o we can assume that Z has a
neighbourhood N which is a normal /-bundle and where each fibre is
mapped by f to a. The complementary space P — N is divided into connected
regions which are mapped by f to K4 or Kz. On crossing N one passes
from one kind of region to the other.

We now simplify the subset D, u -+ U D, UN of D? as follows.
Suppose N contains an annulus component ./ in the interior of P. Let D’
denote the interior disc of D? which bounds the interior boundary com-
ponent of the annulus. Then D’ u ./ is a sub disc of D? whose boundary
gets mapped to a base point by f. We can then shrink it to a point,
redefine f and simplify the situation. Having eliminated all annuli,
D,u -+ u D, uNwill look like a thickened graph in D? with the discs D;
corresponding to thickened vertices and the components of N to thickened
edges. Our next task is to make this graph connected. If not choose an
innermost component C. Draw a simple loop around C separating it from
the rest of D, U -+ u D,, U N. This loop will represent (up to conjugacy)
an element of A U B. If this element is trivial we can shrink the disc it bounds
as above and simplify the situation. If not we replace D, U -+ U D,, U N
by C. Note that the boundary curve may now represent a non trivial element
of B instead of A.

Attach a 2-cell (outside) to the boundary of D? and label the centre of this
outside cell co. The 2-disc has now become a 2-sphere. In this situation
consider the dual graph I'. This has a vertex in each region and an edge
joining neighbouring regions separated by a component of N. For the outer
region take the vertex to be co. Then I' and its complementary regions define
a cell subdivision K of the 2-sphere. Each vertex is either in an 4 region or
a B region and the corners can be correspondingly labelled by elements
of A or B as follows. Every 2-cell of K contains a unique subdisc D,.
Opposite a corner is an edge of D; labelled by an element of 4 or B. Take
this to be the labelling of the corner. By moving anticlockwise around the
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boundary of a 2-cell of K the corner labellings spell out a cyclic rotation
of some w; or w,-_l. By moving clockwise around a 0-cell of K the corner
labellings spell out the trivial element (of A4 or B) except for o which spells
out a non-trivial element of A or B. [J

NOTE. It may not be possible to specify that the non-trivial element lies
in A as this simple example shows. Let A = (a), B = {(b) be two infinite
cyclic groups generated by a, b respectively. Let the words of the attaching
2-cells be ab~1, b. In this case the 2-cells of the required subdivision have
either two corners (those modelled on @b ~') or one corner (modelled on b)
and the only possible subdivision of the 2-sphere satisfying lemma 3.1 is
the trivial one with single vertex labelled . This is a place where Klyachko’s
version is definitely wrong (rather than badly stated).

Let w e G=*{t) be an element of the free product of a group G with
the infinite cyclic group <¢). Then w can be written uniquely (up to cyclic
rotation) in the form w = g, #%1g, - - - % where each g, € G, each g, = *+ 1
and g; can only be 1 if it has neighbouring #’s (in cyclic order) with the
same exponent. We call g4, ..., g, the coefficients of w.

The following lemma is proved in [H,]. It is closely related to ““pictures”
[Ri, R,, Sh].

LEMMA 3.2. Let G be a group and consider the free product G * {t)
of G with an infinite cyclic group (generator t). Let N = W)y be the
the normal closure in G *{t) of some subset of elements W C G * (t).
Suppose N n G # {1} then there is a cell subdivision K of the 2-sphere
such that

a) the I-cells of K are oriented,

b) the corners (all oriented clockwise) are labelled by coefficients of elements
of W,

c) the clockwise product of the corner labelling around any 0-cell is 1 except
for one vertex where it is non trivial,

d) the corner labels of any 2-cell (in anticlockwise order) are the coefficients
of w or w-l! for some we W (up to cyclic rotation) with the
property that, if on passing from one corner to an adjacent corner the
element t or t~!' s inserted according to whether the intervening
edge is oriented in the same or opposite direction, then the whole
of w or w~! s recovered.
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Proof. The proof is very similar to 3.1. Let K; be a 2-dimensional
complex such that n;(Kg, *¢) = G. Adjoin an oriented 1-cell y to the base
point * to form a 2-dimensional complex K = Kgv S! with ;K = G * {¢).
Attach 2-cells to K by the words w € W to form L. Since N n G # {1} there
is a non contractable loop in K represented by a map f:S',1 — Kg, *¢
which can be extended to a map f:D?— L.

We now proceed as in the proof of lemma 3.1 with the réle of * played
by a point p in the interior of y. We construct a graph whose (thickened)
vertices are the inverse image of the 2-cells and whose edges are the inverse
image of p. By making similar simplifications and passing to an innermost
component, as before, we may assume that this graph is connected. Replace
D? by a sphere as before. The dual subdivision now defines K. The
orientation of the 1-cells is determined by the orientation of y and it
only remains to observe that these oriented edges correspond to the new
generator 7. [

4. APPLICATION TO THE KERVAIRE PROBLEM

In this section we give Klyachko’s application of the crash theorems to
prove theorem 1.1 in the case in which exponent sum of ¢ in the word w
is 1. As remarked in the introduction this implies the Kervaire conjecture
for torsion-free groups.

We say that a system of equations {w(#) = 1|w e W} in the variable ,
with coefficients in a group G, has a solution over G if there is a group G
containing G as a subgroup and an element x € G such that the relations

{w(x) = 1|w e W} are satisfied in G. It is clear that this is equivalent to
the natural map

G (1)
KW

being injective, where «( W) denotes the normal closure of W in G * (t).
Now let H be a subgroup of G and let g € G. We say that g is free
relative to H if the subgroup <(g, H)Y of G generated by g and H is naturally
the free product (g) * H of an infinite cyclic group (g) with H.
We shall apply the crash theorem with stops to prove theorem 4.1 (below)
and then use an algebraic trick to deduce the case ex (w) = 1 of theorem 1.1.
If g, h are elements of a group let g” denote 4 - lgh.

G —
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THEOREM 4.1. Let H and H' be two isomorphic subgroups of a
group T under the isomorphism h— h®, h e H. Suppose that for
each i, a;,b;, are elements of T such that a; is free relative to H
and b; is free relative to H'. Let c¢ be an arbitrary element of T.
Then the system of equations

(1) (boai)blaabzatz e brai)ct =1
2) he — hi,he H

has a solution over 1.

Proof. Assume not. Then by the second transversality lemma there is a
cell subdivision of the 2-sphere such that, the 1-cells of K are oriented, the
2-cells are of the four types I, I’, II and II’ illustrated in figure 5 with the
corners labelled by elements of G as shown and such that the clockwise
product of the corner labelling around any O-cell is 1 except for one vertex
(where 1t is non-trivial). Assume that K is minimal with these properties.

[‘27‘ + 2,4r + 1]

e IT A1

FIGURE 5
The 2-cells 1, I, {I and II’
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A traffic flow is now defined on K as follows. At time O let a car on the
boundary of a country of type I or I’ start at the corner labelled by or b, :
and proceed in an anticlockwise manner with respect to the orientation of
the edge along which it is travelling, moving from corner to corner in unit
time except at the corner labelled ¢ or ¢~! where it stops for 27 — 1 units.
The times when the car is at each corner are illustrated in figure 5. For
countries of type II or II’ the car starts at the corner labelled ~® or ho!
and proceeds in an anticlockwise manner moving from corner to corner in
unit time.

The fact that the edges are oriented will be used to derive various
properties of this flow and of the cell subdivision K. We shall think of the
orientation arrows as pointing uphill so that corners come in four types:
top corners, of which the corner labelled b, in 2-cells of type I (see the figure)
is an example; bottom corners, for example the corner labelled ay; up cor-
ners, for example ¢, and down corners, for example ¢ —!. Similarly the 0-cells
of K come in three types: maxima or sinks, where all the corners are top cor-
ners, minima or sources, where all the corners are bottom corners and saddles,
where some of the corners are uphill or downhill. Notice that at a saddle the
up and down corners are equal in number and must alternate around the 0-cell
(figure 6) although they may be separated by top or bottom corners.

A
a|c
-1
a C
C—l C
blb
A
FiGURE 6

Up and down corners alternate around a 0-cell

PROPERTY 1: ONE-WAY FLOW. If two cars are on roads at the same
time then they are both either moving uphill or both downhill.

Indeed, in intervals of time of the form (2n, 27 + 1), no car is moving
uphill and and in intervals of the form (2n —1,2n) no car is moving
downbhill.

Property 1 implies that there are no road crashes.

PROPERTY 2: STOPPING SCHEDULE. Cars always stop at up and down
corners but never at top or bottom corners.
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Property 2 implies that saddles are stopping vertices whilst maxima
and minima are not.

PROPERTY 3: SEPARATED STOPS. It never happens that there is one car
at an up corner and at the same time another car at a down corner.

Property 3 (together with the observation that up and down corners
alternate around a saddle) implies that stops are separated, as required for
the crash theorem with stops. It also implies that crashes can only occur at
maxima or minima.

PROPERTY 4: COHERENCE. If two cars in cells of type I or I are
both at a non-stop corner, then the corners carry the same label (possibly
inverted).

Thus if a crash occurs at a vertex with labelling giving a trivial product
which is a minimum (resp. maximum) then this implies a relationship in
{a;, H), (resp. {(b;, H')) or that some power of a;, b, is trivial for some i.
By the hypotheses of the theorem, this can only happen if there is a pair of
adjacent corners labelled by a;,a;' or h,h-!,.... So there is a neigh-
bouring pair of 2-cells of type 1,1’ or II,II’ which can be removed,
simplifying K. It follows that there can only be a total crash at the vertex
with non-trivial labelling contradicting the crash theorem with stops which
states that there are at least two. [

REMARK. By taking A and H' to be trivial in theorem 4.1, we can now
deduce a special case of theorem 1.1, namely the case when the 7-shape
of wis =1t~ 1...tt~'tt. The rest of the section introduces an algebraic
trick which will enable us to reduce the general case ex(w) = 1 to this
special case.

Let G be a group and consider the homomorphism ex: G * {¢) = Z. It
is clear that K, the kernel of ex, is generated by elements of the form
g"=t""gt",geq.

Any element of K has a canonical expression of the form k = gl//l . gﬁ/ﬂr,
where #; + ¢;,, for each i. We shall call the g, " the canonical elements
of k. Let min(k) be the minimum value of #;,i=1,...,r and max(k)
the maximum value. Fix a positive integer m. Consider the following sub-
groups of K:
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H = ¢k € K|min(k) > 0, max(k) < m — 2)
H' = ¢k € K|min(k) > 1, max(k) < m — 1)
J = (k € K|min(k) > 0, max(k) < m — 1)

and the following subsets:

X = {keK‘min(k) =0, max(k) <m — 1}
Y = {k € K| min(k) > 0, max(k) = m — 1}
Z = {k e K| min(k) > 1, max(k) = m} .

LEMMA 4.2. Let we G={ty satisfy ex(w)=1. Then, after con-
jugation, w can be written as a product

boaybyal -+ b,a,ct,
where a, € Y, b;ie X,i=0,....,r and ceJ for some m.

Proof. Clearly w can be written as a product k7 where keK. If k=1
the result is trivial. Otherwise let k = H]lvgﬁ/i be the canonical expression
for k. Conjugating by a suitable power of ¢, we can assume that min(k) = 0.
Let m = max(k). Since successive ¢; differ, we must have m > 1. Now
consider the appearances of the maximum m and the minimum O in the
canonical expression. Suppose that the first appearance is a minimum. Then
by collecting terms up to (but not including) the first maximum, we define
an element of X which forms the left part of the canonical expression for k.
If the first appearance is a maximum, then we would find an element
of Z instead. Continuing in this way we can write & as a product of
elements taken alternately from X and Z.

If the first element is from Z, i.e. kK = zxu where z € Z, x € X and u
1s the rest of the canonical expression, then we conjugate w by z to yield k¢
where k" = xuz'~'. Now the canonical expression for k' may be simpler
than that for k£ and the max may have dropped by 1, but the min is still 0
and now the expression of k£’ as a product of elements taken alternately
from X and Z starts with an element of X.

Thus we may assume that k& can be written as a product

X0Z0X1%1 ... X, Z,C

where x;,€e X,z;, € Z and ¢c=1 or ce X (and notice that ce J in
either case). Now let b; = x; and a§ = z; then w = k¢t has the required
expression. [
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LEMMA 4.3. Suppose that G is torsion free then any element a
of Y is free relative to H. Similary any element b of X is free
relative to H'.

Proof. Suppose that @ lies in Y. The case b € X is similar. Let
a=hx hyx, "+ h, where x; =t-"*1g;t"-1 and h; € H. We can assume
that g,,...,g,_1 and h,, ..., h,_, are never the identity element. Assume
there is a non trivial relationship w(a, H) = 1 which is minimal with respect
to the number of occurences of @ and its inverse ¢ ~!. In particular no
cancelling pairs aa~! or @ ~'a can occur in w. Since G is torsion free the
reduction of w to 1 can only occur as a sequence of elimination of pairs
hh-' where h € H or xx~', where x is an x; or x; .

Now let ¢’ = x1hyx, -+ x,_ and define the core g of a by a’ = pgp !
where p has maximal length. Then, in any subword of w of the form
ahah’ --- where a occurs n times, at least every copy of g, together with
the p in the first ¢ and the p ~! in the last @, must survive after cancellation.
Moreover in any subword of the form aha ! since A # 1 cancellation can
only involve combining 4,, A and A, ! after which no further cancellation
is possible. The result is now clear. [

THEOREM 4.4 (Case ex = 1 of theorem 1.1). Let G be a torsion-free
group and let w be an element of G=*{t) with ex(w) =1 then the
equation w =1 has a solution over G.

Proof. By lemma 4.2 we can assume that w = boagb,a) - b,a.ct,
where a, € Y, b;e X,i=0,...,r and c e J. We need to think of each
a;, b;,c as functions of ¢ and for clarity we shall introduce a new variable s.
To be precise let

w(s, t) = bo()an(t) -+ b(1)a,(t)c(r)s

where s and ¢ are independent variables.

Write ' for G={¢) and let H, H’' be the subgroups defined above.
There is an isomorphism ¢: H — H’ given by h® = h', h € H.

Lemma 4.3 gives the hypotheses of theorem 4.1, which implies that I’
embeds in I =<I,s|w(s, t)=1,h*=h®, he Hy. Now each of the
canonical elements of a;(?), b;(¢), c(¢) is either in G or lies in H’; moreover
in T we have hs = h¢ = h* for each & € H. It follows that w(s,s) = 1

inT.



KLYACHKO’S METHODS 67

Therefore there is a commuting diagram

r ¢ T
U i
G - G

Where G = %%;) Thus G — G is injective. [

REMARK. The alert reader will have noticed that the hypotheses of
theorem 4.4 can be weakened. All that has been used is that the coefficients
of w are of infinite order. Indeed a careful examination of the proof yields

the following sharper statement. If G — Q(% is not injective then one of
the separating coefficients in w has finite order (separating means between

atandat1).

5. THE GENERAL CASE

In this section we consider the adjunction problem as stated in the
introduction, in its full generality. We continue to work with torsion-free
groups. We shall introduce a class of words with exponent not necessarily 1
for which the methods of the previous sections can be adapted to provide a
solution to the adjunction problem. We call such words amenable. Before
defining amenability in general we shall consider a class of simpler words,
on which the general definition will be based, these we call suitable words.

I-SHAPES, 7-SEQUENCES AND SUITABILITY

Consider finite sequences whose elements are ¢ or r~!. We call such a
sequence a f-sequence. If m is a positive integer let ¢ denote the sequence
t,t,...,t, mtimes and let  ~™ denote the sequence ¢ ~1, ¢!, ..., r~ 1, m times.
A clump is a maximal connected subsequence of the form 7™ or ¢~ ™ where
m > 1 and these are said to have order m and — m respectively. We call a
clump of positive order an up clump and a clump of negative order a down
clump. A sequence is suitable if it has exactly one up clump which is not the
whole sequence and possibly some down clumps, or if it has exactly one down
clump which is not the whole sequence and possibly some up clumps.

It follows that, after a possible cyclic rotation or change ¢t~ ¢-1, a
suitable sequence has the form

(StroftT gLtk
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where s> 1, k>0 and r,>1 for i =0, ..., k. Notice that the power
sequences ¢”, n > 1 and the alternating sequences ¢z~ '¢¢-1...tf~! are not
suitable.

Any word in G *{t) has a ?-sequence associated to it, given by its
t-shape. Since we are only interested in words up to cyclic permutation we
shall say that a word is suitable if after a cyclic permutation its associated
sequence is suitable.

THEOREM 5.1. Suppose that G is torsion-free and that w € G * ({)
is a suitable word. Then w has a solution over G.

Proof. We shall prove the theorem directly without using the algebraic
trick used in the last section. Suppose that G does not inject in G«ngz By
the second transversality lemma there is a cell subdivision of the 2-sphere
such that, the 1-cells of K are oriented, the 2-cells are of the two types [
and 7’ illustrated in figure 7 with the corners labelled by elements of G and
such that the clockwise product of the corner labelling around any O-cell is
1 except for one vertex (where it is non-trivial). Assume that K is minimal

with these properties.

[2k + 2,4k + 1]

(1;93 £ > N s (22
0 1 2k 2k + 1
0  dk+1 2k+2 2k+1

>

[1,2k]
FIGURE 7
The 2-cells I, I’
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In figure 7 we have used double arrows labelled by (r) as an abbreviation
for r consecutive single arrows (corresponding to ¢7). For example the top
right double arrow in cell 7 represents s — 1 single arrows.

We shall organise a traffic flow on K as in the proof of theorem 4.1
and having precisely the same four properties that were listed there. Then
there can only be complete crashes at maxima or minima as before and such
a crash at a vertex with trivial labelling implies a simplification of the diagram,
just as before.

The traffic flow is defined in a very similar way to the flow in
theorem 4.1. The unit times for the motion are given in figure 7. We have
to explain what happens inside the clumps. The idea is to treat each of
these as a uphill or downhill section along which a car travels in unit time
pausing very briefly at each internal (stopping) vertex. The exception is the
one up clump in cells of type I, where the car parks at the last possible
stopping vertex while most of the motion takes place (in the other half of the
cells of type I'), with a similar (reversed) motion in cells of type I’. []

We now combine the theorem with the algebraic trick of the last section.
NORMAL FORM AND AMENABILITY

There is a definition of a normal form for a word based on any
t-sequence, which is similar to the form of lemma 4.2 (which can be
regarded as defining the normal form for the ¢-sequence ¢~ '¢7-1¢... £~ 1¢2).

To be precise, the normal form associated to a 7-sequence is obtained as
follows: arrange the #’s and 7~ !’s in the given sequence in anticlockwise
order around a circle with a vertex between each pair. Put arrows anti-
clockwise next to each ¢ and clockwise next to each #-!. The vertices are
now of the four types (top, bottom, up, down) defined in the proof of
theorem 4.1. Write a letter ¢ next to each up and each down vertex, a
letter b next to each top vertex and a letter ¢ next to each bottom vertex.
Reading the letters round the circle anticlockwise (starting anywhere) gives
the required normal form, where the letters a, b, ¢ are interpreted as generic
elements of Y, X, J respectively, where X, Y, J have the same meanings as
in lemma 4.2.

A word is amenable if it can be conjugated to a word in normal form for
a suitable t-sequence (as defined above the theorem). Notice that amenability
is again a property of the f-shape of a given word and that lemma 4.2
proves that all words of exponent =+ 1 are amenable.

THEOREM 5.2 (General case of theorem 1.1). Suppose that G is

torsion-free and that w € Gty is an amenable word. Then w has a
solution over G.
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Proof. The proof is a straightforward combination of the proof of
theorem 5.1 with the proofs given in the last section. This completes the proof
of theorem 1.1 announced in the introduction. [

REMARK. The reader can check that the proof of theorem 5.1 can be
adapted to a more general class of suitable words, namely words with several
up and down clumps, which are not interleaved. However it can be proved
that the corresponding notion of amenable words is exactly the same as that
given above so there is no point in pursuing this.

REMARKS ON AMENABILITY

We believe that Klyachko’s methods can, with further extension, be
adapted to give a solution to the adjunction problem for torsion-free groups
in general and we intend to pursue this in a later paper on the subject.
However, as we have seen, his methods extend without too much work to
the case of amenable words and we finish this section with a brief discussion
of amenability, and in particular, consider how general is this class of
amenable words.

In some sense (see below) nearly all z-sequences are amenable. However
it is definitely not the case that al/ sequences are amenable. We now give
some examples.

There are 17 ¢-sequences of lengths > 2 and < 8 (up to cyclic permuta-
tion, inversion and replacement of # by 7~ !) which fail to be amenable while
30 are amenable. Examples of amenable f-sequences are 3¢~ 1'¢r-1¢1-1,
t4t—2rr, 2t 1tr—2¢t-! and examples of non-amenable sequences are
18 t2r—2¢2¢t-2, ¢3¢t 1¢3t-1. Note that the 17 non-amenable sequences
include several sequences for which the adjunction problem is solved,
see below.

As length increases, the situation becomes progressively better and it can
be checked that the proportion of non-amenable sequences tends to zero as
length tends to o. Up to and including length 9, there is no difference
between suitable and amenable sequences, but as length increases the
difference becomes immense, with again very few sequences suitable compared
with (nearly all) amenable. The first example of a f¢-sequence which is
amenable but not suitable is 27~ '¢2¢-2ft-2 and a more typical (longer)
example is

P32 254
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The #-sequence ¢” is interesting because the adjunction problem is already
proved (without the torsion-free hypothesis) for words with this 7-shape [L].
However the methods discussed here do not extend this result to z-sequences
in normal form based on ¢”. An example is 3¢~ 1¢3¢-1.

Another interesting case is the sequence 77! which is not amenable.
However a simple trick (substitute #2? for #) makes it suitable. Hence
theorem 5.1 implies a solution to the adjunction problem (over torsion-free
groups) for words of the form grg’r~!. For words of this shape, torsion-
free is a necessary condition as the example in the introduction shows!

We do not yet have a simple test for amenability though it is easy from
the definition to write down large classes of amenable sequences. However
it can be seen that, speaking very roughly, a sequence is amenable unless
it is has a uniform slope, like #3¢-3¢3¢-3 or #3¢-3¢3¢ -3 (slope zero).

6. FURTHER APPLICATIONS

We give here the other applications from [KI] of the crash theorems,
not covered above.

THEOREM 6.1 (Application to free products). Let A, B be groups and
suppose each (cyclic) factor of u € A*B — A has infinite order. Then the
natural homomorphism A — (A*B|[A,u]l =1) is injective.

Proof. Suppose not. Then the conditions of the first transversality lemma
apply and there is a non trivial element @ € 4 such that a € (|4, ul). So
we have a cell subdivision K of the 2-sphere such that reading round from
the base point * for every 2-cell in K spells out the word

-1 -4, _ - _
w(a) = (cq aco)er -+ cy_1(c,'a eyt et

for some a € A, see figure 8. Note that if this 2-cell has the opposite orien-
tation then the word spelt out is w(a~1).

D A RN

—1 —1 =
>CO aco Cnd cn1<

FIGURE 8 e c c .
, _ -
The 2-cell labelled by w(a) N\ ) o e
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Now consider the traffic flow defined as follows. The car associated to
a 2-cell starts out from the base point * and proceeds in an anticlockwise
manner so that it takes a unit amount of time to reach the next corner. It
is clear that any crash must take place at a O-cell. By the crash theorem
there are at least two total crashes so we can assume it takes place at a
0-cell where the angle labels multiply to 1. There are two cases to consider.

If the crash occurs at time 0 mod #n then the clockwise labelling around
this 0-cell is ¢ 'a;cq, c; 'ascy,...,c; ' arc, where aja, - a, =1 and
o =0 or a = n. A simple calculation shows that the anticlockwise product
of the remaining angles of these k 2-cells is 1. So we may simplify the situa-
tion by collapsing these k 2-cells to a point.

If the crash occurs at a time # 0 mod »n then the clockwise labelling
around this O-cell is ¢ = 1 for some 0 < i < n and some k > 1 contradicting
the torsion free hypothesis. [

Let H, H' be groups and let ¢: H — H’ be an isomorphism. We shall use
the notation #¢ to denote the image of # € H under ¢. Similarly we shall
write ¢?:= b~'ab for conjugation.

THEOREM 6.2 (Application to HNN extensions). Let H and H' be
two isomorphic subgroups of the group A under the isomorphism
h—h®, he H Let B beagroup and let we A+*B — A have torsion
free factors. Then the natural map

A= (A, B|lw-thw=h heH)
IS injective.
Proof. Consider the following groups

A ' =(A,t|t"'ht = h®, h e HY,

A" =(A, t,Blt - 'ht=ho,[a,t-'w]=1,[t,wl=1,he Hyae A)
=(A",B|[a,t"'w]l=1,[t,w] = 1l,a e A),

A" =(A,B|w-thw="ho heH).

We can construct the following commuting diagram,
AIII
by

A 5 a b a
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where the maps a, B,y and & are induced by inclusion. In order for y to
be a well defined homomorphism it is necessary to check that the
relation w-'hw = h®, h e H is a consequence of the relations 7~ 'ht
=ho [a,t-'wl=1,[t,w]=1,he H,ae A. But this follows because
w-lhw = w1t~ thit-'w=w-1th®t-'w=h®. Now a 1is injective
because A’ is an HNN extension of A (see [DD, p. 33] or [Se, p. 9))
and P is injective because of theorem 6.1. So & is injective and this proves the
theorem. [

THEOREM 6.3. Let
(*) ui(t)y=1,iel

be a set of equations over the group A where the exponent sum of t
in each u;(t) is zero. Suppose w = w(t) e A={t) — A and the factors
of w are all torsion free. Then the set of equations

(%) u;(w() =1,iel
has a solution over A if and only if the set (¥) has a solution over A.

Proof. Let w(f) = at where @ € A has infinite order. Then a solution x
for u;(w(¢)) = 1 defines a solution af for (*).

Conversely suppose x € A’ is a solution of the set of equations
{u;(t) = 1]i eI}. Let G be the subgroup of A’ generated by

{x-rax"|lae A,neZ}.
Then A is a subgroup of G and G is a subgroup of
H={(G,t|wgw=g?geG)

where g® = x~'gx by theorem 6.2. Because of the exponent sum condition
uw)=1,iel. [
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