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320 A.L. EDMONDS

of simple closed curves meeting A, in exactly one point. Now we can band
together the components of B’, using bands in the complement of A, to
create a closed curve B” representing 7, and meeting A, in exactly one
point. But B” may now have self-intersections. We may then eliminate the
self-intersections by sliding segments of B” over A,. This creates a simple
closed curve B, meeting A, in exactly one point, and representing a homology
class of the form [, = v, + ka,, which proves the claim.

Now the union of the two curves A, and B, has a small neighborhood N
of the form of a once punctured torus. Let F,, denote the result of removing
N and replacing it with a disk D. Then F,, — D =F — N C F and inclusion
identifies H{(F,) with the orthogonal complement of «, and (3, in H{(F).
Thus the homology classes «j,..., a,_; determine well-defined classes in
H(F,), which we continue to call by the same names. By induction there are
pairwise disjoint simple closed curves Aj,...,A,—; in F, representing the
homology classes «j,...,a,_1. Then these curves also live in F', determining
the same homology classes, and are disjoint from the curve A, . This completes
the proof.

Here is a sketch of a standard but somewhat more learned proof of
Proposition 4.2, suggested by M. Kervaire: Any basis for a self-annihilating
summand of a skew-symmetric inner product space over Z can be extended
to be part of a symplectic basis. Any two symplectic bases are related by
an isometry of the inner product space. Half of a fixed standard symplectic
basis is clearly represented by standard pairwise disjoint simple closed curves
in a standard model of the surface. And any isometry is induced by a
homeomorphism of the surface, so that the standard curves are taken to
the desired curves. To see that any isometry is induced by a homeomorphism
one can argue that the symplectic group is generated by certain elementary
automorphisms and that these elementary automorphisms are induced by Dehn
twist homeomorphisms around standard curves on the surface.

5. DISJOINT SIMPLE CLOSED CURVES ON A PLANAR SURFACE

Subsequent proofs of realizability of non-independent homology classes
will proceed by cutting the surface along curves representing a basis for
homology until it becomes a punctured 2-sphere and then representing the
remaining homology classes by disjoint curves on this planar surface. We
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therefore first investigate directly the case of homology classes in a planar
surface.

In this section G will denote a compact orientable planar surface with
with m oriented boundary components By, ...,B,. By the classification of
surfaces G can be thought of as being obtained from the 2-sphere by removing
the interiors of m disjoint disks. Now H;(G) is freely generated by the
homology classes [B;], subject to the single relation > [Bil=0.

By the Schonflies Theorem any simply closed curve C in G divides G
into 2 parts, showing that any such C is homologous to a sum of boundary
curves, up to global sign. That is, we have half of the following lemma.

LEMMA 5.1. A homology class v = > ¢&;i[B;] € Hi(G) is represented by
a simple closed curve if and only if ¢; € {0,+1} for all i, or g € {0,—1}
for all i.

Proof. It remains to show that a given v = > &l[B;] € Hi(G), with
g; € {0,1} is represented by a simple closed curve. One can organize this
process by choosing a tree in G meeting only the boundary curves B; with
coefficient ; = 1, and then only in one point for each such B;. The desired
simple closed curve can be chosen to be the interior boundary of a small
regular neighborhood of the union of the tree and the boundary curves it
meets.

Note, for example, that [B;]+4[B>] is represented by a simple closed curve,
while [B;] — [B>] and [B;] + 2[B;] are not.

We call a homology class, as in the statement of Lemma 5.1 a basic class.
Notice that if ~ is basic, then so is —v. Notice also that a nonzero basic
class has a unique representation with all nonnegative coefficients. There are
2™ — 1 nonzero basic classes, then, that we want to consider.

We now consider a family of homology classes vi,...,% € Hi(G) and
ask when they can be represented by pairwise disjoint simple closed curves
in G. Using the above lemma together with the fundamental defining relation
for the homology of G we may as well assume that each

vi=Y eylB]
where each ¢; € {0, 1}. Now all intersection numbers in G necessarily vanish,
so there 1s no analogue of the Intersection Condition from Theorem 1.

If @ =) ¢&[B] € Hi(G) then we define the partition of «, denoted
part a = {C, D}, to be the partition of the set {[B;]:i=1,...,n} consisting
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of the set C of [B;] that have nonzero coefficients ¢; and its complement D.
Note that since the representation of « as such a linear combination is not
unique, it is necessary to include discussion of the complementary sum. Note
also that @ and —a have the same partitions.

PROPOSITION 5.2. Two basic classes oy, oy € H1(G), with corresponding
partitions part o; = {C;,D;}, are represented by two disjoint simple closed
curves in G if and only if oy and oy are individually represented by simple
closed curves and C; C Cy or C; C D».

Proof sketch. The point is that the tree used to determine a simple closed
curve A; for o does not separate G. Therefore, if the support of «a;, or its
complement, is disjoint from the support of «;, then one can find a tree for
ap 1n the complement of the tree for «; and the boundary curves it touches.

The proof of Proposition 5.2, extends inductively to prove the following
result.

PROPOSITION 5.3. A set of homology classes S = {ay,...,o} C Hi(G),
with corresponding partitions part(cy;) = {C;,D;}, is represented by a
corresponding set of pairwise disjoint simple closed curves in G if and
only if each «; is individually represented by a simple closed curve and for
each i,j C; C C;j or C; C D;.

COROLLARY 5.4. A set S of homology classes in H;(G) is represented by
pairwise disjoint simple closed curves in G if and only if any two elements
of S are represented by disjoint simple closed curves in G.

The analogue of the preceding result will be seen to fail for closed surfaces.

COROLLARY 5.5. A set S of pairwise distinct homology classes in H{(G)
that is represented by pairwise disjoint simple closed curves in G has at most
2m — 3 elements, including the boundary curves.

Proof. 1t suffices to assume that S contains no classes homologous to
boundary curves and to show that card § <m —3. Let k =card § and let A
denote the union of a set of disjoint simple closed curves in G representing
the elements of S. The realization of each element of S divides G into 2 parts.
The k elements then divide G into k+ 1 parts X,. Since the classes in S are
not parallel to boundary classes, the components X, of G cut open along the
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simple closed curves representing the elements of S all have negative Euler
characteristic. Therefore 2 —m = x(G) = >, x(X¢) < (k+ (—1). It follows
that &k < m — 3, as required.

In general there are many apparently different ways to realize realizable
homology classes. But up to homeomorphism we have the following uniqueness
result.

THEOREM 5.6. Suppose that a set of homology classes S = {a1,...,ax} C
H,(G) is represented by two different families Ay, As, ..., Ay and A}, A5, ... LA
of pairwise disjoint simple closed curves in the planar surface G. Then there
is a homeomorphism f : G — G inducing the identity on homology such that

fA) =Al for j=1,... k.

We note that the analogue of Theorem 5.6 for closed surfaces is false. We
also note that this result shows that in the process of realizing a realizable
family of homology classes one-by-one, one cannot get “stuck”, which can in
fact happen in the case of closed surfaces.

Proof of Theorem 5.6. The overall argument will be by induction on the
the number k of homology classes in question. We can assume that G has at
least 3 boundary curves. Then any homeomorphism inducing the identity on
homology will map each boundary component into itself. It follows that we
can assume that the set § of homology classes contains no boundary classes.
First consider the case k = 1 of just one non-boundary class «; and two
different simple closed curves A; and A realizing it. Note that the same
boundary curves appear on corresponding sides of A; and of A}. It follows
easily from the Schonflies Theorem that there is a homeomorphism moving
A; onto A} and preserving the corresponding sides. One can then arrange
that this homeomorphism induce the identity on the boundary by composing
with a homeomorphism that appropriately permutes the boundary curves while
leaving A/ invariant. To argue this in a little more detail, let G denote the
2-sphere obtained by collapsing all the boundary curves to single points. The
the usual Schonflies Theorem shows that there is a homeomorphism of G
mapping A; onto A]. By composing with a homeomorphism that exchanges
the two sides of A} if necessary, we can assume that this homeomorphism
maps the complementary domains of A; to the corresponding complementary
domains of A}. Then homogeneity shows that one can further arrange that
this homeomorphism can be arranged to map each ideal point to itself. One
can then “blow up” the ideal points to the original boundary curves.
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Now, proceeding inductively, consider the case of k > 1 homology classes.
One of these homology classes, say «y, has a minimal partition C, Dy, in
the sense that C; contains no other C; or D; for j< k. By the preceding
argument we may assume that Ay = A;. One side of A; contains no other
simple closed curves A; or A;. Excise this side to obtain a new planar surface
H containing the remaining simple closed curves. By induction there is a
homeomorphism 4 of H moving A; onto AJ’- for 1 <j<k—1. and mapping
each boundary curve into itself. We can then reinsert the excised domain to
complete the argument.

The results of this section, with the exception of Theorem 5.6 above, hold
mutatis mutandi for compact non-planar surfaces G with boundary, provided
one only considers homology classes given as linear combinations of the
classes represented by the boundary curves. Each such simple closed curve in
the interior of G would separate G. Uniqueness, however, is obstructed by
needing to know the genus of each complementary domain.

6. SUFFICIENCY IN THEOREM 3

Let S C H{(F) denote a finite set of distinct homology classes satisfying
the Intersection Condition, the Summand Condition, and the Size Condition
of Theorem 1, which we wish to represent by pairwise disjoint simple closed
curves. Suppose that the linear span of S has rank n and extract from S n
elements «j,...,q, that form a basis for this span. Now each element -y; in
the remaining subset 7 of S can be expressed as a linear combination

Vi = E €ij -
J
We refer to the ~; as “composite classes.”

LEMMA 6.1. Each coefficient ¢;; in the linear combination ~y; = Zj Eij O
is 1, —1, or O.

Proof. To see this, consider the span of the set consisting of any one
~; together with all a4, k # j. Elementary change of basis operations show
that this span is the same as the span of ¢;«; and the o, k # j. By the
Summand Condition, this span must be a summand, and it therefore follows
that ;; = &1 or 0.
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