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REMARK. We have so far excluded from our discussion curves of constant
width = on the sphere x*+y?+72 =+ (K > 0). Although our methods do
not apply to these curves, they are easily dealt with, being characterized as
the Jordan curves ~ which remain invariant under the isometry ¢: Sx — Sk
given by g(x,y,z) = (—x,—y, —z). This map g exchanges the two regions
bounded by v in Sg (so these regions have the same area 2%), and also
exchanges the two arcs into which ~ is divided by any pair of antipodal
points (so these two arcs have the same length). Hence Theorem D is not
valid in this case. If we consider (for small d) a parallel curve v; to 7y
then v has constant width % — 2d. Since <y has arbitrarily long perimeter
and does not need to be convex, the same applies to ; (but the longer the
perimeter of -y, the smaller 4 must be in order to ensure that -, has no
self-intersections).

4. PROOF OF THE MAIN RESULTS

We have now gathered all the necessary tools, and the proofs of Theorem B
and Corollary C are a simple matter.

Proof of Theorem B. We assume K > 0, the case K < 0 being similar.
Using (14) we have

L . L
L =f(L) —£0) = /0 f(s)ds = ﬂ% / ky(s)ds — L cos(vVE W),
0

and therefore

sin(v K W) &
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by the Gauss-Bonnet theorem. [

Proof of Corollary C. First we treat the case K > 0. From Theorem B

2 . . . .
we see that A < <%, which means that the region we are interested in has
the smallest area of the two regions bounded by v in Sg. We also assume
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that £ < %, otherwise L is too large for v to be a circle and the desired
inequality holds trivially. Under these conditions inequality (1) is equivalent to

17) A< 71{- {27r— \/47r2—K£2}.

Combining Theorem B and (17) we obtain

1
L> \/Etan(\/[_?/v)\/émz — K L2,

which is equivalent to

(18) L > —=sin

— and this is the inequality we want. If equality holds in (18) then it also
holds in each of the equivalent inequalities (17) and (1) — and therefore -y
is a circle.

The case K < 0 has a similar (and easier) treatment. We begin by rewriting
(1) in the form '

Ag—%{ 47r2—K£2—27r},

and then proceed as before.  []
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