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MOYENNES SUR CERTAINS ENSEMBLES DE DIVISEURS

D'UN ENTIER

par Jean-Marie De Köninck et Jacques Grah1)

Abstract. Given an arithmetical function /, we examine the

average value of f(d) as d runs through subsets of the divisors d of an

integer n. In particular, we study the functions f(n)= £ f(d),f(n)
l(n) d I n

—L S f(d) and /(«) —— £ where x(n) is the
a\n 2»<")

d squarefree (d,n/d) 1

number of divisors of n and co («) stands for the number of distinct prime
factors of n, and show that their arithmetic properties resemble those of /.

1. Introduction

Soit F l'ensemble des fonctions arithmétiques. On dit que / e F est

additive si f(mn) - f(m) + f(n) lorsque (m, n) 1. Si n qf q\2... q*r
est la décomposition canonique de n, alors les fonctions co(n) Y,p\nl r>

Q(n) E/=1a/ et log« sont additives. Lorsque l'égalité f(mn) f(m)
+ f(n) est valable pour tous les entiers positifs m et n, on dit que / est
totalement additive. Si en plus d'être additive, / satisfait f(pa) f(p)
pour chaque nombre premier p et tout a e N, on qualifie / de fortement
additive.

Une fonction / e F est dite multiplicative si f(mn) f(m) f(n) lorsque
r

{m, n) 1. C'est le cas des fonctions X(n) (- 1)Q("), t(n) H (a/ + 1)»

§(n) L l,o(«)= Xi ^ l(n) 1 V« ^ 1, ô(«) qxq2... qr (qu'on
m ^ n d\n

(m, n) 1

]) Travail supporté en partie par une subvention du CRSNG et une subvention du
programme FCAR. 1991 Mathematics Subject Classification: 11A25, 11N37.
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appelle «noyau de «»), de la fonction de Moebius \x(n) définie par

n(«)

1 si n 1

0 si p11 n pour un certain nombre premier p
(- l)r si n qxq2... qr\ Qi premiers distincts

et enfin de la fonction E(n) qui vaut 1 si n 1, et 0 autrement. Lorsque
l'égalité f(mn) f{m)f(n) est valable pour tous les entiers positifs m

et n, f est dite totalement multiplicative. Une fonction multiplicative / telle

que f(pa) f(p) pour chaque nombre premier p et tout a e N est dite

fortement multiplicative. On désigne par Jt (respectivement par W ,Jt et

par -50#) l'ensemble des fonctions multiplicatives (respectivement l'ensemble
des fonctions totalement multiplicatives et l'ensemble des fonctions fortement

multiplicatives). De même, on désigne par j/, W.sd et Jùj/ les ensembles

des fonctions additives, totalement additives et fortement additives.
Très souvent, étant donné une fonction arithmétique /, on est appelé à

étudier des expressions de la forme

(1.1) I f(d),I I f{d),
d\n d\n d\n

d libre de carrés (d, n/d) - 1

où, dans chaque cas, l'argument de / parcourt tous les diviseurs de l'entier
positif n ou encore un sous-ensemble de ses diviseurs; la troisième somme
de (1.1) parcourt ce qu'on appelle communément les diviseurs unitaires
de l'entier n.

Notre étude portera d'abord sur les fonctions arithmétiques /, / et /,
associées à une fonction arithmétique / donnée, et définies respectivement par

/("):= -7— I f(d),/(«):= —L S

„ T (n)dIn2C0(") d\"
(1.2) d libre de carrés

2®(n)
(d, n/d) 1

En effet l'étude des sommes du type (1.1) et celle des sommes
correspondantes (1.2) s'avèrent être deux problèmes analogues; toutefois les

sommes (1.2) ont l'avantage d'avoir une interprétation «plus naturelle» en ce

sens que chacune d'elles représente une moyenne de la fonction / lorsque

son argument parcourt un sous-ensemble particulier de diviseurs de l'entier n.
De plus, comme on le verra ci-dessous, les sommes du type (1.2) possèdent
des propriétés arithmétiques qui rendent leur étude beaucoup plus facile

que celles du type (1.1).
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Les trois fonctions f.fetf représentent donc la moyenne des valeurs

de f prises respectivement sur les diviseurs de sur les diviseurs libres

de carrés et sur les diviseurs unitaires de Par exemple si f{ji) 2

alors f (n) x(n2)/x{n).Si f(n) A (n) logp si^ n (pour^ un

certain ppremier et m ^1), 0 autrement, alors f(n) A A

log (8(n))/2aM et À(n) log (n)/x(n).Il est également facile de vérifier

que X(n)=E(n), ä(n)= Zpa\lna/(1 + a)=<ù_(n) - Y,p^n 1/(1 + a),

©(«) co(ra) co(n)/2 Q(n) et que 1=1=1=1. Plusieurs autres

exemples seront exposés dans cet article.

Nous étudierons donc ici les propriétés arithmétiques des fonctions

/, / et y C'est ainsi qu'à la section 2, on démontre que, vues comme des

opérateurs sur l'ensemble F, ces fonctions «héritent» du caractère additif de

la fonction originale /, ou de son caractère multiplicatif, selon le cas.

Réciproquement, de (1.2), on montre que / hérite du caractère additif ou

multiplicatif des fonctions /, et /. En effet, en utilisant la notation
habituelle / * g pour désigner le produit de Dirichlet des fonctions arithmétiques

f et g, et *w la restriction de * aux diviseurs unitaires, alors, si

/ e F telle que f e M, des égalités / t/ * p et p * t 1, on déduit

facilement que / e j/. Pour f e sd les identités / 2C0/*W(-l)03 et

(-1)CÙ*U2CÛ= 1 permettent d'établir l'additivité de /. Lorsque les fonctions

/ et / appartiennent à on obtient la multiplicativité de /
directement à partir des formules d'inversion de Moebius sans faire appel aux
identités p * t 1 et (- l)03 2e0 1.

Nous traitons, à la section 3, des liens qui existent entre la valeur

moyenne de / sur un intervalle donné [l,x] et celles des fonctions /, f et /.
Ainsi on établit que lorsque / e JCjsf et satisfait certaines conditions de

régularité, alors / n'est pas nécessairement dans mais pourtant /
possède une valeur moyenne si et seulement si f en possède une. On

complète cette section avec l'étude du comportement des itérations
successives /,/,/,

La question naturelle de l'écart, pour un entier naturel n, entre f(n) et
— A ~

chacune des quantités f(n),f(n) et f(n), est soulevée à la section 4. On
démontre que ces écarts, interprétés comme des fonctions arithmétiques,
préservent l'additivité, ce qui permet d'analyser plus facilement leur ordre
de grandeur.

Enfin, à la section 5, étant donné une fonction arithmétique /, on
considère des sous-ensembles de diviseurs d'un entier n qui ont la propriété
d'être «multiplicatifs» et on introduit la notion de moyenne des valeurs de
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la fonction / sur ces ensembles de diviseurs de n. Certains des résultats établis
dans cette section donnent d'ailleurs lieu à plusieurs identités surprenantes.

Les auteurs remercient le rapporteur dont les nombreuses suggestions leur
ont été utiles pour la version définitive de ce travail.

2. Propriétés arithmétiques de /, / et /
On définit sur F les opérateurs T, T et T par T(f) \= /, T(f) : f et

T(f):=f.
Du prochain résultat, il découle en particulier que toute fonction arithmétique

est elle-même la «moyenne» d'une autre fonction arithmétique.

Théorème 2.1. L'opérateur T établit une bijection de F sur F.

Il en est de même pour l'opérateur T.

Démonstration. Pour chaque / e F,

T(f) / =i (1 * /) si et seulement si / \i * t/T

1

et T(f) / — (1 *uf) si et seulement si / (- l)w *w 2e0/
2«

d'où le résultat.

Exemples. Ainsi il est intéressant de se demander quelles sont les images

par l'opérateur T~l ou par l'opérateur T-1 de certaines fonctions
arithmétiques classiques, soit par exemple les fonctions co, A, X(n) et E(n). On

vérifie successivement que

p\\n
co {n) (co + k)(n), où k(n) =* £ 1,

A (n) g(n), où g(n)
0 si n 1,

P I r,(_l)œ(n)£ Jogi si 1,

X{n) X(n)x(n2),

E(n) \i{n) jü(w).

L'opérateur T n'est pas injectif. En effet, si on pose g\(n) i(n)/n,
g2(«) 2Cû(")/fl et g3(fl) «= 2alors

êi(«) =ft(/i) 2-J](l+ 2/p)

1

n e += 0<")

ô(«)2®(") pin ô(n)
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