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Now let Y be a 3-manifold satisfying the conditions of Proposition 1}. If
0Y + @, we define A, on Y using absolute boundary conditions on JY.

PROPOSITION 16. Zero lies in the spectrum of Y.

Proof. This is a consequence of Propositions 11 and 13. [

5.3 FOUR DIMENSIONS

In this subsection we relate the zero-in-the-spectrum question to a question
about Euler characteristics of closed 4-dimensional manifolds.
If M is a Riemannian 4-manifold then the Hodge decomposition gives
(5.7) A(M) = Ker(No) @ A°(M)/ Ker(d),
A (M) = Ker(Ay) & dAY(M) & A'(M)/ Ker(d),
A2(M) = Ker(A,) @ dAYM) & «dAL(M),
A3(M) = x Ker(A)) @ *dA'(M) @ (A (M)/ Ker(d)),
A*(M) = x Ker(Ao) @ *(A°(M)/ Ker(d)).

Thus for the zero-in-the-spectrum question, it is enough to consider Ker(Ay),
Ker(/\)), J(Ao on AY/ Ker(d)), O'(Al on Al/Ker(d)) and Ker(A\,).

Let I" be a finitely-presented group. Recall that I' is the fundamental
group of some closed 4-manifold. To see this, take a finite presentation of
I". Embed the resulting presentation complex in R> and take the boundary of
a regular neighborhood to get the manifold.

Now consider the Euler characteristics of all closed 4-manifolds X with
fundamental group I'. Given X, we have y(X#CP?) = x(X) + 1. Thus it is
easy to make the Euler characteristic big. However, it is not so easy to make
it small. From what has been said,

{x(X): X is a closed connected oriented 4-manifold with
(5.8) mX)=T}={neZ:n>ql)}
for some ¢q(I’). A priori gI') € Z U {—oc0}, but in fact gI) € Z
[17, Theorem 1]. (This also follows from (5.9) below.) It is a basic problem

in 4-manifold topology to get good estimates of g(I').
Suppose that 7;(X) = I'. From Properties 4, 7 and 8 above,

(5.9) X(X) = 26(T) — 2630 + BP(X) .

In particular, if 5{’(I") = 0 then x(X) > 0 and so ¢(T)) > 0. This is the case,
for example, when I' is big or when T" is amenable [5].
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PROPOSITION 17. Let X be a closed 4-manifold. Then zero is not in the
spectrum of X if and only if m(X) is big and x(X) = 0.

Proof. Suppose that zero is not in the spectrum of X. Then from
Proposition 11, m;(X) must be big. Furthermore, Ker(A,;) = 0. From
Property 1 and (5.9), x(X) = 0.

Now suppose that 7(X) is big and x(X) = 0. From Proposition 11,
0¢ o(Lo) and 0 ¢ o(4\). From Property 1 and (5.9), Ker(A;) = 0. Then
from (5.7), zero is not in the spectrum of X. O

REMARK. If zero is not in the spectrum of X then it follows from
Property 9 that in addition, 7(X) = 0. Also, as will be explained later in
Corollary 4, if m(X) satisfies the Strong Novikov Conjecture then v, ([X])
vanishes in Hy(Bm;(X); C).

In summary, we have shown that the answer to the zero-in-the-spectrum
question is “yes” for universal covers of closed 4-manifolds if and only if
the following conjecture is true.

CONIJECTURE 2. If T is a big group then g(I') > 0.

We now give some partial positive results on the zero-in-the-spectrum
question for universal covers of closed 4-manifolds. Recall that there is a
notion, due to Thurston, of a manifold having a geometric structure. This
is especially important for 3-manifolds. The 4-manifolds with geometric
structures have been studied by Wall [32].

PROPOSITION 18. Let X be a closed 4-manifold. Then zero is in the
spectrum of X if

1. m(X) has property T or
2. X has a geometric structure (and an arbitrary Riemannian metric) or

3. X has a complex structure (and an arbitrary Riemannian metric).

Proof.

1. If X has property T then the ordinary first Betti number of X vanishes
[6]. Thus x(X) =2+ by(X) > 0. Part 1. of the proposition follows.

2. The geometries of [32] all fall into at least one of the following classes :
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a. bP #0: 5, $? x$?, CP2.

b. 0€o(Apon A/ Ker(d)) : R*, $* xR, §* x R?, Nil’ xR, Nil*, Solg,
Solt, Sol,

G b(lz) £0: 82 x H?.
d. 0€o(A; on A/Ker(d)) : H® xR, SL, x R, H? x R%.
e. x>0: H*, H?>xH?, CH>.

Part 2. of the proposition follows.

3. Suppose that zero is not in the spectrum of X. From Properties 7 and 9,
x(X) = 7(X) = 0. From the classification of complex surfaces, X has
a geometric structure [32, p. 148-149]. This contradicts part 2. of the
proposition. [

5.4 MORE DIMENSIONS

In this subsection we give some partial positive results about the zero-in-the-
spectrum question for covers of compact manifolds of arbitrary dimension.
Let us first recall some facts about index theory [18]. Let X be a closed
Riemannian manifold. If dim(X) is even, consider the operator d + d* on
A*(X). Give A*(X) the Z,-grading coming from (3.12). Then the signature
7(X) equals the index of d+ d*. To say this in a more complicated way, the
operator d+d* defines a element [d+d*] of the K-homology group Ko(X). Let
n : X — pt. be the (only) map from X to a point. Then n.([d+d*]) € Ko(pt.).
There is a map A : Ky(pt.) — Ko(C) which is the identity, as both sides are
Z. So we can say that 7(X) = A(n([d + d*1)) € Ko(C).

We now extend the preceding remarks to the case of a group action. Let
M be a normal cover of X with covering group I'. The fiber bundle M — X
is classified by a map v : X — BI', defined up to homotopy. Let d be exterior
differentiation on M. Consider the operator d+d*. Taking into account the
action of I" on M, one can define a refined index ind(3+3*) € Ko(Cr 1),
where C:T" is the reduced group C*-algebra of T .

We recall the statement of the Strong Novikov Conjecture (SNC) [18, 29].
This is a conjecture about a countable discrete group I', namely that the
assembly map A : K,(BI') — K,(C;T’) is rationally injective. Many groups
of a geometric origin, such as discrete subgroups of connected Lie groups or

Gromov-hyperbolic groups, are known to satisfy SNC. There are no known
groups which do not satisfy SNC.
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