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(for K = 0 this follows immediately from combining Barbier’s theorem with
the isoperimetric inequality).

If v is a curve of constant width W in Sk, we say that p, p € v are
antipodal points if the (intrinsic) distance between them is W, which 1s to
say that they realize the diameter of . We prove a result that was already
known in the case of the euclidean plane (see [HS]):

THEOREM D. If v is a curve of constant width VW in Sk such that every
pair of antipodal points divides ~ into two arcs of equal length (and, in the
case of the sphere, if VV < %) then ~v is a circle.

We must emphasize that, except for Lemma A, proofs are only given for
regular curves, which for us means that they have no corners and the natural
parametrization by arc-length is C* (or just C* for big enough k). By the
expedient of using parallel curves, as explained in the next section, we can
extend our results to curves consisting of regular pieces and a finite number
of corners (piecewise regular curves), but further extension does not seem
possible using our methods.

The remainder of this article is organized as follows. In the next section
we discuss curves of constant width in the familiar setting of the euclidean
plane, and prove Lemma A and Barbier’s theorem. Our proof of Barbier’s
theorem 1s similar to that in section 1.13 of [St], but we choose to present it
here since the proof we give for Sx (K # 0) is an elaboration of our proof
for Sy.

In §3 we consider general oriented surfaces and construct systems of
geodesic parallel coordinates suitable for dealing with our curves, proving
a number of technical results about these coordinates, and also proving
Theorem D. In the last section all pieces are put together to give the proofs
of Theorem B and Corollary C.

2. CURVES OF CONSTANT WIDTH IN THE EUCLIDEAN PLANE

We now review some background on convex curves; the basic reference
here is [E]. Given a closed curve v C R?, a straight line r is called a
supporting line of ~y if r touches v at some point and ~ is entirely contained
in one of the closed half-planes bounded by r. One possible characterization
of convex curves is the following: ~ is convex if and only if through every
point of ~y there passes a supporting line of ~. If some boundary line of an
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enveloping strip {2 of «y touches ~ at the point p then we say Q is supported
on p (of course € is supported on at least two points of ~).

Proof of Lemma A. The diameter of ~ is by definition

D =max{|p—q|:p,q € v} =max{D(p):p € v}.

Let po, p1 be any two points in  realizing its diameter (|py — p1| = D), and
let o, r; be the lines through py, pi which are orthogonal to the segment
pop1- Then the set bounded by ry, r; is an enveloping strip of € and has
width D.

Now assume ~ has constant width V. We have just shown that W = D.
Given p € vy, choose a supporting line ry through p, and let r; be the other
supporting line parallel to rp, touching  at the point g. Then [p —¢g| > W
(for the distance between ry and r; is W) and hence D(p) > W. But we
also have D > D(p), and from these inequalities we obtain D(p) = W .

Now we prove the “if part”. Given p € v, let p € v be such that
lp — p| = W. Then p, p realize the diameter of -y, and therefore the enveloping
strip Q orthogonal to pp has width W. If v has a well-defined tangent at p
(i.e., if 7y 1s smooth at p) then (2 is the only enveloping strip supported on p.
Otherwise p is a corner of v and the supporting lines at p vary between two
extreme positions, the “left” and “right” tangents r' and r", which are the
limiting positions of the tangents to « at p. and p’ as (pf,l)nzl and (p))n>1
approach p from the left and from the right, respectively (convexity ensures
that the points at which v is smooth are dense in 7).

FIGURE 1
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To each p' there corresponds a point pl €« such that |pfl — ﬁf,‘ =W
and which is situated along the normal to 7 at p,. Therefore p' =limp, is
a point of ~y such that \p — pl‘ — W and which is on the line through p
orthogonal to r'; and similarly for a point p” on the line orthogonal to r”. It
follows that the lines through p’ and p” parallel to r' and 7, respectively,

are supporting lines of . Now take an interior point g in the arc p'p” of
~ opposite p, and consider any supporting line r of v at g: this line r
is parallel to some supporting line through p. Hence every enveloping strip
supported on g must also be supported on p, and it followi that p is the

point of ~y at the maximum distance W from g. Therefore p'p” is an arc of
circle with centre p and radius V. Hence all enveloping strips supported on
p have width W.

We have thus shown that all enveloping strips of v have width W. [

The important point to retain from the proof of Lemma A is that, if we
choose a supporting line r at a point p of a curve ~ of constant width W,
then the perpendicular to r through p intersects v at a point p such that
lp —p| =W — ie., at an antipodal point of p.

For completeness, we observe that if « is a simple closed curve such that
D(p) = W for all p on y then -y is convex. For, given p € 7y, choose p € vy
such that |p — p| = W : v is entirely contained in the closed disk D with
center p and radius W, and the circumference C of D touches  at the point
p. Hence the tangent to C at p is a supporting line of v, and we conclude
that through every point of + there passes a supporting line. This means -y
is convex.

If v is twice differentiable at p then the preceding argument shows that

the absolute value |k(p)| of the curvature of v at p is not less than ﬁ (which
is the curvature of C).

For the rest of this section we consider a regular curve (s) of constant
width W and perimeter £, parametrized by the arc length s. We define ~(s)
for all s € R by letting v(s + £) = v(s), and assume that ~ is traversed in
the counterclockwise direction.

Let ¢(s), s € R, be a differentiable determination of the oriented angle
between the positive x-axis and the tangent vector «/(s). This simply means
that ~/'(s) = (cos »(s), sin cp(s)). The tangent vector ~'(s) completes one
counterclockwise revolution as the point y(s) travels once around -y, which
implies that ¢(s + £) = ¢(s) + 27. Since ~ is convex, ¢ is non-decreasing,
so that ¢'(s) > 0 for all s € R. The signed curvature of ~ at the point v(s)
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is given by k(s) = ¢/(s), and so we have

L
@) / k(s) ds = (L) — (0) = 2r.
0

Now define the normal vector n(s) = (— sin (s), COS (p(s)) , so that for each
s the pair ('y’ (s),n(s)) is a positively oriented orthonormal basis of R?. The
following formulas (special cases of Frenet’s formulas) are readily verified :

3) V'(s) =k(s)n(s),  n'(s) = —k(s)7'(s).

Let us indicate by H(v(s)) the antipodal point of ~(s). This map II is
an involution of the curve <, in the sense that ITo Il is the identity. By the
above discussion we have

“4) IToy(s) = v(s) + Wnls),

which shows that s — IT o y(s) is differentiable. Thus II is an orientation-
preserving diffeomorphism of the curve onto itself (if the orientation were
reversed then IT would have a fixed point, which it does not). As in the case
of circle diffeomorphisms, there exists a continuous function f: R — R that
“lifts” II — 1.e., that satisfies the equality [Toy =y of.

LEMMA E. There exists a diffeomorphism f: R — R such that

ITo~y(s) = v of(s),
fls+L)=f(s)+L
for all s € R. All other liftings of 11 are of the form f+nL for some n € Z.

In the case of circle diffeomorphisms, which is in essence no different from
the one above, this is a standard result, and so we omit the proof of Lemma E.
The uniqueness assertion has, however, some interesting consequences. For
instance, from the equality (Iloll)oy =Ilovyof =yo(fof) it follows that
fof(s) =s+nL, since both fof and the identity function are liftings of the
diffeomorphism Il o Il = id.

We now prove Barbier’s theorem. By Lemma E, we can rewrite (4) as
vyof(s) = v(s)+ W n(s). Taking the derivative of both sides and using Frenet’s
formulas (3) we get

F OV () = {1 = Wk(s)} ' (5).
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Since 7 (f(s)) and +'(s) are unit vectors pointing in opposite directions, this
implies f'(s) = Wk(s)—1. Integrating and using Lemma E and (2), we finally
have

L
L= (L) — F(0) = / £(s)ds
0

c
=L+ W/ k(s)ds = —L +27W,
0
which concludes the proof.

When we allow piecewise regular curves, the antipodal map is no longer
well-defined, let alone being a diffeomorphism — and the above approach fails
to work. Thus so far our proof of Barbier’s theorem does not even include
the simplest non-circular curve of constant width : the Reuleaux triangle.

FIGURE 2

The Reuleaux triangle with one of its parallel curves

One way to overcome this deficiency is to consider parallel curves. If ~ 1s
a convex curve then its parallel curve ~; surrounds ~y at a fixed distance d > 0
from it. Assuming ~ has constant width W, v, has constant width W 4 2d.
When v is piecewise differentiable then each of its corners is replaced by an
arc of circle with radius d in 7, ; and -, no longer has corners, possessing a
continuously turning tangent and a continuous, piecewise differentiable angular
determination @4(s). With minor adaptations, our proof of Barbier’s theorem
shows that the perimeter of v, is given by

,C,d == W(W+2d)

— and letting d — 0 we obtain £ = 7V} as we want.
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