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386 B. DE SMIT

(2.5) PROPOSITION. If N and M are factor equivalent then for any A[G]-
linear embedding j: M — N the function H — [N" : j(M™)|  is factorizable.

Proof. We have j = i, where i is an embedding as in (2.4) and ¢ is
a K[G]-linear automorphism of N ®4 K. Using [15, Ch. III, § 1, Prop. 2] and
the notation of (2.3) we see that

[N ja™)], = dy(H) - [N" - iu™)], .

This is a product of two factorizable functions by (2.3) and by our choice

of i. [

The fact that “factor equivalence” is an equivalence relation is an easy
consequence of (2.5). If p is a prime of K not dividing #G then con-
dition (1) of (2.4) implies that the p-part of [N¥ :i(M)"] , s factorizable.
One can prove this with [16,§15.2] and [16,§14.4, Lemma 21].

(2.6) REMARK. The definitions of factorizability given by Frohlich
[8; 9] and Burns [2] for abelian groups G are in agreement with our def-
initions. They also define the notion called Q-factorizability in the abelian
case, which is a stronger condition than factorizability. However, the function
that one wants to be factorizable in the definition of factor equivalence auto-
matically satisfies this stronger condition if it is factorizable. Thus, Q-factor
equivalence is the same as factor equivalence.

In [4,§3] a factorizable function f with values in 7(Q) must also satisfy
an additional condition : there should be a map g from the group of complex
characters Rc(G) to I(E), where E is some normal number field containing
all character values of G, such that g is Gal(E/Q)-equivariant, and such
that g(1%) is the E-ideal generated by f(H). It is not hard to see that this
condition is satisfied by all functions that are factorizable in our sense.

3. RINGS OF INTEGERS

Let A be a Dedekind domain with quotient field K of characteristic
zero and let L a Galois extension of K with Galois group G. The integral
closure B of A in L is again a Dedekind domain. Assume that for all primes
of L the residue class field extension is separable.
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(3.1) THEOREM. The A[G]-lattices B and A[G] are factor equivalent.

Proof. Define a B[G]-module structure on B ®4 B by letting B act on
the left factor and G on the right. We will show first that B ®4 B and B[G]
are factor equivalent as B[G]-lattices. Define the canonical B[G]-linear map
w: B®s B — B[G] by

XQyr— Zxa(y)-a_l .

ceG

Let H be a subgroup of G. If ¢y,...,0, are the K-embeddings of L
in L, and if there is an A-basis wj,...,w, of B then the restriction
(B @4 B — B[G]" of ¢ is a B-linear map with matrix (oi(w;)); on the
bases {1®w;} and {b;}, where b; is the formal sum of those o € G for which
o~ ! restricts to ¢;. The square of the determinant of this matrix generates
the discriminant A(B¥ /A) as an A-ideal. By localization it follows that even

if B 1s not free over A, we have
[BIGY : (B @4 B)], = A(B" JA) - B .

By Hasse’s conductor discriminant product formula [15, Ch. VI, §3] the ideal
A(B¥ /A) is a factorizable function of H, so B ®4 B and B[G] are factor
equivalent B[G]-lattices.

In order to descend to A[G]-lattices, note that there exists an A[G]-linear
injection i: A[G] — B by the normal basis theorem, and consider the induced
B[G]-linear map i.: B[G] — B ®4 B that sends bo to b ®i(c) for b ¢ B
and o0 € G. We have

(B®a B 1. (BIGY)"], = [B" :i(AlG)"], - B |

and by (2.5) we know that the left hand side is a factorizable function of H.
But then the A-index [BH ; i(A[G])H] 4 1s also factorizable. L]

4. S-UNITS

Let L/K be a Galois extension of number fields with Galois group G, and
let § be a finite G-stable set of primes of L containing the infinite primes.
The ring of S-integers of L consists of all elements of L that are integral
outside S. Its class number is written as hg(L) and its unit group, the group
of S-units of L, is denoted by Ug(L). The group of roots of unity in L is
denoted by p; and its order is written as w(L).
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