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REMARQUES

1) 11 découle du corollaire 4.2 que si f est tota_lement additive, ’écart
entre f(n) et f(n) est plus petit qu’entre f(n) et f(n), alors que si f est
fortement additive, c’est le contraire qui se produit.

2) A partir des définitions de A f, Af, Af et des égalités (4.1), (4.2)
et (4.3), il est intéressant de souligner que, pour toute fonction arith-

w—_p — ~ ~ s A
métique f, on a les inégalités f2 > f2, f? 2_f2 et f2A> 2, et qu’en
particulier sur les entiers libres de carrés, on a A f(n) = Af(n) = A f(n).

5. GENERALISATIONS ET EXEMPLES

Les fonctions f, f et f définies par les égalités (1.3), représentent
essentiellement trois moyennes de f évaluées respectivement sur les diviseurs,
les diviseurs libres de carrés et les diviseurs unitaires d’un entier. Nous
allons maintenant montrer comment certaines propriétés satisfaites par ces
trois fonctions demeurent valables lorsque les moyennes sont évalu€es sur
d’autres classes de diviseurs d’un entier.

Etant donné un entier naturel n, on désigne par D, I’ensemble des
diviseurs (positifs) de n. Soit alors A une famille d’ensembles A, tels
que A, C D, pour chaque n € N. Par exemple, en désignant par I,
I’ensemble des diviseurs impairs de ’entier positif », la famille 4 constituée
de tous les ensembles 7, est un exemple typique.

Etant donné une famille A := {A4,:n € N}, alors a chaque ensemble A4,
on associe son cardinal soit la fonction 1 4(n) définie par

Ta(n):= Y 1

dln
de A,

qu’on peut aussi écrire (1 *,41)(n), avec *, pour signifier que seuls les
diviseurs d de n qui appartiennent a A4, sont pris en considération. Nous nous
intéressons ici aux familles pour lesquelles les ensembles A, possédent une
fonction 1,4 multiplicative et jamais nulle.

EXEMPLES. Soit k € N et 2 < y € R. Définissons de plus P(l) =1
et P(n) = max{p:p|n}. Alors les ensembles
Au(k)y ={d:d|netd=p}'p32-- p*,0< a; <k}
= {d:d|n et dest k-libre}, k > 2,
B,(y) = {d:d|n et P(d) <y},

E,(k) = {d:dk|n et (dk,ﬁ) - 1}
dk
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donnent lieu a trois familles A, B et E de sous-ensembles de D, pour
lesquels les fonctions T4, T et Tz sont multiplicatives et jamais nulles.

Etant donné une fonction arithmétique f et une famille 4, on pose
maintenant

Sa(n) = Y f(d),
T4(n) dln
de A,
ce qui revient a écrire
S *al
(5.1) fai=—2
1*/_11

Aux cas particuliers *4 = *, %4 = %, (ou #*; est la restriction de * aux
dAiViseurs libres de carrés) et *, = *,, correspondent bien stir les fonctions f ,
fet f. ’

On a mentionné a la section 2 qu’en général f (n) # f(n). 11 en est
de méme pour sa généralisation f, en ce sens que 1’on peut facilement
démontrer que

fa(n) = f(n) pour tout n>1¢ f = c pour une certaine constante c;

auquel cas, si f est multiplicative on a ¢ = 1, alors que si f est additive,
onac=0.
Le prochain résultat généralise le théoreme 2.2.

THEOREME 5.1. Soit feF et A une famille d’ensembles A, C D,
et supposons que 7T4 € .#. Alors la fonction fs est multiplicative si
f e # etelle est additive si f € .

REMARQUES. Il est également possible de considérer les familles d’en-
sembles A4, pour lesquelles T 4(n) peut étre nulle pour certains entiers »; pour
ce faire, il suffit de remplacer (5.1) par

S*al .
141 0,
(5.2) fatny = { Tayp W S malim=
0 autrement .

Dans ce cas, seule la premiere partie du théoreme 5.1 reste valide i.e. si
f € .« alors la fonction f, définie par 1’égalité (5.2) est multiplicative. En
effet, soit (m, n) = 1 et supposons que f € #. Si 14(n) #0et t14(m) #0
alors f4(mn) = f4(m) f4(n); si par contre T4 (n) ou T4(m) est nulle alors,
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puisque T4 € #, t4(mn) =0, ie. fq(mn)=0= fy4(m)fa(n) car au
moins une des quantités f4(m) et f4(n) est nulle. Donc si f € .# alors
fA € M.

Pour montrer que la fonction f, de la relation (5.2) ne préserve pas
I’additivité sur certains ensembles de diviseurs, il suffit de considérer
A,={d:d|n,(d,2) =1 et (n/d,2) =1} et fe o« avec f(n) >0 pour
chaque n > 1. On a alors t14(3) =2, t74(4) =0 et 14(12) = 0. Il est clair
que f4(12) = f4(4) =0 alors que [f4(3) -—-% (3)>0. Ainsi f4(12)
* fa(d) + f403).

La définition de la fonction f4 a partir de la restriction du produit
de Dirichlet a certains diviseurs est basée sur la notion de A-convolution
introduite par Narkiewicz [6] (voir également Subbarao [8] et le chapitre 4
du livre de McCarthy [5]). Soit & et g € F alors pour une famille A de
sous-ensembles A4, de D,, on définit la A-convolution de % et g par

(h*ag)(n) := ) h(d)g(n/d),
fon,
qui de facon générale n’est pas commutative. C’est-a-dire qu’il arrive qu’on
ait, pour une certaine famille d’ensembles A, C D,
Y h(d)yeg(n/d)y # Y h(n/d)g(d).

d|n dln
deA, de A,

EXEMPLES. On a ainsi les cas particuliers suivants:

() Soit 4 = * alors f4(n) = f(n) = —— ¥ f(d).

T(n) din

(i) Soit +4 = * alors fa(n) = f(n) = 51—() Y uid)f(d).
o(m 4,

. ~ 1
(iii) Soit *4 = *, alors f4(n) = f(n) = Som Y f(d).
w(n dln
(d,n/ld) =1
(iv) Soit (a, b)* le plus grand commun diviseur unitaire de @ et p et
a

T4(n) = Y 1=1(n) [] , alors
d|n pefln 1+ @
(d,n/d)y* =1 o pair
Sa(n) = Y. f(d).

Ta(n) d|n
(d,n/d)* = 1
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(v) On pose wx(n):= Y. 1. Soit 1,4(n) = D 1 = 29« alors
pln dln;(d,k)=1
(p, k) = 1 (d,n/d) = 1
fa(n) = Y f@).
2060 gin; (d k) =1
(d,n/d) =1

(vi) Soit y un nombre réel fixe (y >2) et t4(n) = Y, n2(d), alors

P(Ccll)lnsy
fa(n) = Y, u2(d)f(d). Soit fe o alors fa(n) = - Z f(p).
Taln) alr 2 plr

En particulier, si P(n) < y alors f4(n) = f(n) et f4(n) =0sip(n) >y,
ou p(n) désigne le plus petit facteur premier de n, avec la convention

p() = 1.
(vii) Soit t4(n) = J] (o + 1) avec 14(2) = t4(1) = 1, alors
3
fa(n) = Y f(d). En particulier, si n est impair alors
TA(n) dln

d impair

fa(n) = f(n). Soit f e o, alors f4(n) =0sin=2"et

fa(n) = Y T Z f(p™) si n n’est pas une puissance de 2.
allp O + m=
o)
(viii) Soit T4(n) = ) 1 = 2#{p:pellnaveca=0(mod b)) glors
kln
(dk,s/dlk):1
1
fa(n) = Y S
Ta(n) d*|n
(dk, n/(d%) = 1
(ix) Soit y > 2 fixeet t4(n) = Y. 1, alors f4(n) = Y f(d).
dln T4(n) dln
P(d) <y P(d) <y

Soit f € o, alors f(n) = fa(n) + Y. Ny Z f(p™). En parti-
pelln O+ 1 m=1
pb>y

culier f4(n) = f(n) si P(n) <yet fqa(n)=20sipn)>y.
(x) La relation (5.2) est valable avec

[I,_ (w+1) sin=piips2-p>Il,.,q" (pi,k)=1et g ¥ (k, 1),
0 autrement.

T4(n) = {
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On peut méme démontrer un résultat d’un caractére un peu plus général
que le théoréme 5.1 en considérant une fonction arithmétique multipli-
cative g qui n’a aucun lien avec un ensemble de diviseurs. C’est ainsi qu’on
a le résultat suivant, dont le théoréme 2.2 devient un cas particulier.

THEOREME 5.2. Soit A une famille d’ensembles A, C D, telle que
la convolution *4 est commutative. Supposons de plus que t4 € 4. On
considéere U et g deux fonctions arithmétiques multiplicatives telles que
(Ux,2)(n) £ 0 pour chaque entier n > 1. Enfin, soit fe¥, alors

¥ Y Uf*a8
Ja=Jfalg, U):=

Us48
additive si f est additive.

est multiplicative si f est multiplicative, et

Démonstration. On sait que le produit de Dirichlet de deux fonctions
multiplicatives est multiplicatif (voir Apostol [1], p. 35). Cette propriété est
également vraie pour le produit *4 tel que défini ici. En effet, il est facile de
démontrer que si f et g sont multiplicatives, alors f *4 g est aussi multi-
plicative. Ainsi la premié¢re affirmation du théoréme est vraie.

Pour démontrer le cas additif, on procéde comme suit. Soit f € 7,
alors pour (m,n) =1

v Uf*ag)(m)(Uxag8)(n)  (Uf*48)(n)(Ux,g)(m)
falmn) = +
(Ux*,48)(mn) (U=*,4g)(mn)
_ (Uf x4 8)(m) N (Uf *48) (n) _ fA(m) N }A(n)’

(Uxyg)(m) (Ux4g)(n)
d’ou Padditivité de f.
REMARQUES

1) Pour déduire le théoréme 2.2 du théoreme 5.2, il suffit de poser
¥, =%, g=1 et de substltuer pour U les fonctions 1 et u , et cela afin
d’obtenir successivement fA = f et fA = f Pour obtenir fA = f, en plus
de poser g = U = 1, il faut considérer la convolution unitaire *,.

2) Nous avons vu que f ne satisfait pas la réciproque du théoréme 2.2.
De méme la réciproque du théoréme 5.2 n’est pas Vrale 11 suffit de choisir
%4 = %, U(n) = p?(n) et g(n) = 1(n) pour obtenir fA = f.

COROLLAIRE 5.3. Etant donné f € F, il existe une fonction h = h(f)
telle que f est liée a la fonction ¢ d’Euler par la relation

1
(5.3) f(n)y=—% h(d)o(d).

n din
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En particulier f e of (respectivement fe€ .#) si et seulement si
h e o (respectivement h e ).

Démonstration. On pose *, = *, U(n) =n et g(n) = u(n) dans le
théoréme 5.2 et on obtient ainsi la fonction

(5.4) f(n) = Y df(d)u(n/d) .

(n) dln
La fonction A cherchée est alors A = ]X, car (5.4) implique A(n)p(n)

= Z df(d)u(n/d), de sorte que, par l’inversion de Moebius, on en
din

déduit (5.3).

Avant d’énoncer le prochain corollaire, nous allons introduire la notion
de nombre k-parfait. Soit & un entier (k > 2). On dit d’un entier n qu’il est
k-parfait s’il existe m tel que n = m*; en d’autres mots si les exposants des
facteurs premiers (distincts) de n, dans sa décomposition canonique, sont
des multiples de k, i.e.

n=p4ps.--p% avec o;=0 (mod k) pour i=1,2, "",r.

COROLLAIRE 5.4. Etant donné un nombre réel r, il existe
une fonction arithmétique g, € .# définie en (5.5) telle que

n" =Y d-'o(d)g.(d), pour tout nombre naturel n. En particulier un
dln
entier positif n est k-parfait si et seulement si il existe m tel que

n= E d*-'o(d)gi(d). Pour des valeurs entiéres de k, la fonction
dlm

nk-1o(n)g,(n) est tout simplement la fonction indicatrice Jiy(n) de
1
Jordan définie par J.(n):= nk H (1 — —) , Soit une généralisation de

pln p*
la fonction ¢ d’Euler.

Démonstration. Soit r un nombre réel. On pose f(n) = n"~! dans le co-

rollaire 5.3. On a ainsi n” = ), h(d)$(d) avec h(n) = Y dru(n/d).

d|n (b(n d\n

En posant

— pl-r
55  gm:=1I (1+1p—p1—-) avec go(n) = E(n)
pln -

il vient
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1 _pl—-r
h(n) = Y dru(n/d) = H ptr—be (1 + —————) =n""lg.(n).
d(n) daln pelln p—1
Ceci permet de déduire lidentité n = Y, d"~'d(d)g.(d).

d|n

EXEMPLES. De ce dernier corollaire, on obtient facilement les identités
sulvantes:

q) —-1/2y -1
—L A +p-t=)-1,
I

P
o7 = ¥ dlo(d)eg (),
[10

_1)o@s(d
|y D@
dl|n d

v 0D oy

a2 d3? pla

n?= Y ¢(d) Y cn(d/c).
d|n cld
Comme on I’a mentionné dans la seconde remarque qui suit le théo-
reme 5.2, la réciproque de ce théoréme n’est pas toujours vraie. C’est dans
ce contexte qu’il est intéressant de mentionner qu’on a quand méme le résultat
suivant.

THEOREME 5.5. Soit 4 une A-convolution commutative telle que
t4y€ # et neA, pourchaque n>1. Soit Ue .# et ge 4 tels
que U(n)+0 e (U=x,g)(n)+0 pour chaque entier n > 1. Pour

\% U %
feF onpose f,= J*a8
Us,g

\4
et multiplicative si f4, est multiplicative.

. Alors [ est additive si [, est additive,

Démonstration. Soit f eF tel que jXA e . On a UQ) =g
= (Uxg)() =1 dot (Uf*sg)() = f(1) ie. fA)=/f(1). I faut
maintenant montrer que pour tout couple (m, n) d’entiers positifs relativement
premiers, on a f(mn) = f(m) + f(n). Supposons qu’il existe de tels couples
pour lesquels la relation d’additivité pour f ne tient pas. Soit m, le plus petit
elément de N pour lequel il existe au moins un entier positif # (premier
avec my) tel que f(mon) # f(my) + f(n). D’autre part soit n, le plus petit
parmi tous ces entiers n. Il est alors clair que:
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1 < my < ng avec (my, ng) =1, [f(mony) = f(mg) + f(no)

SUn)=f()+ f(n) pour tout net I (1 <l<my), (,n)=1

Sf(mor) = f(my) + f(r) pour tout r,1 <r<nget (my,r)=1.
D’autre part, puisque tout diviseur de mgn, est le produit de deux entiers

rglativement premiers, ’un divisant m, et ’autre divisant n,, et qu’en plus
fa€ o (avec (U*,4g)(n) #0,Vn > 1), il suit que

(Uf x4 g) (mong) = (Uf x4 g) (mg) (U *4 g) (o)
+ (Uf #4 g) (no) (U 4 g) (my) ,

soit 1’égalité

mono
Z U(d,d,) f(did>)g
dllno,dleAno dle
d2|m0,d26Am0

- ) U(d,)U(dy) (f(di) + f(dr))g (m°”°),
lrordieno e

qui peut également s’écrire

Y Uldid) (fldidy) - f(dy) = f(dn)g (’”O”O) 0.
;1l|"0,21 Ejno d,d,

Mais tous les termes de cette somme sont nuls sauf lorsque d; = ny et
dy=mg. Il suit que U(mgng) (f(mong) — f(ng) — f(my)) =0, i.e.
f(myny) = f(mo) + f(ng), ce qui contredit le choix minimal de m,. D’ou
I’additivité de f. La démonstration du cas ou fe .# se fait de manicre
analogue.

REMARQUE. Pour déduire la réciproque du théoréme 2.2 dans le cas
de f et celui de f, en utilisant le théoreme 5.5, il faut poser U =g = 1:

\2 — \4
on obtient alors successivement f4 = f en substituant * a *4 et fu = f,
en substituant *, a * 4.
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