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Remarques

1) Il découle du corollaire 4.2 que si / est totalement additive, l'écart

entre f(n) et f{n) est plus petit qu'entre f(n) et f(n), alors que si / est

fortement additive, c'est le contraire qui se produit.

2) A partir des définitions de À/, Â/, Ä/ et des égalités (4.1), (4.2)

et (4.3), il est intéressant de souligner que, pour toute fonction

arithmétique /, on a les inégalités f2 ^ f2, f2 ^ f2 et f2 ^ /2, et qu'en
— A ~

particulier sur les entiers libres de carrés, on a À f(n) A/(«) À/(«).

5. Généralisations et exemples

Les fonctions /, f et f définies par les égalités (1.3), représentent
essentiellement trois moyennes de / évaluées respectivement sur les diviseurs,
les diviseurs libres de carrés et les diviseurs unitaires d'un entier. Nous

allons maintenant montrer comment certaines propriétés satisfaites par ces

trois fonctions demeurent valables lorsque les moyennes sont évaluées sur
d'autres classes de diviseurs d'un entier.

Etant donné un entier naturel n, on désigne par Dn l'ensemble des

diviseurs (positifs) de n. Soit alors A une famille d'ensembles An tels

que An C Dn pour chaque ne N. Par exemple, en désignant par In
l'ensemble des diviseurs impairs de l'entier positif n, la famille A constituée
de tous les ensembles In est un exemple typique.

Etant donné une famille A : {An : n e N}, alors à chaque ensemble An,
on associe son cardinal soit la fonction iA(n) définie par

M«):= E 1

d | n

d g A n

qu'on peut aussi écrire (1 *4 1) (n), avec *,4 pour signifier que seuls les

diviseurs d de n qui appartiennent à An sont pris en considération. Nous nous
intéressons ici aux familles pour lesquelles les ensembles A„ possèdent une
fonction ta multiplicative et jamais nulle.

Exemples. Soit k e N et 2^yeR. Définissons de plus P(1) 1

et P{n) max{p \p\n]. Alors les ensembles

An(k) {d:
{d

B„(y) {d

d\n et d p\xp\2 • • • pa/, 0 ^ 0q < k)
d I n et d est £-libre}, k ^ 2,

d I n et P{d) ^ y},

En(k) K)-d : dk\n et dk, —1=1
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donnent lieu à trois familles A, B et E de sous-ensembles de Dn pour
lesquels les fonctions xA, xB et xE sont multiplicatives et jamais nulles.

Etant donné une fonction arithmétique / et une famille A, on pose
maintenant

/,(*) —1— I f(d),
Tx(«) d\n

d e A n

ce qui revient à écrire

f *a 1

(5.1)
1 *A 1

Aux cas particuliers *4 *, *a (où */ est la restriction de * aux
diviseurs libres de carrés) et *A correspondent bien sûr les fonctions /,
/ et /.

On a mentionné à la section 2 qu'en général f(n) /(«). Il en est

de même pour sa généralisation fA en ce sens que l'on peut facilement
démontrer que

IaW f(n) pour tout n ^ 1 & f c pour une certaine constante c;

auquel cas, si / est multiplicative on a c 1, alors que si / est additive,

on a c 0.

Le prochain résultat généralise le théorème 2.2.

Théorème 5.1. Soit f e F et A une famille d'ensembles An C Dn

et supposons que xA e .Jé. Alors la fonction fA est multiplicative si

f e .-Jé et elle est additive si f e

Remarques. Il est également possible de considérer les familles
d'ensembles An pour lesquelles ta (n) peut être nulle pour certains entiers n; pour
ce faire, il suffit de remplacer (5.1) par

(5.2) fA(n) — (H) si (1 *1) 0,
1 *.4 1

0 autrement

Dans ce cas, seule la première partie du théorème 5.1 reste valide i.e. si

/ e .Jé alors la fonction fA définie par l'égalité (5.2) est multiplicative. En

effet, soit (m, n) 1 et supposons que f e .Jé. Si ta (n) ^ 0 et xA(m) ^ 0

alors fA{mn) fA(m)fA(n)\ si par contre xA (n) ou xA(m) est nulle alors,
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puisque ta e Jé, iA(mn) 0, i.e. fA(mn) 0 fA(m)fA(n) car au

moins une des quantités fA(m) et fA(n) est nulle. Donc si / e Jé alors

fA e

Pour montrer que la fonction fA de la relation (5.2) ne préserve pas

l'additivité sur certains ensembles de diviseurs, il suffit de considérer

A„ — {d : d | n, (d, 2) — 1 et (n/d, 2) 1} et f e sd avec f(n)> 0 pour
chaque n > 1. On a alors ta(3) 2, t^(4) 0 et 1^(12) 0. Il est clair

que (12) fA(4) 0 alors que fA(3) \f(3) > 0. Ainsi 7^(12)
^74(4) +/4(3).

La définition de la fonction fA à partir de la restriction du produit
de Dirichlet à certains diviseurs est basée sur la notion de A-convolution
introduite par Narkiewicz [6] (voir également Subbarao [8] et le chapitre 4

du livre de McCarthy [5]). Soit h et g e F alors pour une famille A de

sous-ensembles An de Dn, on définit la A -convolution de h et g par

(h *a g)(n):£
d | n

d e A n

qui de façon générale n'est pas commutative. C'est-à-dire qu'il arrive qu'on
ait, pour une certaine famille d'ensembles An C Dn,

I h{d)g(n/d)±£ h(n/d)g(d).
d\n d\n

de An d e An

Exemples. On a ainsi les cas particuliers suivants:

(i) Soit *a *alors fA(n) f(n)—L £ f(d).
T(n) d\n

(ii) Soit * a*/alors fA(n) f(n) —L V
2m<">

(iü) Soit *„ *„ alors fA(n) /(«) —î— y f,dy
2(a<">

(d, n/d) 1

(iv) Soit (a,b)*leplus grand commun diviseur unitaire de et et

ïa(n) £ 1 x(n) II —, alors
d\n po. I) n 1 + a

{d,n/d)* 1 a pair

ÏA(n) — 7/£/U).
^A{n) d | n

(d,n/d)* 1
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(v) On pose cok(n):= Y 1. Soit iA(n) Y 1 2CÛ*(/î) alors
p\n d\n; (d,k) 1

(p, k) 1 {d, n/d) 1

fA{n) -2-I f(d).
d\n-Ad,k)=l

(d, n/d) 1

(vi) Soit y un nombre réel fixe (y ^ 2) et i:A(n) Y alors
d | n

P(d)^y

fA{n)—-— S \x2(d)f{d).Soit fe d alors 1 £ /(p).
t^(«) rf|n 2 p|„

P(d)^y p^y
En particulier, si P(n) ^ ^ alors fA(n) f(n) et /Ux?) 0 si p(n) > y,
où p(n) désigne le plus petit facteur premier de n, avec la convention

p{ 1) 1.

(vii) Soit xi4(«) (a + 1) avec ta(2) ta(1) 1, alors
P«\\n
p > 2

fA(n) £ f(d). En particulier, si n est impair alors
tA(n) d| n

d impair

fA(n) f{n). Soit / e t/, alors fA{n) 0 si n 2m et

1 a

fA(n) Y E f(Pm) si n n'est Pas une puissance de 2.
pa\\n (X + 1 m - 1

p±2

(viii) Soit ta (n) Y 1 2*{p'-p^n avec a s 0 <mod *)lB alors
dk | n

(dk,n/dk) 1

fA(n) -2— £ f(d).
tA(n) dk | n

{dk,n/{dk)) 1

(ix) Soit y ^ 2 fixe et iA{n) Y 1» al°rs .AC«) —-— E f(°0-
| n 1A (x?) | n

XWO P(d)4l

Soit /e j/, alors /(«) /^(n) + £ —-— £ En parti-
/7a 11 /? (X + 1 1

p> y

culier AA) f(n) si P(n) ^ y et Ai(xx) 0 si /?(xî) > j.
(x) La relation (5.2) est valable avec

+ 1) s\n=pa/pa22---parrX[si>rqlet
|n;.,(ar

autrement.



MOYENNES DE DIVISEURS 119

On peut même démontrer un résultat d'un caractère un peu plus général

que le théorème 5.1 en considérant une fonction arithmétique multiplicative

g qui n'a aucun lien avec un ensemble de diviseurs. C'est ainsi qu'on
a le résultat suivant, dont le théorème 2.2 devient un cas particulier.

Théorème 5.2. Soit A une famille d'ensembles An C Dn telle que

la convolution est commutative. Supposons de plus que ta e .JL On

considère U et g deux fonctions arithmétiques multiplicatives telles que

(U*Ag)(n) 0 pour chaque entier n ^ 1. Enfin, soit f e F, alors

v v è/f *A g
fA fA (g5 jj) : est multiplicative si f est multiplicative, et

U*Ag
additive si f est additive.

Démonstration. On sait que le produit de Dirichlet de deux fonctions

multiplicatives est multiplicatif (voir Apostol [1], p. 35). Cette propriété est

également vraie pour le produit *A tel que défini ici. En effet, il est facile de

démontrer que si / et g sont multiplicatives, alors f *A g est aussi

multiplicative. Ainsi la première affirmation du théorème est vraie.
Pour démontrer le cas additif, on procède comme suit. Soit / e •"/,

alors pour (m, n) 1,

X (Uf*Ag)(m)(U*Ag)(n) (Uf*Ag)(n)(U*Ag)(m)
fA (mn) i

(U*A g)(mn)
(Uf *A g) (m) (Uf *A gv v

777 77 r + 777 rrr + /a in),
(U*A g)(m)(U*Ag)(n)

d'où l'additivité de /.
Remarques

1) Pour déduire le théorème 2.2 du théorème 5.2, il suffit de poser
*a « *> g 1 et de substituer pour U les fonctions 1 et p2, et cela afin
d'obtenir successivement fA f et fA /. Pour obtenir fA /, en plus
de poser g U 1, il faut considérer la convolution unitaire *u.

A

2) Nous avons vu que / ne satisfait pas la réciproque du théorème 2.2.
De même la réciproque du théorème 5.2 n'est pas vraie: il suffit de choisir

*A *, U(n) \x2(n) et g(n) 1 (n)pourobtenir fA f.
Corollaire 5.3. Etant donné fe F, il existe une fonction

telle que f est liée à la fonction (j) d'Euler par la relation

(5-3) /(«) — Y.
nd| n
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En particulier f e sé (respectivement f e ,Jl) si et seulement si
h e sd (respectivement h e Jé

Démonstration. On pose *A *, U(n) n et g(n) p(n) dans le

théorème 5.2 et on obtient ainsi la fonction

(5.4) f{n) —f- Y,
$(") d\n

V

La fonction h cherchée est alors h /, car (5.4) implique h(n)<\>(n)

E df(d)\x{n/d), de sorte que, par l'inversion de Moebius, on en
d | n

déduit (5.3).

Avant d'énoncer le prochain corollaire, nous allons introduire la notion
de nombre /:-parfait. Soit k un entier (k ^ 2). On dit d'un entier n qu'il est

k-parfait s'il existe m tel que n mk; en d'autres mots si les exposants des

facteurs premiers (distincts) de n, dans sa décomposition canonique, sont
des multiples de k, i.e.

n pV Pi2 * * * P°rr avec a/ 0 (mod k) pour / 1,2, —m,r.

Corollaire 5.4. Etant donné un nombre réel r, il existe

une fonction arithmétique gr e définie en (5.5) telle que
nr Y, d1"1 <\)(d)gr(d), pour tout nombre naturel n. En particulier un

d | n

entier positif n est k-parfait si et seulement si il existe m tel que
n Y, dk~l<$)(d)gk(d). Pour des valeurs entières de k} la fonction

d | m

nk~1 §(n)gk(n) est tout simplement la fonction indicatrice Jk(n) de

Jordan définie par Jk(n) := nk JJ (l 1 soit une généralisation deP\n\Pkj
la fonction 0 d'Euler.

Démonstration. Soit r un nombre réel. On pose f{n) nr~1 dans le

corollaire 5.3. On a ainsi nr Y h(d)<\>{d) avec h(n) Y dr\x(n/d).
d\n (]) (/î) d | n

En posant

(5.5) gr(n):= Ü (1 + "—^7-) avec go(n) E(n)
p\n \ P ~1 /

il vient
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1 / 1 — pl "r\
h(n) I dr\i(n/d)Ü 1 + —

ty(n) d\n P«\\n \ 1 /

Ceci permet de déduire l'identité nr£ 1 <\>(d)gr(d).
d | n

Exemples. De ce dernier corollaire, on obtient facilement les identités

suivantes :

^ ^ Hßna +/>-i/2)-\
d | n yd p\d

10' £ d'~lM d)gr(d|10

- In d| na

if nn-rt2 d\2 d p\d

n2Y,«MOE cd2(^/c) •

d|n c\d

Comme on l'a mentionné dans la seconde remarque qui suit le théorème

5.2, la réciproque de ce théorème n'est pas toujours vraie. C'est dans

ce contexte qu'il est intéressant de mentionner qu'on a quand même le résultat
suivant.

Théorème 5.5. Soit *A une A-convolution commutative telle que
xA e Jé et n e An pour chaque n ^ 1. Soit U e Jt et g e tels

que U(n) ^ 0 et (U*A g) (n) ± 0 pour chaque entier n ^ 1. Pour
v Uf *A g v/ e F on pose fA Alors f est additive si fA est additive,

U*Ag
V

et multiplicative si fA est multiplicative.
V

Démonstration. Soit f eF tel que fA e stf. On a 1) g(l)
(U*Ag)(l)=l d'où (Uf *A g)(l) f(l) i.e. /(I) =/(l). Il faut

maintenant montrer que pour tout couple (m, n) d'entiers positifs relativement
premiers, on a f(mn) f(m) + f(n). Supposons qu'il existe de tels couples
pour lesquels la relation d'additivité pour / ne tient pas. Soit m0 le plus petit
élément de N pour lequel il existe au moins un entier positif n (premier
avec m0) tel que f(m0n) * f(m0) + f(n). D'autre part soit n0 le plus petit
parmi tous ces entiers n. Il est alors clair que:



122 J.-M. DE KÖNINCK ET J. GRAH

1 < m0 < n0 avec (m0,n0) 1, f(m0n0) ± f(m0) + f(n0)
f(ln) /(/) + f(n) pour tout n et / (1 ^ / < m0), (/, n) 1

f(m0r) f(m0) + f(r) pour tout r, 1 ^ r < n0 et (m0,r) 1

D'autre part, puisque tout diviseur de m0n0 est le produit de deux entiers
relativement premiers, l'un divisant m0 et l'autre divisant n0, et qu'en plus

fAesd (avec (U*A g) (n) =£ 0, Vn ^ 1), il suit que

(t// g) (m0«o) (t// ^ g) (m0) (U*A g) (n0)

+ (Uf *A g) (no) (U *A g) (m0)

soit l'égalité

£ U(dld2)f(d1(^)
e v4«o \"1"2 /

dj I w0> d2 e /Ifflo

I u(dl)U(d2)(f(d1) + f(d2))g
d\\nQ, d\ £ An q \d\d2)
d2\m0, d2e Am0

qui peut également s'écrire

£ U(dld2)(f(d1d2)-f(dl)-f(d2))g=0.
û?! | «0> d 1 e \d\d2 J
d2\mQ, d2 e^mg

Mais tous les termes de cette somme sont nuls sauf lorsque n0 et

d2 m0. Il suit que U(m0n0) (f(m0n0) - f(n0) - f(m0)) 0, i.e.

f(m0n0) f(m0) + f(n0), ce qui contredit le choix minimal de m0. D'où
l'additivité de /. La démonstration du cas où / e Jt se fait de manière

analogue.

Remarque. Pour déduire la réciproque du théorème 2.2 dans le cas

de / et celui de /, en utilisant le théorème 5.5, il faut poser U — g 1:
V - V ~

on obtient alors successivement fA / en substituant * à *A et fA= /,
en substituant *w à *A.
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