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DOUBLE VALUED REFLEXION 33
3. THE INTRINSIC THEORY: GENUS ZERO

From the intrinsic point of view we start with a pair of holomorphic
involutions t,:T =T, i= 1,2, on an abstract Riemann surface I'. The
quotient spaces I'/1; = I'; have natural analytic structures [4], and T, is the
covering involution for the branched covering n;: I' = I';. If

(3.1) Ty =PT1P

for an anti-holomorphic involution p on I, then there exists an anti-
biholomorphic map 0:T, — I, with pom, =m,op. We are mainly con-
cerned with the case I'; = I', ¢ P, although one could study real analytic
curves on an arbitrary Riemann surface I';. If T' is compact, and I'; = P,
then I' is hyperelliptic. The existence of the two functionally independent
2-fold branched coverings =;: T = P, forces I' to be either an elliptic or
rational curve [4]. We shall restrict to these two cases, in this paper.

In the genus zero case, I' = P, which we consider in this section, the
holomorphic involutions are fractional linear maps. A single one tT(¢) can
be normalized so that its fixed points are 7 = 0, oo, and hence has the
form t(#) = — 7. The theory of a pair of such involutions is still elementary,
but somewhat involved, so we shall refer to [8] for some details.

For a pair of holomorphic involutions 1, T,, let the fixed-point sets be
(32) FP(Ti):{thi}! i:132~

If 7, and 7, have the same fixed-point sets, they are equal. They have a
single common fixed point in the parabolic case. We first consider the general

case in which the four points {p,, q,, p», ¢»} are all distinct. We may form
their cross ratio,

(p1—p2) (g1 — q2)

(3.3) K = .
(P1— q2) (g1 — p2)

Interchanging 1, and t,, or p; with g;, or p, with g, results in (at most)
the change « = 1/x. Thus, the conditions ¥k > 0, Kk < 0, Rex = 0, kK = 1,
for example, are intrinsic conditions on the pair t;. The first two occur
when 1, and 71, are intertwined by an anti-holomorphic involution p.
The significance of the second two conditions is still rather mysterious
at this point.

The maps 71,,7, may be represented in homogeneous coordinates

(§,m) € C? for P, by a pair of linear involutions. As in section 2 of [8]
they may chosen as follows,
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Tl(ga n) = (7\'11, }\'_1&), TZ(&; Tl) = (7\'—1“3 )\4&),
0(&,ﬂ)=(ui,u_lﬂ), u:}\«z.

In the non-homogeneous coordinate ¢ = /7,

(3.4)

(3.5) L0 =2, nm = L, e = et
t e
Since
(3.6) FP(t;) ={\, = A}, FP(12) = {A-1, —=A"1},
we have
3.7) K = (1_”)2.
1 +p

An anti-holomorphic involution p of P, is given by reflection in some
circle, which is anti-linear in homogeneous coordinates. Thus, lemma 2.2
of [8] applies directly to give the following.

LEMMA 3.1. The normal form for the triple t,,7,,p, With T,p = pTy,
falls into two cases. The =t; are still given by (3.4) or (3.5), while

(3.8) A=2Aa>1, pE,m) =78, p()=1/7,
or
(3.9 AA=1, O<argh<mn/2, p(,n)=(E,1n), pt)=7.

(3.11) is the elliptic case with k¥ > 0. (3.12) is the hyperbolic case, where

K < 0.
Next we consider the problem of realizing the data t; by means of an

analytic curve,
(3.10) z=mn(f), w=m(), m; o1, =7,

This amounts to finding suitable functions m; invariant under t;. We
shall also impose the reality condition

(3.11) T,=m 0p.

In general we can try n; = f + f © 1;, for any analytic or meromorphic
function f. Taking f(¢) = t leads to the “Zhukovsky functions”,

(3.12) z=9(z+5),w=9(r+i),
2 t 2 wit
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where o, p are constants. Computing z2, w2, zw, and eliminating ¢ leads
to the equation

4 1y _ 1 no_ 1\?2
(3.13) — v +—=)zw -4 |— 722+ —w?] = |pn— —| .
afp i pa? B2 U
Ngxt we choose the constants so that (3.11) holds. For the case (3.8) we
take p = apn, o = 1, so that

1 _ 1
(3.14) =+ 2} w1+ 2,
2 t 2 nr

and (3.13) becomes (2.6) with

:M’A:L’B_ZA: 4 )
(1—-n?? (1 —p?)? 1+ p?
Since the last two numbers are positive, we have an ellipse with foci on

the real axis.

For the case (3.9) we choose p = a, and o = A, so that the coefficients of

z? and w? in (3.16) are equal. We get

(3.15) B

A T} A 1
(3.16) z=—|t+ =), w=—-|t+ —),
2 t 2 ui
and equation (2.6) with
4(p+p 4 4(p+p—2
a7y BoWFW 4 g o tetr-2
(b —p)? (b —p)? (n—p)?

It follows that 4 < 0, and B — 24 > 0, since —2 < p + p < 2, by (3.9).
Thus we have a hyperbola with foci on the real axis.

In the parabolic case we may assume that ¢, = ¢, = o, and p, = 1,
p2 = — 1. Then

(3.18) ()= —1t+2, 1,(t)= —-t—-2.
If we take
(3.19) p(t) = —1,

then 1, = pT,p. We can satisfy (3.13) and (3.14) if we take n, = f + f o 1,
where f o p = f. Thus we take f(¢) = 072, o = q,

(3.20) z=20(t-1)2 w=20(+1)2.
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Adding and subtracting to eliminate ¢ gives
(3.21) r(z,w) =(z—w)?2 — 16a(z + w) + 6402 =0,
which is (2.18) with a = 4a.

REMARK. In the above examples we chose the simplest non-trivial
rational functions f(¢), which led us back to the examples of section 2.
Other choices of f would lead to more complicated rational curves.

4. RIEMANN MAPS

The deeper geometric and analytic properties of a simply connected
proper subdomain D C C are brought out in the problem of mapping it
conformally onto the unit disc A, or right half plane H. In this section we
shall indicate by example what role double valued reflection plays in this
problem.

Thus, let the boundary d.D be a branch of a real algebraic curve admitting
double valued reflection. The Riemann map, f: D — A, continues to some
neighborhood of the closure D, and so maps a curve with double valued
reflection to one with single valued reflection. This forces f to possess
additional symmetry properties. Roughly speaking, if f could be continued
globally, then the two reflected points of any point z would have to map
to the single reflected point of f(z). This is decisive in determining an
explicit expression for f.

We first consider the domain D inside the ellipse (2.2). The first map,
z = m,;(¢), in (3.14) takes the annulus 4% = {1 <|¢|< p} onto D, as a
two fold covering

4.1) n,: Ay = D,
branched at the points 1 = + L € A} . We have
(4.2) nol(y) =347 =iV,

where vy, is the fixed point set of p, and y, = 7,(y,) is the fixed point
set of p, = T1P7T1,

(4.3) p(t) = 1/F, pu(t) = u/i.
The Riemann map,

(4.4) ftD—->H, (= f(z),
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