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180 G. TENENBAUM

(logK;)?

B;(m,n;v,g,)/K; <exp { —cs
(log x,)?

} < 1/(ogx)*

provided c(a) is large enough. By (62), we infer that we have uniformly
for 1 <v<x 0<y<4,

(73) H,(x,y) < (logx)*"(log, x)»'* .

Inserting the above estimate into (24) with, say, 7T := logx, we see that
we may choose

(74) E>(x,y) = (log x)'"/12~ I (log, x)* +774
which is hence slowly increasing. Therefore we get by Theorem 7 that
(75) A(n, ga) < T(n) (].Og n)]]y/24—1/2—(1/2)10gy+0(1) ppl .

The required estimate (59) now follows on taking optimally y = %
4. FUNCTIONS OF EXCESSIVE GROWTH: THE CASE f(d) = 6d

We now investigate, in a quantitative form, the uniform distribution on
divisors of the function

ho(d):= 08d

when 0 is a given irrational real number. This study is similar in principle
to that of the previous section, but more complicated inasmuch as the effective
bounds for A(#n; hg) will depend on the arithmetic nature of 6. On the other
hand we shall not need, as might be expected, any involved tool for the
estimation of the relevant exponential sums.

More explicitly, let us define Q(x) := x/(logx)'%, and

(76) q(x;0):=1inf{g:1 < g < Qx), || g0 <1/Q(x)}

where || u || denotes the distance of u to the set of integers. Our results depend
on a free parameter y,0 < y < 4, and may be expressed conveniently in
terms of any increasing lower bound for g(x;90), say g*(x;y,0), with the
property that g*(x;y, 6)/(logx)?/* is decreasing. A possible choice is

" y(og )it
 tinf, >, q(u; 9)

(77) a* (x5 3, 0) : = 4(log )"/ §

Unless 0 has abnormally good rational approximations, we have

(78) g*(x;»,0) = (logx)»'+.
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Indeed, let us define, for real positive y, the set

E(y):= {6 € R\Q: liminf g(x;6)/(ogx)Y > 0} .

X—= ®

Then E(y) contains almost all real numbers, and in particular, by Liouville’s
theorem, all algebraic numbers. Moreover, it is not difficult to show that
R\ E(y) has zero Hausdorff dimension. We readily see from (77) that (78)
holds for all 8 € E(y) whenever y > iy.

We shall establish the following result.

THEOREM 12. Let 6 eR\Q,0< 8 < 1. Uniformly for x2=2,
0<y<4, wehave

Y\ 80 Ans hp)?
z (3

7
(79) 1

< (logx)?/g*(x; »,0)° .
n

Taking y = 1, we immediately obtain an effective uniform distribution
result which is valid without any restriction on 6. The corresponding
qualitative result had been established by Dupain, Hall & Tenenbaum [4].

COROLLARY 7. The function hy(d) = 6d is erd for each irrational
number 0. Moreover, if 0< 8 <1, then we have

A(n; hy) < t(n)/q*(n;1,0)%*  ppl.

The above bound is always o(t(n)) and < t(n)/(logn)-%8 for
SIS E(i) . However, if we are prepared to exclude a set of 68 of Hausdorff
dimension zero, we may achieve a better pp/ estimate by taking y :§
in (79). Indeed, the following statement stems from Theorem 12 by optimising
the parameter y under the assumption that (78) holds.

COROLLARY 8. Let vy > % Then we have for all 6 € E(y)
A(n; hy) < T(n)loed/logd+o()  ppJ

It is very likely that the estimate A(n, Agy) < t(n)/2+°MWpp/ holds out-
side a set of 8 with Hausdorff dimension 0, but this is beyond the scope of
the method employed here. If we only require that the set of exceptional 6
have Lebesgue measure zero, this last bound does actually hold and can be
easily established by the variance argument used for the proof of Theorem 14
below. Moreover, with this level of generality, the exponent 1/2 is sharp.

Of course, Corollaries 7 and 8 may be used to exhibit Behrend sequences.

An immediate application of these results and Theorem 3 yields the following
proposition.
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COROLLARY 9. Let 6 e R\Q,0< é < 1. Then the sequence
%(0,8):={n>2:<6ny < g*(n;1,0) %2}

is a Behrend sequence. Furthermore, if 0 € E(y) for some vy > %, and
in particular if 0 is algebraic, then the sequence

W(0,p):={n=>2:(0n) < (logn)~r}
is a Behrend sequence for all p < % log 531-

Let p*(y) denote the supremum of those exponents p such that
7 (0, p) is Behrend for all 6 € E(y). The above result implies that
p¥(y) = % log % =~ (0-14384 for y > -13-, and it is natural to conjecture that
~ there exists a v such that p*(y) = log 2 for vy > y,. By techniques similar to
those presented below for the proof of Theorem 12, it can be shown that the
distributions of Q(n) and (6n) are largely independent. Moreover, using
Vaughan’s bound for exponential sums over primes (see e.g. Davenport [1],

chapter 25), this statement can be put in an effective form which is sufficiently
strong to yield (log n)loe2 -1/

) < o

Q
ne #(9,p) n2%)

for all p > log2 and, e.g., 6 € E(2). By a result of Hall ([12], theorem 1),
this implies that, when 6 € E(2) and p > log2, the sequence 7 (0, p)
is not Behrend. A weak consequence of this is that p*(y) <log2 for
all y > 2.

For the proof of Theorem 12, we have chosen to avoid some technical
complications by applying Theorem 8 rather than Theorem 7, although the
latter could in principle lead to better quantitative estimates. In connection
with the general upper bound (28) for weighted logarithmic averages of
A(n; f)?, we introduce the expressions
(80) T(x;z,0):= ), zQ(n)e(en) ,S(x,2,0):= ). ik

n<x n k<x

| T(x/k;z,k0)],

so that (28) reads, for f = hy,

Qm A(n; hg)?
(81) Z (2}_) _(n_n_e_)_

n<x

1 1,
< (logx)” { — +log T Y —el(x,yihe)},

I<vgT V

uniformly for x >2,0<y <y, <8, T>2, where €} (x,y;hq) is any
non-increasing function of x such that x = &} (x, y; hg) (log x)*/? is non-
decreasing and satisfies
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S (x; 37, v8) < (logx)*?ey(x, y3 o) -

For technical reasons, it will be more convenient to use at certain stages
Cesaro-type averages, so we set

T*(x;z,0) 1= Y z%"e(8n),

n<x

S*(x32,0) 1= ¥ 290 [ T*(x/k; 2, k6) |,

k<x

(82)

from which we shall derive information on the quantities in (80) by partial
summation.

We need several preliminary estimates which we state as independent
lemmata.

LEMMA 3. For 0<z<1,1<a<g<x,(a,q)=1,10—-a/q|<1/q?
we have

(83) S*(x;z,0) <x(logx)?~!1(log,x)* + x(logx)? { 1/ + L } .
Vaq

Proof. This is a variant of a familiar lemma in Vinogradov’s method.
We first note the trivial estimate.

= 1

(84) | T*(w;2,0) [ < L 2°M < w(logw):™!  (w>2),

n<w

which stems from (6) or e.g. theorem III.3.5 of [25]. Then, assuming, as
we may, that x is large, we put y = (logx)® < \/;c and we split the outer
k-sum in S*(x; z, 0), applying (84) with w = x/k for the ranges kK < y and
x/y < k < x. Using (84) again with partial summation for the corresponding
resulting summation over k, and bounding z2® by 1 in the complementary
sum, we arrive at

(85) S*(x;z,0) < x(logx)*~'(log,x)s + Y W(Qiy),
0<j<J
1 /
withJ:=o—g(x——2;—)and
log y
(86) WK):= Y, |T*(x/k;z,k0)].
K<k<2K

Now we have for y < K < x/y, by the Cauchy-Schwarz inequality,
WEK? <K ) Y z%mme(kb(n — m))

K<k<2K 1<m,n<x/k

=K ) z & (mn) D e(k0(n — m))
1<m,n<x/K K<k<min(2K,x/m,x/n)
(87) <K Y min1/]6(n-m)|)

I<m,n<x/K
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To estimate the k-sum, we write 0 = a/q + P with |B| < 1/¢? and

h = tq + r with 0 < r < q. Then, for each given #, we have |04 = | a, |
with a,:=ra/q +rp + tgp. For 0<r#s<gqg, and if (a,) — % and
(0sy — 1 have the same sign, we may write || o] =l o. |||=] s — o]

> || (s — r)a/q||— 1/q. Hence there are at most 6 values of r,0 < r < g,
such that o, belongs to any given interval (v/q, (v + 1)/g] modulo 1. This
implies that

Y mink,1/]|6A]) < ) Y min(K,1/||ar/ql)

0<hg<x/K 0<t<x/Kg 0<r<gqg

< (1+x/Kq) K+ glogq)

K g 1 1
<xlogx|—+ -+ -+ —
x x qg K

)
+ -] .
q

q 1 b
88 W(K) < xl - + — <K K )
(88) (K) < x ogx{ I/X+ I/Z]} + (l08.)° (y<K<x/y)

Inserting this into (85), we readily get the required estimate.

1
< xlogx (— +
Yy

= IR

By (87), we infer that

such that q(x;0)

LEMMA 4. Let 6 e€R\Q. For all x>=3
v < logx, we have

> (logx)1° and uniformly for 0<z<1,1<
(89) S*(x;z,v0) < x(logx)*~1(log,x)*.

Proof. Let g = g(x;0). Then, by Dirichlet’s theorem, g < Q(x)
= x/(logx)'° and, for suitable integer a, we have |0 — a/q|<1/qQ
< 1/q?. Moreover the minimality assumption on ¢ implies that (a, q) = 1.
Thus for each v with 1 < v < logx we have I vl —a,/q, | < l/qﬁ for some
integers a,, q, with (a,,q,) =1, (logx)° < g, < ¢q. Applying Lemma 3,
we obtain

S*(x;z,v0) < x(logx)=~! (log,x)* + x/(log x)>/2 .
The result follows.

Our next lemma concerns the distribution of the numbers 79" on
arithmetic progressions. We put
(90) H(x;z;g9,a):= Yy  z°W, H(x;z;q):= Yy 2z%m,

n<x n<x
n=a(mod g) (n,q)=1
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LEMMA 5. Let A > 0. Then there is a positive constant c¢ such that,
for 0<z<1,x>22,1<q<(logx)4, (a,q) =1, we have

O H(x;z;q,a) = —(1—)H(x;z;q) + O(xexp{— c(logx)'3}) .
0(q

Proof. It would be possible, as in Rieger [21], to obtain an exponent %
instead of  in the remainder term using contour integration and standard
analytic information on powers L (s, %) of Dirichlet L-functions. The result
stated will be more than sufficient for our actual purpose. It may be given
a short proof which we include for the convenience of the reader. We
introduce the Dirichlet characters to the modulus ¢ and write

1
(92) H(x;z;q9,a) = —— H(x;z;q) + O | max ,
0(q) (Hm )

where the maximum is taken over all non-principal characters ¥ modulo g.
This remainder may be bounded above by appealing to the prime number
theorem for arithmetic progressions in the form

(93) L x(p) < te-c®ilet (g < (logt)?)

pPst

Y x(n)zew

n<x

valid for any non-principal character y to the modulus q. Here b is any fixed

parameter and c¢(b) > 0. This estimate may be found e.g. in Davenport [1],
p. 132.

We also introduce the largest prime factor function P*(n) and recall
from [25] (theorem II1.5.1) the estimate

(94) Px,y):= Y 1 <xl-1/Qlogy (x=2,y>=2).
n<x
PY(nm)<y

For any non-principal character y, to the modulus g, we have

1

s 1 -

Y, x(n)z8m = D %(n)z20M 4 O(xe” 2! %%

ngx ngx -
P+ (n)>exp| logx

1, ——
= Z X(m)X(]”)ZQ(m)-l-I + O(xe_il logx)

mr<x
Pt(mry=r

r>exp) logx

1 S
— 217
= Y x(m)z®m+1 ) L (r) + O(xe 2! %)
mP+(m)<x Pr(m)y<r<x/m
r prime

r>exp] logx

X o i :
< Z — e —c(2A4)) log(x/m) + O(xe_fl log,\)
mP+(my<x M
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by (93). Write ¢(2A4) = ¢, for brevity and set M;:=x/e/(j =0,1,...).
The above m-sum does not exceed

X ~
Y S e-al y 1< ¥ xe —c1Vi-(ogxn/Q))

O</<logx Mj Mjpi<msM,; 0<j<logx
Pt(m)ge/+!

by (94). Since c¢,}/j + (logx)/(2j) > (log x)!/3, we obtain that the estimate

Y x(n)z9"™ < xexp{ — c(logx)'/3}

n<x

holds, under the prescribed conditions, for a suitable positive constant c.
In view of (92) this readily yields the required result.

LEMMA 6. Let A > 0. There exists a positive constant c¢, such that,
uniformly for 0<z<1, x=>22, 1<qg<(logx)4, (a,q) =1, we have

{ ZQ(CI/I)
T*(x;z,a/q) = Y, pnzn
tlq (1)

Proof. We have

H(tx/q;z;t) + O(xexp{— co(logx)'/3}) .

T*(x;z,a/q) = Z e(ab/q) E AL

0<b<yg n<x
n=b(modgq)
— Z e(ab/q)zg((b,qn Z ZQ(””)
0<b<gq m<x/(b,q)

m=b/(b,q)(modg/(b, q))

= )Y L e(ah/t)z®@/OH(tx/q;z; 1, h) ,
tlg OKh<t
(h,t)=1

where we have put ¢t = q/(b,q), b = hgq/t = h(b, q) with (h,t) = 1. Using
Lemma 5 to evaluate H(fx/q;z;t, h), and appealing to Ramanujan’s
formula

Y e(ah/t) = u(1),

O<h<t
(h,t)=1
we get
1 (£) 22
T*(x;z,a/q) = Y, —T H(tx/q;z;t) + O(gxexp{— c(logx)!3}) .
tla ¢

Hence the required estimate holds for all ¢, < c.

We are now in a position to evaluate S*(x; z, v8) when g(x; 0) is small.
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LEMMA 7. Let 0 eR\Q, and 0<d< 1. For all real numbers
x>=3 such that q(x;0) < (logx)!® and uniformly for 0<z<1,
1 <v<log2g(x;0), we have

(95) §*(x;2,v0) < x(logx)**~'{(log x) =% + ¢ (x;8) ~°} .

Proof. As previously, we start with Dirichlet’s theorem which implies that
g=q(x0) <O)=x/(ogx)°. Hence we have |0 — a/q| < 1/qQ(x)
with (a,q) = 1. For 1 < v <log2q, we write a,:=av/(q,Vv),q.:=q/(q, V).
Putting QO := x/(log x)!!, we obtain that

96) 0<|v0~a,/q,|<1/¢.0, (a,,q,) =1, q/log2q < q, < (logx)™° .

In the sequel, we write B,:=v6 — a,/q,.
Let n:= %(1 —9d), x,: = exp (logx)". We plainly have

S*(x;z,v0) = )Y, zo®

k<x/xy

+ Y oW | T*(x/k;z, kvo)|.

x/xy<k<x

x/k
j dT*(u;z, kve) + T*(x,; z, kv0)

X2

Using the trivial bounds
T*(x2; 2, kv0) < x,(logxy)*~ ' and T*(x/k;z, kv0) < (x/k)(log(x/k))+!
for x/x, < k < x, and noting that
d7*(u; z,kv8) = e(kB u)dT*(u; z, ka,/q,) ,
we arrive at
S*(x;z,v0) < x(logx)+mz-1

©7) LT e

k<x/x,

x/k
5 e(kByu)dT*(u;z, ka,/q.)

o)

For each k < x/x;, we put q,(k):= q,/(q,, k), ay(k):=ka,/(q,, k).
Then T*(u;z,kay/q.) = T*(u;z,;a,(k)/q,(k)) and we may apply
Lemma 6 with 4 = 10/n to write, whenever X, L u<x,

T*(u;z, ka,/q,) = M(u) + R(u)
with
u(l‘)zg(qV(k)/f)
Mu):= ) H(tu/q,(k); z; 1),
t]qy (k) o ()
R(u) < uexp{—co(logx)n/3} .
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The contribution of R to the integral in (97) may be estimated by partial
summation. We have

x/k
j e(kPyu)dR(u) < %eXp{ — co(log )"} (1 + | Byx|)

X2

X )
< 2 exp{ — c;(logx)"3}

for a suitable positive constant c;, since | B, |x < (log x)!! by (96). Thus the
total contribution of the remainder term R to the right-hand side of (97) is

< xexp{—c (logx)"?} Y z9W/k < x/logx.
k<x/x,

We estimate the contribution of the main term M(u) to the integral
of (97) by considering M(u) as a double summation and bounding all the
summands in absolute value. Moreover, we may also delete in this process
the coprimality conditions appearing in the H-functions. In other words, we
use the inequality between Stieltjes measures

1
(98) | dM(u) | < Z — dH(tu/q,(k); z, 1) .
tla, ) @1

Therefore we obtain

x/k 1 x/k

e(kByu)dMu) | < ¥ —§ dH (tu/q.(k);z, 1)
X2 tlay ey @) Jo
1

— - Z zQ(n)
tlayt) O(1) n<ix/kg k)

1 t x) <1
it )
tlavky ©(2) kg (k) k
T log2q)? X x\ !
< (q) (log2q) (k’q)_(log_) ,
q k k
by (84) and (96). In the last stage, we have used the bound #/¢(?)
< q/¢(q) <log2q for all 1|q,(k). Since t(q) (log2qg)* < g", we see that
the total contribution of the main term M(u) to the right-hand side
of (97) is

Q (k) XZ*I
<xq '*v ¥ (k,(])zk (log—)

k<x/xy k

g._
dlq I<x/xyd / ld

< xq '*""1(q) (logx)**~! < g~ %x(logx)%:-1.

790 x\z-1
<xg !t Y zo@ ¥ (10 )
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Inserting this into (97), we obtain the required estimate and this finishes
the proof of the lemma.

Completion of the proof of Theorem 12. We want to apply (81) and hence
need an upper bound for S(x; iy, VG). We select 7 = log2q*(x;y,0).
Since g*(x;y,0) < g(x;0) and g*(x;y,0) < (logx)”*, we infer from
Lemmas 4 and 7 that we have uniformly for 1 <v< T, 1<y <4,

(99) S* (x;ﬁy,ve) < x(logx)¥2-tq*(x;y,0) 8.
Now
S(x;ﬁy,ve)
' 1 x/k
) (57)0® E ldT*(u;iy,kve)
k<x k 1— u
1 Nx/k
= Y w /—(T* (x/k;iy,kv@) + —2T*(u;ﬁy,kv9)du
k<x k X J1 u
1 1
= kgx (fzy)sz(k) . T* (x/k; ﬁy, ka) + . " T*(u/k; %y, kve)du

1 1
<;S*(x;iy,v6) + 51 ;S*(u;iy,v@)du.

By our monotonicity assumptions on g*(x;y,0) and (99), we have for
l<u<x

S* (u; 2 Y ve) < u(log2u)@-9r/4-1{(log x)?»'*/q*(x;y,0)}° .
Inserting this into the previous bound, we obtain
(100) S(x; iy, VG) < (logx)??/q*(x;y,0)% .

It follows that, with the value of T given above, we may take in (81), for
all vwith 1 <v<<T,

(101) ey (X, ¥5he) 1= qg*(x;,0) 8.
This is clearly a non-increasing function of x and &7 (x,y; hg) (log x)?’2
is plainly non-decreasing. Therefore we obtain

Y\ A(n; hg)?
z ()

2 < (logx)?q*(x;»,0) " %{log2g*(x;y,0)}2.

n

Altering the value of &, the factor {log2g*(x;y,0)}2 may be deleted.
This yields (79) and finishes the proof of Theorem 12.
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