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LA CONJECTURE abc

par Abderrahmane NITAJ

1. INTRODUCTION

En 1637, Pierre de Fermat écrivait dans la marge des oeuvres de Diophante
qu’il avait trouvé une belle démonstration du théoréme suivant:

THEOREME 1.1. Pour tout entier n =3, les seules solutions entieres
(x,y,2) de I’équation

x?’l _I_ yl’l — Zn ,
sont telles que xyz = 0.

Non seulement cette démonstration ne fut jamais retrouvée, mais jusqu’en
1995 personne n’a réussi a démontrer ce théoreme dans sa généralité. Les
travaux récents de A. Wiles viennent enfin d’y parvenir. Le théoréme
de Fermat se distingue donc particuliérement par la simplicité de son énoncé
et par la difficulté de sa résolution. Il a illustré I’évolution de certaines
branches des mathématiques (théorie des nombres, géométrie algébrique, ...).
Pourtant, isole¢, le théoreme de Fermat n’a pas une grande importance. Il
a repris de l’intérét dés qu’on I’a relié a d’autres problémes de mathé-
matiques et notamment a la conjecture de Shimura-Taniyama-Weil. La
conjecture abc de J. Oesterlé et D. W. Masser est née dans ce contexte: rompre
I’isolement du théoreme de Fermat. Méme si cette conjecture n’implique
que la version asymptotique du théoréme de Fermat, son importance en
théorie des nombres est grande. Sa démonstration permet en effet de résoudre
plusieurs autres problémes ouverts.

Le but de cet article est de donner une description de la conjecture abc
(partie 2) et d’énumérer la plupart de ses conséquences (partie 3). La partie 4
est consacrée a 1’étude de certaines méthodes permettant de tester numéri-
quement la conjecture abc et d’en prévoir une forme effective. Enfin, la
partie 5 présente quelques généralisations possibles de la conjecture abec.
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2. LA CONJECTURE abc

Dans cette partie, nous allons rappeler la conjecture abc, ainsi que les
quelques tentatives qui ont été faites pour essayer de la démontrer. La
définition suivante est étroitement liée a la conjecture abc.

DEFINITION 2.1. Soit n wun entier non nul. On appelle radical de n
et on écrit r(n) le produit

r(ny=I1 p (p premier)

pln
des facteurs premiers distincts divisant n, avec par convention r(l) = 1.

Le radical est quelquefois appelé support, conducteur ou noyau et
vérifie r(n)|n.

Motivés par un théoréeme de Mason ([10], [20]) sur les polynOmes et
par certaines conjectures de Szpiro [31], J. Oesterlé et D.W. Masser
ont formulé en 1985 la conjecture suivante, plus connue sous le nom de
conjecture abc [20]:

CONJECTURE 2.2. (abc). Pour tout € >0, il existe une constante
c(e) > 0 telle que pour tout triplet (a,b,c) d’entiers positifs, vérifiant
a+b=c et (a,b)=1 on ait:

c < c(e) (r(abe))t+=.

Une premieére analyse de I’inégalité de la conjecture abc montre que si
un triplet (a, b, ¢) d’entiers positifs vérifie a + b = ¢ et (a, b) = 1, alors
le produit abc est composé de nombres premiers distincts avec pour la
plupart un exposant relativement petit. On peut constater ce fait dans les
tables de factorisation de nombres de la forme ¢” — b”, données a la fin du
livre de H. Riesel (voir [24], pp. 388-437).

Pour € > 0 fixé, la constante c(g) qui lui correspond dans la conjec-
ture abc peut étre unique, en prenant:

23) () = inf .
. c(e) = in ,
(@, b,c)e1 (r(abe))!*e
avec I ={(a,b,c) e N3, (a,b) =1,a+ b =c}. Quant a la possibilité¢ de
prendre ¢ = 0 dans la conjecture abc, la proposition suivante montre que ce
choix n’est pas possible.
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PROPOSITION 2.4. Pour €>0, soit c(g) la constante définie
par (2.3) vérifiant I’inégalité de la conjecture abc. Alors

lim c(g) = + oo .
e—0

Preuve. On définit les entiers x, et y, par la relation:

Xo + Yal/2 =@ +2)/2)".

Alors pour tout n>1, 1 +2y2=x2. Si n=2", on vérifie facilement
par récurrence que 2”*!|y,. Appliquons la conjecture abc a la relation
x2 =1+ 2y2. On obtient pour n = 2":

X2 < c(e) (r(xaya)) ' +e < c(8) (xaya/2m) 4o < c(g)x, 9/ 2m+e)

Alors c(g) > 2m1+9)/x% et donc

lim c(g) > 27,

e—0

ce qui montre que lirr%) c(e) = + . [
8'—)

Des démonstrations différentes de la proposition 2.4. se trouvent
dans [10] et [20].

Depuis sa formulation en 1985, peu de résultats théoriques ont été
découverts sur la conjecture abc. 1l n’existe actuellement que deux théoreémes
la concernant. Les démonstrations de ces deux théorémes s’appuyent sur
des méthodes utilisant des formes linéaires de logarithmes complexes et
p-adiques. Nous donnons ici ces deux théorémes. Leurs démonstrations se
trouvent dans [29] et [30] respectivement.

THEOREME 2.5. (Stewart, Tijdeman, 1986). [/ existe une constante effec-
tivement calculable k > 0 telle que, pour tout triplet (a,b,c) d’entiers
positifs, vérifiant a+ b =c et (a,b) =1 on ait:

c < exp{k(r(abc))'s}.

THEOREME 2.6. (Stewart, Yu, 1990). I/ existe une constante effecti-
vement calculable k > 0 telle que, pour tout triplet (a,b,c) d’entiers
positifs, vérifiant a+ b =c et (a,b) =1 on ait:

c< exp{(r(abc))2/3+k/loglogr(abc)} _

Remarquons que les inégalités des deux théorémes ci-dessus sont eXpo-

nentielles en r(abc), alors que I'inégalité de la conjecture abc est seulement
polynomiale.
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3. APPLICATIONS DE LA CONJECTURE abc

Dans cette partie, nous décrivons la plupart des conséquences de la
conjecture abc montrant ainsi son importance en théorie des nombres.

3.1. LES CONJECTURES DE SZPIRO

Les conjectures de Szpiro sont antérieures (1983) a la conjecture abc et
certaines d’entre elles ont les mémes conséquences. Nous donnons deux de ces
conjectures. La conjecture suivante est une conséquence de la conjecture abc
et a été tres étudiée ([13], [15], [17], [31]).

CONJECTURE 3.1.1. (Szpiro, forme forte). Pour tout € > 0, il existe
une constante c(g) >0 telle que pour toute courbe elliptique semi-
stable E sur Q, de discriminant minimal Ag et de conducteur Ng
on ait:

|Ag| < c(e)N&Te.

Le conducteur d’une courbe elliptique semi-stable est le radical de son dis-
criminant minimal. Pour une définition exacte du conducteur, on peut
consulter [27].

La conjecture suivante est connue aussi sous le nom de conjecture de
Lang-Szpiro.

CONJECTURE 3.1.2. Pour tout ¢>0 et pour tout couple (A, B)
d’entiers premiers entre eux, il existe une constante c(g, A, B) > 0 telle que
pour tous les entiers u, v,k vérifiant (Au,Bv) =1 et k= Au’+ Bv?,
on ait:

lu|< (e, A, B)r(k)?+s et |v|<c(e, A, B)r(k)3+e.

PROPOSITION 3.1.3. La conjecture abc est équivalente a la conjec-
ture 3.1.2.

Preuve. Admettons d’abord la conjecture abc. Soient A, B,u,v et k
des entiers tels que (Au,Bv) =1 et k = Au?® + Bv?. La conjecture abc
donne:

ci(¢g)

| B|

o] <

(r(ABuvk))1+e < ca(g, A, B) |uv |1 *e(r(k))+=.
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Supposons que |Au®| < |Bv?| (le cas inverse se fait de la méme
maniére), alors | u | < ¢3(A4, B) |v|?/3. En reportant cette majoration dans
’inégalité ci-dessus, on obtient:

10]2 < cole, A, B) |0 ]50+973(r(k)) 1+,
et par suite:

|v](=5973 L cy(g, A, B)r(k)1+e.

Prenons ¢ tel que 1 — 5¢ > 0 et posons ¢” = 18¢/(1 — 5¢), alors:
|v] < es(e, A, B) (r(k))30+o/0=59  ce(e’, A, B) (r(k))*+*" .

On obtient alors pour | u |:

|u| < ci?(e', A, B)cs(A, B)r(k)2C+23 < c1(e", 4, B) (r(k))?*<".

Ceci prouve la conjecture 3.1.2.
Inversement, admettons la conjecture 3.1.2. Soient a, b et ¢ des entiers
positifs vérifiant a < b, a + b = c et (a, b) = 1. Alors:

(a2 +ab+ b)) - ((b—a)(a+2b) Qa+b)/2)2=33ab(a+ b)/2)2.
Cette relation peut étre éventuellement simplifiée par 33 si @ = b (mod 3).
En appliquant la conjecture 3.1.2, on obtient:

a? < b2 < a? + ab + b < ci(e)(r(abe))?+e,
et donc:

a<b< (c(e)2(r(abe))t+e?,
et finalement:
c<c(e’) (rabe))t+=".

Ceci prouve la conjecture abc. [

3.2. CONSEQUENCES SUR LES TRIPLETS D’ENTIERS

Les propositions suivantes montrent I’influence de la conjecture abc sur
I’architecture des triplets d’entiers.

PROPOSITION 3.2.1. Si la conjecture abc est vraie, alors pour
tout & >0, Il existe une constante c(g) telle que pour tout triplet
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(x1,X2,X3) d’entiers positifs, vérifiant x, + x,=x;3 et (x1,x) = 1,
un des x;,ie€{l,2,3}, vérifie:

x; < c(e) (r(x;))3+e.

Cette proposition fait apparaitre un lien entre la conjecture abc et le
théoreme de Fermat. Nous avons aussi le résultat suivant:

THEOREME 3.2.2. Sila conjecture abc est vraie, alors pour tout & > 0
et tout entier a =1, il existe une constante c¢,(g,a) > 0 telle que pour
tout entier n =2 et tout entier x =2 vérifiant (a,x) =1 on ait:

xt < e(e,a) (r(xn—amn))t+e.

Preuve. Soit ¢ fixé tel que 0 < € < 1/2. Appliquons la conjecture abc a
la relation (x" —a”") + a® = x" avec (a,x) = 1. On obtient:

xn < C(E, a) (r(xn _ an))l+axl+e ,
Alors:
xn—1 g (C(E, a))(n—l)/(n—l—s)(r(xn _ an))(n—l)(1+s)/(n—1—8) )

Si € est assez petit et si » > 2, on a d’une part (n—1)/(n—1—-¢) <2
et d’autre part:

(n=1)(1+e) 1+

n—1-¢ \1—8

=1+¢g",

avece’ = 2g/(1 — €). On obtient finalement la conclusion du théoréme. [ ]

3.3. LES NOMBRES DE WIEFERICH
Un nombre premier p vérifiant la congruence
a?~1=1 (mod p?)

avec a = 2 est appelé nombre de Wieferich. En 1909, celui-ci a montré
que si un nombre premier p ne vérifie pas la congruence ci-dessus, alors il
n’existe pas d’entiers x > 0, y > 0 et z > 0, premiers entre eux, tels que
xyz# 0 (mod p) et x# + y? = z? (premier cas du théoréme de Fermat).
En 1910, Mirimanoff a prouvé la méme chose avec a = 3. Les nombres
premiers vérifiant cette congruence sont tres rares. Par exemple, les seuls
nombres premiers p vérifiant cette congruence avec ¢ = 2 et p < 3 x 1010
sont 1093 et 3511. De méme, les seuls vérifiant cette congruence avec a = 3
et p < 23%sont 11 et 1006003 (voir [14] ou [22]). Un probléme encore ouvert
est la conjecture suivante:
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CONJECTURE 3.3.1. Soit a>2. Il existe une infinité de nombres
premiers p tels que a®~'# 1 (mod p?).

J.H.Silverman [28] a montré que cette conjecture est une conséquence
de la conjecture abc.

3.4. LA CONJECTURE DE MORDELL

Une des conséquences les plus étonnantes de la conjecture abc est le fait
que celle-ci implique tout simplement la conjecture de Mordell, devenue
théoréme de Faltings:

Toute courbe de genre g > 2 définie sur Q n’admet qu’un nombre
fini de points rationnels.

Cette conjecture a été redémontrée par la suite par P. Vojta [34] et
E. Bombieri [1]. En 1991, N.D. Elkies a déterminé son lien avec la conjec-
ture abc (voir [4]).

THEOREME 3.4.1. (Elkies). La conjecture abc implique la conjecture
de Mordell.

A la fin de son article, Elkies donne le corollaire suivant:

COROLLAIRE 3.4.2. (Elkies). La conjecture abc implique que pour tout
e >0 et tout polynéome P e Z[X,Y], homogene, de degré d et sans
facteurs carrés, il existe une constante c(g, P) telle que pour tout couple
(a, b) d’entiers premiers entre eux, vérifiant P(a,b) + 0 on ait:

sup(lal,|b])4-2< e(e, P)r(P(a,b))'+e.

3.5. LA CONJECTURE D’ERDOS-WO0OODS

La conjecture suivante a ¢té formulée par P. Erdds, puis par Woods
en 1981.

CONJECTURE 3.5.1. (Erd6s-Woods). 1/ existe une constante k > 0 telle

que pour tous les entiers positifs x et y, si r(x+1i)=r(y+1i) pour
tout i, i=1,2,....,k, alors x=y.

Cette conjecture est fausse pour kK =2 (x = 2" — 3, y = 22n — 2n+1 _ |
conviennent). Par contre pour k > 3, aucun exemple d’entiers différents

vérifiant les égalités de la conjecture d’Erdds-Woods n’est connu. M. Langevin
a montré le résultat suivant (voir [11, 12]).
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PROPOSITION 3.5.2. (Langevin). La conjecture abc implique que la
conjecture d’Erdds-Woods est vraie avec k =3, sauf peut-étre pour un
nombre fini d’exceptions pour x et y.

3.6. LA CONJECTURE DE HALL

En 1971, M. Hall Jr. a énoncé la conjecture suivante [7]:

CONJECTURE 3.6.1. (Hall). Il existe une constante ¢ > 0 telle que pour
tous entiers x> 1 et y >0 vérifiant x3 + y? on ait:

| x3 — y?| > cmax (x3, y?) /6.

On sait par exemple depuis 1738 (Euler), que les seules solutions non
triviales de I’équation |x® — y2| =1 sont (x,y) = (2, +3). La relation
281873513 — 1496516106212 = — 1090, montre que dans la conjecture de
Hall, la constante c¢ vérifie ¢ < 0,205305. La conjecture abc n’admet

pour conséquence que la forme faible suivante de la conjecture de Hall
(voir [17], [25]).

CONJECTURE 3.6.2. Pour tout € > 0, il existe une constante c(g) > 0
telle que pour tous les entiers x> 1 et y >0 on ait:

|x3 = »2| > c(e)max(x3, y2) 162

3.7. L’EQUATION DE FERMAT GENERALISEE

La conjecture abc s’applique particuliérement aux équations diophan-
tiennes a trois termes, dont 1I’équation de Fermat généralisée.

THEOREME 3.7.1. Si la conjecture abc est vraie et si A,B,C sont
des entiers strictement positifs, alors I’équation:

Ax! 4+ Bym = Cz"

n’admet qu’un nombre fini de solutions en entiers positifs x,¥y,z,l,m,n
vérifiant 1-'+m-1+n-1<1 et (x,5,2) = l.

Preuve. Si z =1, alors le théoreme est clair, méme sans admettre
la conjecture abc. Supposons donc que z > 2 et que (x,y,z) = 1. Soit
d = (Ax',By™,Cz"). Alors d est borné. En appliquant la conjecture abc
au triplet (Ax'/d,By™/d, Cz"/d), on obtient:

Cz"/d < ci(e) (r(ABCx!ymzn/d3))!+¢ |
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d’ou I’on tire:
ABCxlymzn
d3

anCz(g,C) (dr( ))1+8<c3(83A5B9C) ('xyz)1+8'

Puisque Ax' < Cz" et Bym < Cz", alors x < c4(A4,C)z"" et y < cs5(B, C)yzm/'m.
Ainsi

Zn < C6(8,A,B, C) (Zn)(1+8)([*l+m——l+n——1) ,
ce qui donne:
(zr)!-G+e0-tem=1en-) < ¢ (g, A, B, C) .

Si/-!'+m-'+ n-1<1etsie est assez petit, alors 1 — (1 +¢&) (/"' +m™!
+n-1)> 0 et donc z” est borné. Ainsi z, x, ¥, [, m, n sont bornés. [

REMARQUE 3.7.2. On peut trouver d’autres démonstrations de cette
proposition dans [25] et [33]. Dans le cas A = B = C = 1, seules 10 solu-
tions sont connues avec /"' 4+ m-1+ n-1 < 1:

1 +23=132, 1324 73=29, 173+ 27 =712,
25 4+ 72 =134 35+ 114=22.612,

ainsi que les solutions suivantes, découvertes par Beukers et Zagier (voir [3]):

177 + 762713 = 210639282, 14143 + 22134592 = 657,
92623 + 153122832 = 1137, 43% + 962223 = 300429072,
338 4+ 15490342 = 156133 .

3.8. (QUELQUES CONJECTURES SUR LES NOMBRES PUISSANTS

DEFINITION 3.8.1. Un entier n est un nombre puissant s’il possede
la propriété suivante: si p divise n et si p est premier, alors p?
divise n.

Si n est un nombre puissant, alors il s’écrit de facon unique sous la
forme n = a?b3, ou b est sans facteurs carrés et son radical r(n) vérifie
donc r(n) < n'/2.

Les conjectures citées dans cette partie proviennent de [22] et de [6] (B16).

CONJECTURE 3.8.2. (Erd8s-Mollin-Walsh). 1l n’y a aucun triplet de
nombres puissants consécutifs.

Cette conjecture est vérifiée pour tous les triplets d’entiers inférieurs

a 2% [18] et implique en particulier qu’il existe une infinité de nombres
premiers p tels que
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Ceci fait apparaitre un lien avec le premier cas du théoréme de Fermat
(voir [22]).

La conjecture abc ne permet pas de répondre totalement a la conjec-
ture 3.8.2, mais permet d’avoir ceci (voir [17]):

PROPOSITION 3.8.3. La conjecture abc implique qu’il n’y a qu’un
nombre fini de triplets de nombres puissants consécutifs.

Les conjectures suivantes concernent les nombres de Fermat et de Mersenne
et il est facile de montrer qu’elles sont des conséquences de la conjec-
ture abc ([17]).

CONIJECTURE 3.8.4. Pour tout entier k > 2, soit n, le nombre puissant
le plus proche de 2% avec n, #2%. Alors lim |2¥ — ng| = + oo.

k— oo

CONJECTURE 3.8.5. Il existe une infinité de nombres de Fermat et de
Mersenne qui ne sont pas des nombres puissants.

Pour terminer cette partie, citons la conjecture suivante sur les nombres
4-puissants, qui sont des entiers n tels que r(n)*|n (voir probléme B16
de [6], édition 1981). Cette conjecture est aussi une conséquence de la
conjecture abc.

CONJECTURE 3.8.6. (Erdé6s). L’équation x + y =z n’admet qu’un
nombre fini de solutions en entiers positifs 4-puissants, premiers entre eux.

3.9. LA CONJECTURE DE RICHARD
La conjecture suivante est tirée de [23]:

CONJECTURE 3.9.1. (Richard). Si deux entiers x et y vérifient pour
tout entier n > 0:

r(x* -1 =r(y*-1,
alors ils sont égaux.

A. Schinzel a montré de fagon élégante que cette conjecture est une consé-
quence de la conjecture abc (voir [17], [23]).

3.10. LE PROBLEME DE CROFT

Le probléme de savoir dans quelle mesure la différence |n! — 2m| peut
&tre petite par rapport a 2™ s’appelle le probleme de Croft (voir [6], F23).
Des résultats expérimentaux nous ont motivé pour proposer la conjecture
suivante (voir [17]).
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CONJECTURE 3.10.1. Il existe une constante ¢ > 0 telle que pour tous
les entiers m et n avec (m,n) # (0,0),(1,0),(2,1) on ait:

n<e(r([nt =2m))n.

La conjecture abc implique cependant une forme faible de cette conjecture
(voir [17]).

PROPOSITION 3.10.2. La conjecture abc implique que pour tout
g > 0, il existe une constante c(g) > 0 telle que pour fous les entiers m
et n avec (m,n)+(0,0),(1,0),(2,1), on ait:

n<ce) (r(|n! —2m|))a+ern,

3.11. AUTRES CONSEQUENCES

Nous regroupons dans cette partie plusieurs conséquences de la conjec-
ture abc. Cela concerne en particulier des équations diophantiennes liées a
des problémes ouverts.

ProroOSITION 3.11.1. Soient A >0,B>0 et k des entiers. La
conjecture abc implique que [’équation

Ax™ — By" =k

n’a qu’un nombre fini de solutions en entiers x> 1,y >1, m>1,n>1
avec mn > 4.

Cette proposition est liée a une conjecture de Pillai. Lorsque A = 1, B = 1
et kK =1, cette conjecture porte le nom de conjecture de Catalan, qui
affirme en plus que (x, y, m, n) = (3, 2, 2, 3) est I’'unique solution. En 1976,
R. Tijdeman [32] a montré que I’équation de Catalan n’admet qu’un nombre
fini de solutions.

PROPOSITION 3.11.2. La conjecture abc implique que [I’équation

R

n’admet qu’un nombre fini de solutions en entiers positifs v, w,x,y, m > 1
et n>1 vérifiant (x,v)=1,(y,w)=1 et mn > 4.

Cette proposition est liée a une conjecture de Shorey et Tijdeman
(voir [26], p. 202). Cette conjecture est vraie en particulier si ’une des
variables v, w, x ou y est composée de nombres premiers fixés.
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PROPOSITION 3.11.3. La conjecture abc implique que [’équation
(xHr+1=ym

n’admet qu’un nombre fini de solutions en entiers x>0, y>0, n>1
et m=2.

Cette proposition est liée & un probleme de Brocard (voir [6], D25) et sa
démonstration (voir [17] et [21]) est basée sur l'utilisation des inégalités sui-
vantes, déduites des formules de Stirling et de Chebyshev (voir [19], p. 374),
valables pour x > 2:

(x/e)* < x!,
(3.11.4) IT p < 4%, p premier .

pP<X

PROPOSITION 3.11.5. La conjecture abc implique que [’équation

b
n!' +1=pipi.,

n’admet qu’un nombre fini de solutions en entiers n>1, a>0, b >0
et pr 1 <n<p, ou (p;),i=1 estlasuite des nombres premiers.

Cette proposition est liée a une conjecture d’Erdds-Stewart (voir [6], A2).
Sa démonstration est basée aussi sur les inégalités (3.11.4).

PROPOSITION 3.11.6. La conjecture abc implique que [’équation
X"+ y*=nlz"

n’a qu’un nombre fini de solutions en entiers x>0, y>0, z>0 et
n>4.
Cette proposition est liée & un probléme ouvert sur les équations diophan-
tiennes (voir [6], D2).
ProOPOSITION 3.11.7. La conjecture abc implique que pour tout
entier a > 1, [’équation
xn _ yn

X =)

= @grm

n’a qu’un nombre fini de solutions en entiers x>y >0, z>0, n> 3,
m>1 avec (x,y)=1,3n"1+m-1<1.

Cette proposition est une réponse générale a un probleme de H. Edgar
([6], D10) et de Shorey-Tijdeman ([26], pp. 202, 203).
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PROPOSITION 3.11.8. La conjecture abc implique que I’équation

xm—1 yr—1

x—1 y—1
n’a qu’un nombre fini de solutions en entiers x>y >1 et m>n>3.

La recherche de solutions pour ’équation ci-dessus est appelée probleme
de Goormaghtigh (voir [6], B25). Avec n =3,(x,y,m,n) = (2,5,5,3),
(2, 90, 13, 3) sont les seules solutions connues.

PROPOSITION 3.11.9. La conjecture abc implique que pour tout
entier d > 1, [’équation

x(x+d)...(x+kd) =y"

n’a qu’un nombre fini de solutions en entiers x>0, k=22, y>0 et
n>=2.

Cette proposition montre le lien entre la conjecture abc et les progressions
arithmétiques. P. Erdés et J. L. Selfridge ont montré en 1975 que I’équation
ci-dessus n’a pas de solution dans le cas particulier d = 1 (voir [33] pour plus
de détails).

4. A LA RECHERCHE DE FORMES EFFECTIVES

Soient a, b et c¢ trois entiers positifs, premiers entre eux et vérifiant
a+ b =c. Soit r=r(abc), le radical de abc. On définit le rapport de
Oesterlé-Masser pour le triplet (a, b, ¢) par:

logc
o=oa(a b,c)=——.
logr

On définit de méme le rapport de Szpiro pour le méme triplet par:

logabc

p=p(abc)=
logr

Ce dernier rapport est lié & la conjecture de Szpiro (voir conjecture 3.1.1)
par les courbes elliptiques E, , . que Y. Hellegouarch [9] a mis au point
en 1972 pour étudier le théoréeme de Fermat. C’est en utilisant ces mémes
courbes que K. Ribet a établit le lien entre la conjecture de Shimura-Taniyama-
Weil et le théoréme de Fermat. Pour un triplet (e, b, ¢) d’entiers positifs

vérifiant @ + b = c et (a, b) = 1, la courbe E, , . est définie par:

Eope: y2=x(x—a)(x+b).
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Si le triplet (a, b, c¢) vérifie, par exemple, a = 0 (mod 16) et b = — 1 (mod 4),
alors E, ,, . est semi-stable et dans ce cas son équation minimale est donnée
par:

y7~+xy—x-”+ar_b_lx2 abx
4 16

Toujours avec les mémes hypothéses, le discriminant minimal de la courbe
E, . est égal & (abc/16)? et la conjecture 3.1.1 donne donc la méme
conclusion que la conjecture abc:

Pour tout € > 0, il existe une constante c(g) > 0 telle que [’on ait:
abc < c(g) (r(abe))3+e.

L’inégalité de la conjecture abc implique que les rapports de Oesterlé-
Masser et de Szpiro vérifient:

lim o(a,b,c)=1 et lim p(a,b,c) =3.

r— oo

Ceci implique en particulier qu’il n’y a qu’un nombre fini de triplets
(a, b, c) d’entiers positifs vérifianta + b = ¢, (a,b) = leta(a,b,c) > 1+ k
ou p(a,b,c) >3+ k, ou k> 0 est fixé. On peut voir facilement que ceci
devient faux pour k < 0. En effet, définissons les suites (x,), (¥,) et (2,)
par xo = 37, yo = 17, zo = 21, et pour tout n > 0,

Xn+1 =xn(xi+2yf,),
Ynse1 = —Y"Q2X5+Y5),
Zn+1 :Zn(x?z—yi,)'

Alors pour tout n > 1,
x>+ yi=6z), (x4, y.)=1 et z,=0(mod 3 x2").
Posons
a, = min(|x, |3, [ya ], 162,1)
¢, = max(|x, |3 |y.13,162,]) et b,=cp—an.
Alors pour n > 1,

| X0 Vnzn |

r(anbncn)=r(6 . ) <(a,b,c)'*<cy,

et donc a(a,, b,,c,) > 1 et p(a,, b,,c,) > 3.
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On peut se poser maintenant naturellement la question s’il existe un triplet
pour lequel I'un des deux rapports o ou p est maximal. Nous avons en fait
la réponse suivante.

PROPOSITION 4.1. La conjecture abc implique qu’il existe un triplet
d’entiers " positifs (a, b,c) Vérifiant (a, by=1 e a+b=c, pour
lequel le rapport a(a, b, c) (resp. p(a, b, c)) est maximal.

Preuve. Admettons la conjecture abc. Supposons qu’il n’existe pas de
triplet (a, b, c) admettant un rapport o maximal. Soit (@, bo, co) un
triplet d’entiers positifs vérifiant (ao, bo)=1 et ag+ bo=co, avec
a(ag, by, co) > 1. On peut donc construire une infinité de relations
(a,, by, c,) telles que pour tout n > 1, a(dx, bo,Cy) > 0(an_15Dbn-1,Cn-1)-
D’autre part, la conjecture abc implique que pour tout reel & > 0, il existe
une constante positive c(g) telle que pour tout n > 0, on ait:

c(e)

o(a,,b,,cn) <1 +¢e+ .
logr(a,b,c,)

Choisissons & tel que 1+ &< a(ag,bo, o). Comme les triplets
(a,, by, c,) sont différents deux a deux, alors d’apres le théoréme de Mahler
(voir [26]), lim r(a,b,c,) = o et donc:

lim a(a,,b,,c,) <1+ ¢&<a(ao,bo, o),

n-— o

ce qui contredit la définition de la suite. []

Les triplets (a, b, ¢) d’entiers positifs vérifiant @ + b = ¢, (a, b) = 1 pour
lesquels les rapports a(a,b,c) ou p(a,b,c) sont proches des valeurs
conjecturales 1 et 3 sont nombreux. Nous convenons de dire qu’un triplet
(a,b,c) est bon pour la conjecture abc si a(a,b,c)>1.4 ou si
p(a, b,c) > 3.8. Dans la suite, on se propose de décrire une méthode de
recherche de bons triplets pour la conjecture abc. Cette méthode est basée
sur la résolution de I’équation diophantienne:

4.2) Ax" — Byn = Cz

en entiers x, y, z ou les entiers A, B, C et n sont donnés et vérifient 4 > 0,
B#0,C>0,n2>2cet (A, B) = 1. Pour chaque solution (x, y, z) de (4.2),
nous prenons les entiers a, b et ¢ parmi Ax”, By” et Cz de telle sorte que
le triplet (a, b, ¢) vérifie 0 < a < b,a + b = cet (a, b) = 1. On calcule enfin
les rapports a(a, b,c) et p(a, b,c) en espérant qu’ils soient bons pour la
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conjecture abc. Pour cela, on doit bien choisir les données A, B et C et on
cherche les solutions de (4.2) dans lesquelles | z | est petit par rapport & C. La
description détaillée de cette méthode se trouve dans [15, 16, 17].

Nous avons ainsi déterminé 86 exemples de triplets (a, b, ¢c) d’entiers
positifs vérifiant ¢ + b =c¢,(a,b) =1 et a(a,b,c) > 1.4 et 103 autres
exemples vérifiant p(a, b, ¢) > 3.8. Nous listons dans les tables 4.3 et 4.4

TABLE 4.3

N. a b c o Auteur

1. 2 310,109 23> 1.62991 Reyssat (1987)

2. 112 32 R8> 22123 1.62599 de Weger (1987)

3. 19.1307 7.292.318 28322 54 1.62349 B-B (1992)

4. 283 51, 132 2838173 1.58076 B-B, Nitaj (1992)

5. 1 2.37 547 1.56789 de Weger (1987)

6. 73 310 21129 1.54708 de Weger (1987)

7. 72.412.3113 111613279 2.33.523,953 1.54443 Nitaj (1994)

8. 53 29317132 115.17.313.137 1.53671 te Riele-Montgomery (1994)
9. 13.19¢ 2305 31311231 1.52700 Nitaj (1992)

10. 31823.2269 173.29.318 21052715 1.52216 Nitaj (1994)

11. 239 58173 210,374 1.50284 B-B, Nitaj (1992)

TABLE 4.4

N. a b c p Auteur

1. 13.19° L 313,112.31 4.41901 Nitaj (1992)

2. 2%.11%2.19° 515.372.47 37,711,743 4.26801 Nitaj (1994)

3. 219.13.103 7l 31153112 4.24789 de Weger (1987)
4. 2357217219 327,107 5153722311  4.23069 Nitaj (1994)

5. 318232269 173.29.318 21052715 4.22979 Nitaj (1994)

6. 174.793.211 229 23,292 g1 4.22960 Nitaj (1994)

7. 51419 233,713 117.372.353 4.22532 Nitaj (1994)

g. 321 72.116.199  2.133.17 4.20094 Nitaj (1992)

9. 5186359 32,476,733 27.1910.79 4.14883 Nitaj (1994)
10. 113.315.101.479 1078 23134567 4.13000 Nitaj (1994)
11.  7.116.43 311 54 217 17° 4.10757 G. Xiao (1986)
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les 11 meilleurs triplets connus actuellement relativement au rapport o
et au rapport p. L’auteur peut fournir, sur demande, la totalité des triplets
dont il dispose. Certains exemples ont été déterminés en méme temps par une
méthode différente par J. Browkin et J. Brzezinski et sont notés B-B (voir [2]).
De maniére exhaustive, N. FElkies et J. Kanapka ont déterminé tous les
triplets d’entiers positifs (a, b, ¢) vérifiant a + b = ¢ <232, (a,b) =1
et a(a,b,c) > 1.2 (communication privée). Récemment, H. te Riele et
P. Montgomery ont déterminé 5 nouveaux exemples en utilisant 1’algo-
rithme LLL de Lenstra, Lenstra et Lovdsz (communication privée). D’autre
part, nous avons continué la recherche de bons exemples pour la conjecture
abc avec une méthode basée sur les approximations p-adiques. Cette méthode
a permis de découvrir 21 nouveaux exemples avec a > 1.4 et 20 autres
avec p > 4.0.

Les tables 4.3 et 4.4 nous permettent de donner la forme effective suivante
de la conjecture abc:

CONIECTURE 4.5. Si (a, b,c) est un triplet d’entiers positifs vérifiant
a+b=c e (a,b)=1, alors c<r(abc)''®¥® et abc < r(abc)**.

Cette conjecture est bien entendu plus faible que la conjecture abc. Elle
permet de déterminer des bornes explicites pour les solutions de certaines
equations diophantiennes. A titre d’exemple, elle implique le théoréme de
Fermat pour les exposants » > 5.

La recherche d’une formule de la constante c¢(g) de la conjecture abc
en fonction de € est un probléme différent. Il faut tenir compte du fait que
lim c(g) = + oo, (Proposition 2.4) et du théoréme suivant, démontré

€ o

dans [13] et [29]:

THEOREME 4.6. Soit 8 > 0. I/ existe une infinité de triplets (a, b, )
d’entiers positifs vérifiant a + b =c, (a,b) =1 et tels que

/log r(abc) )

loglogr(abc)

¢ >r(abc)exp ((4 - 9)
Ce théoreme admet la conséquence suivante:
PROPOSITION 4.7. Pour tout k>0 et tout ki >0, il existe un

triplet (a, b, c) d’entiers positifs vérifiant a + b = ¢, (a,b) =1 et tels
que ¢ > kr(abc) (logr(abc))k:.
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Preuve. Soient k>0 et k;>0. Supposons que tous les tri-
plets (a, b,c) d’entiers positifs avec a+ b =c et (a,b) =1 vérifient
¢ < kr(abe) (logr(abc)) . Soit (a,b,c) un triplet vérifiant ’inégalité
du théoréme (4.6). Alors:

l/log r(abc)

log log r(abc)

r(abc)exp ((4 — 9) < ¢ < kr(abe) (logr(abe))rr,

ce qui donne:

(4 — 8))/logr(abc) < (logk + k;loglogr(abc))loglogr(abc) ,

et donc r(abc) est borné, ce qui est impossible par le théoréme (4.6) et
par le théoréme de Mahler. [

La proposition 4.7 nous donne maintenant le résultat suivant:

PROPOSITION 4.8. Pour tout k > 0, il existe un réel € >0 et un
triplet (a, b,c) d’entiers positifs, verifiant a + b=c et (a,b) =1,
tels que

1
c> — (r(abc))t+e .
Sk

Preuve. Soit k > 0. Supposons que pour tout & > 0, et tout triplet
(a, b, c) d’entiers positifs vérifiant ¢ + b = ¢, (a, b) = 1 on ait:

1
c < — (r(abc))t+e.
gk

Le minimum du second membre de cette inégalité est atteint pour
e = k/logr(abc). Alors, on doit avoir:

c < (%) ' r(abc) (logr(abe))*,

ce qui contredit la proposition 4.7. L[]

5. GENERALISATIONS

La conjecture abc est aussi simple par son énoncé que le théoréme de
Fermat, mais certainement beaucoup plus difficile, et en tout cas sa résolution
aura beaucoup de conséquences en théorie des nombres. L’intérét de cette
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conjecture nous raméne a envisager la possibilité d’une généralisation dans
différentes directions.

5.1. n-CONJECTURE abc

La conjecture abc peut &tre étendue & un nombre de parametres supérieur
a trois de la facon suivante.
Soit n > 3. Soient a,, a,, ***, a, des entiers vérifiant les conditions:

a+a, +...+a, =0,
(511) (alaaZs”'yan): 19
Aucune sous-somme n’est nulle.

Soit r(a,a, -+ a,) le radical du produit a,a, - - - a,. La n-conjecture abc
s’énonce ainsi (voir [2]):

CONJECTURE 5.1.2. (n-conjecture abc). Pour tout entier n>=3 et
tout € > 0, il existe une constante c(g,n) > 0 telle que pour tout n-uplet
(a\,a,, - *+,a,) d’entiers vérifiant les conditions (5.1.1) on ait:

max(lalla T |an|) < C(S, I’Z) (r(ala2 an))2n—5+g ]

5.2. L’ANNEAU DES POLYNOMES

L’analogue de la conjecture abc dans 1’anneau des polyndmes K[X]
d’un corps K de caractéristique nulle est en fait un théoréme. On peut trouver
sa démonstration dans [10], [17] ou [20].

THEOREME 5.2.1. (Mason). Soient A,B et C trois polynomes non
tous constants de K|[X], vérifiant A+ B+ C=0 et (A,B)=1. Soit
r(ABC) la somme des degrés des différents facteurs irréductibles de ABC.
Alors

max (deg (4), deg (B), deg(C)) < r(ABC) — 1 .

L’inégalit¢ du théoréme ci-dessus ne peut pas &tre améliorée (voir [12]).
D’autre part, ce théoreme est trés utile pour I’étude des équations poly-
nomiales. En particulier il implique le théoréme de Fermat dans K[X] et
explique pourquoi on ne peut pas espérer trouver des formules polynomiales
donnant un grand nombre de bons exemples pour la conjecture abc.

La n-conjecture abc dans K[X], ou K est un corps de caractéristique
nulle, peut étre formulée aussi de la fagon suivante (voir [2]).
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CONJECTURE 5.2.2. Soient n >3 un entier et a;,, 1<i<n des
polyndomes non tous constants de K[X] vérifiant des conditions analogues
aux conditions (5.1.1). Alors

max deg(a;) < 2n—35)(r(ai---a,)-1),

1<ign

ou r(a; - -a,) désigne la somme des degrés des différents facteurs
irréductibles de a, - a,.

5.3. CORPS DE NOMBRES

La conjecture abc existe aussi dans les corps de nombres. Le lecteur
intéressé peut trouver sa formulation par exemple dans [4], [5] ou [35].
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