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L'Enseignement Mathématique, t. 42 (1996), p. 3-24

LA CONJECTURE abc

par Abderrahmane Nitaj

1. Introduction

En 1637, Pierre de Fermât écrivait dans la marge des œuvres de Diophante

qu'il avait trouvé une belle démonstration du théorème suivant:

Théorème 1.1. Pour tout entier n ^ 3, les seules solutions entières

(x, y, z) de Eéquation

xn + yn zn

sont telles que xyz 0.

Non seulement cette démonstration ne fut jamais retrouvée, mais jusqu'en
1995 personne n'a réussi à démontrer ce théorème dans sa généralité. Les

travaux récents de A. Wiles viennent enfin d'y parvenir. Le théorème
de Fermât se distingue donc particulièrement par la simplicité de son énoncé

et par la difficulté de sa résolution. Il a illustré l'évolution de certaines

branches des mathématiques (théorie des nombres, géométrie algébrique,
Pourtant, isolé, le théorème de Fermât n'a pas une grande importance. Il
a repris de l'intérêt dès qu'on l'a relié à d'autres problèmes de

mathématiques et notamment à la conjecture de Shimura-Taniyama-Weil. La
conjecture abc de J. Oesterlé et D.W. Masser est née dans ce contexte: rompre
l'isolement du théorème de Fermât. Même si cette conjecture n'implique
que la version asymptotique du théorème de Fermât, son importance en
théorie des nombres est grande. Sa démonstration permet en effet de résoudre
plusieurs autres problèmes ouverts.

Le but de cet article est de donner une description de la conjecture abc
(partie 2) et d'énumérer la plupart de ses conséquences (partie 3). La partie 4

est consacrée à l'étude de certaines méthodes permettant de tester
numériquement la conjecture abc et d'en prévoir une forme effective. Enfin, la
partie 5 présente quelques généralisations possibles de la conjecture abc.



4 A. NITAJ

2. La conjecture abc

Dans cette partie, nous allons rappeler la conjecture abc, ainsi que les

quelques tentatives qui ont été faites pour essayer de la démontrer. La
définition suivante est étroitement liée à la conjecture abc.

Définition 2.1. Soit n un entier non nul On appelle radical de n

et on écrit r{n) le produit

r(n) II p {p premier)
P I n

des facteurs premiers distincts divisant n, avec par convention r(l) 1.

Le radical est quelquefois appelé support, conducteur ou noyau et

vérifie r{n) | n.
Motivés par un théorème de Mason ([10], [20]) sur les polynômes et

par certaines conjectures de Szpiro [31], J. Oesterlé et D.W. Masser

ont formulé en 1985 la conjecture suivante, plus connue sous le nom de

conjecture abc [20]:

Conjecture 2.2. {abc). Pour tout s > 0, il existe une constante

c(s) > 0 telle que pour tout triplet (a,b,c) d'entiers positifsvérifiant
a + b c et (a, b) 1 on ait:

c ^ c{s) (r{abc)) 1 + 8

Une première analyse de l'inégalité de la conjecture abc montre que si

un triplet (a,b,c) d'entiers positifs vérifie a + b c et (a, b) 1, alors

le produit abc est composé de nombres premiers distincts avec pour la

plupart un exposant relativement petit. On peut constater ce fait dans les

tables de factorisation de nombres de la forme an - bn, données à la fin du

livre de H. Riesel (voir [24], pp. 388-437).

Pour s > 0 fixé, la constante c(s) qui lui correspond dans la conjecture

abc peut être unique, en prenant:

(2-3) c(£) inf
(a,b,c)ei (r{abc))l + z

avec I {{a, b, c)eN3, (a, b)1 a + bQuant à la possibilité de

prendre e 0 dans la conjecture abc, la proposition suivante montre que ce

choix n'est pas possible.
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Proposition 2.4. Pour s > 0, soit c(s) la constante définie

par (2.3) vérifiant l'inégalité de la conjecture abc. Alors

lim c(s) + oo
s -» 0

Preuve. On définit les entiers xn et yn par la relation:

x„ + y„]/2 (3 + 2]/2)"

Alors pour tout n^1, 1+2 y2nx2.Sin 2"', on vérifie facilement

par récurrence que 2m + l \yn. Appliquons la conjecture abc à la relation
x2n 1 + ly2n. On obtient pour n 2m:

x2„< c(e) (r(xnyn))1+* < c(s) (xny„/< 2m<1+£>

Alors c(e) > 2m(1 + £Vx2e et donc

lim c(s) ^ 2m
e -»• 0

ce qui montre que lim c(s) + oo.
s -»• 0

Des démonstrations différentes de la proposition 2.4. se trouvent
dans [10] et [20].

Depuis sa formulation en 1985, peu de résultats théoriques ont été

découverts sur la conjecture abc. Il n'existe actuellement que deux théorèmes
la concernant. Les démonstrations de ces deux théorèmes s'appuyent sur
des méthodes utilisant des formes linéaires de logarithmes complexes et

/?-adiques. Nous donnons ici ces deux théorèmes. Leurs démonstrations se

trouvent dans [29] et [30] respectivement.

Théorème 2.5. (Stewart, Tijdeman, 1986). Il existe une constante
effectivement calculable k > 0 telle que, pour tout triplet (a, b, c) d'entiers
positifs, vérifiant a + b c et (a,b) 1 on ait:

c < exp{k(r(abc))15}

Théorème 2.6. (Stewart, Yu, 1990). Il existe une constante effectivement

calculable k > 0 telle que, pour tout triplet (a, b, c) d'entiers
positifs, vérifiant a + b c et (a,b) 1 on ait:

c < çxp{{r(abc))2n + kn°^Xo^ri<abc)}

Remarquons que les inégalités des deux théorèmes ci-dessus sont
exponentielles en r{abc), alors que l'inégalité de la conjecture abc est seulement
polynomiale.
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3. Applications de la conjecture abc

Dans cette partie, nous décrivons la plupart des conséquences de la

conjecture abc montrant ainsi son importance en théorie des nombres.

3.1. Les conjectures de Szpiro

Les conjectures de Szpiro sont antérieures (1983) à la conjecture abc qt

certaines d'entre elles ont les mêmes conséquences. Nous donnons deux de ces

conjectures. La conjecture suivante est une conséquence de la conjecture abc
et a été très étudiée ([13], [15], [17], [31]).

Conjecture 3.1.1. (Szpiro, forme forte). Pour tout s > 0, il existe

une constante c(s) > 0 telle que pour toute courbe elliptique semi-

stable E sur Q, de discriminant minimal AE et de conducteur NE

on ait:

|A*| ^c(z)N6e+>.
Le conducteur d'une courbe elliptique semi-stable est le radical de son
discriminant minimal. Pour une définition exacte du conducteur, on peut
consulter [27].

La conjecture suivante est connue aussi sous le nom de conjecture de

Lang-Szpiro.

Conjecture 3.1.2. Pour tout s>0 et pour tout couple (A,B)
d'entiers premiers entre eux, il existe une constante c(s, A, B) > 0 telle que

pour tous les entiers u, u, k vérifiant (Au, Bu) 1 et k Au3 + Bu2,

on ait:

| m | < c(z,A,B)r(k)2 + e et \ u | ^ c(s, A, B) r(k)3 + s

Proposition 3.1.3. La conjecture abc est équivalente à la conjecture

3.1.2.

Preuve. Admettons d'abord la conjecture abc. Soient A,B,u,u et k
des entiers tels que (Au, Bu) 1 et k Au3 + Bu2. La conjecture abc
donne :

I v I2 ^ T^T (r(ABuuk))l + e ^ c2(z,A,B) I uu 11 + s(r(£))1 + e

B
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Supposons que \Au3\ ^ \ Bu2\ (le cas inverse se fait de la même

manière), alors | u | ^ c3(A,B) \ u |2/3. En reportant cette majoration dans

l'inégalité ci-dessus, on obtient:

\u\2 ^ c4(z,A,B) |H5(1 + 8)/3(/W)1 + s
>

et par suite:

\v\v-5&ï/3 ^ c4(e,A, B)r(k)1 + 8

Prenons s tel que 1 - 5s > 0 et posons s' 18c/(1 - 5s), alors:

M < C5(S,A,B) (r(&))3(1 + s)/(1 ~5s) ^ c6(e',A,B) (r(k))3 +e'

On obtient alors pour \u\:
| u \ ^ c2/3 (z\ A, B) c3(A, B) r(k)2V + &')/3 ^ c7(e',A,B) (r(k))2 +e'

Ceci prouve la conjecture 3.1.2.

Inversement, admettons la conjecture 3.1.2. Soient a, b et c des entiers

positifs vérifiant a < b, a + b c et (a, b) 1. Alors :

(a2 + ab + b2)3 - ((b - a) (a + 2b) (2a + b)/2)2 33(ab(a + b)/2)2

Cette relation peut être éventuellement simplifiée par 33 si a b (mod 3).

En appliquant la conjecture 3.1.2, on obtient:

a2 ^ b2 ^ a2 + ab + b2 ^ cx (s) (r(abc))2 + z

et donc:

a ^ b ^ (ci(s))172(r(abc))l + E/1

et finalement:

c < c (s ') (r {abc))1 + 8'

Ceci prouve la conjecture abc.

3.2. Conséquences sur les triplets d'entiers

Les propositions suivantes montrent l'influence de la conjecture abc sur
l'architecture des triplets d'entiers.

Proposition 3.2.1. Si la conjecture abc est vraie, alors pour
tout s > 0, il existe une constante c(s) telle que pour tout triplet
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Oi ,x2ix3) d'entiers positifs, vérifiant xx + x2 x3 et (xi, x2) 1,

un des x,-, / e {1,2,3}, vérifie:

Xi < c(e) 0O/))3 + s
•

Cette proposition fait apparaître un lien entre la conjecture abc et le
théorème de Fermât. Nous avons aussi le résultat suivant:

Théorème 3.2.2. Si la conjecture abc est vraie, alors pour tout s>0
et tout entier a ^ 1, il existe une constante ci(e, a) > 0 telle que pour
tout entier n ^ 2 et tout entier x ^ 2 vérifiant (a, x) 1 on ait:

xn~l < Cj (s, a) (r(x" - a"))1 + e

Preuve. Soit 8 fixé tel que 0 < s < 1 / 2. Appliquons la conjecture abc à

la relation (x" - a") + a" xn avec (a,x) 1. On obtient:

xn ^ c (s, a) (r(x® - an))1 + £x1 + e

Alors :

Xn~l < (c(8, ö))("~ -e)(r(xÄ - a"))("- DU + e)/(/i- 1 -s)
^

Si s est assez petit et si n ^ 2, on a d'une part {n - l)/(n - 1 - s) < 2

et d'autre part:

O - 1) (1 + s) 1 + 8
^ 1+80n- 1-8 1-s

avec s' 2s/(I - s). On obtient finalement la conclusion du théorème.

3.3. Les nombres de Wieferich

Un nombre premier p vérifiant la congruence

ap~l 1 (mod p2)

avec a 2 est appelé nombre de Wieferich. En 1909, celui-ci a montré

que si un nombre premier p ne vérifie pas la congruence ci-dessus, alors il
n'existe pas d'entiers x > 0, y > 0 et z > 0, premiers entre eux, tels que

xyz # 0 (mod p) et xp + yp zp (premier cas du théorème de Fermât).
En 1910, Mirimanoff a prouvé la même chose avec a 3. Les nombres

premiers vérifiant cette congruence sont très rares. Par exemple, les seuls

nombres premiers p vérifiant cette congruence avec a 2 et p ^ 3 x 1010

sont 1093 et 3511. De même, les seuls vérifiant cette congruence avec a 3

et p ^ 230 sont 11 et 1006003 (voir [14] ou [22]). Un problème encore ouvert
est la conjecture suivante:
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Conjecture 3.3.1. Soit a ^ 2. Il existe une infinité de nombres

premiers p tels que ap~l # 1 (mod p2).

J.H.Silverman [28] a montré que cette conjecture est une conséquence

de la conjecture abc.

3.4. La conjecture de Mordell

Une des conséquences les plus étonnantes de la conjecture abc est le fait

que celle-ci implique tout simplement la conjecture de Mordell, devenue

théorème de Faltings:

Toute courbe de genre g ^ 2 définie sur Q n'admet qu'un nombre

fini de points rationnels.

Cette conjecture a été redémontrée par la suite par P. Vojta [34] et

E. Bombieri [1]. En 1991, N.D. Elkies a déterminé son lien avec la conjecture

abc (voir [4]).

Théorème 3.4.1. (Elkies). La conjecture abc implique la conjecture
de Mordell.

A la fin de son article, Elkies donne le corollaire suivant:

Corollaire 3.4.2. (Elkies). La conjecture abc implique que pour tout
s > 0 et tout polynôme P e Z[X, Y], homogène, de degré d et sans

facteurs carrés, il existe une constante c(s, P) telle que pour tout couple
(ia, b) d'entiers premiers entre eux, vérifiant P(a, b) ^ 0 on ait:

sup(| a\, \ b |)^-2 ^ c(s, P) r(P(a, b))l + e

3.5. La conjecture d'Erdös-Woods

La conjecture suivante a été formulée par P. Erdös, puis par Woods
en 1981.

Conjecture 3.5.1. (Erdös-Woods). Il existe une constante k > 0 telle

que pour tous les entiers positifs x et y, si r(x+ i) r{y + i) pour
tout i, i - 1, 2, k, alors x y.

Cette conjecture est fausse pour k 2 (x 2" - 3, y 22n - 2n + l - 1

conviennent). Par contre pour k ^ 3, aucun exemple d'entiers différents
vérifiant les égalités de la conjecture d'Erdös-Woods n'est connu. M. Langevin
a montré le résultat suivant (voir [11, 12]).
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Proposition 3.5.2. (Langevin). La conjecture abc implique que la
conjecture d'Erdös-Woods est vraie avec k 3, sauf peut-être pour un
nombre fini d'exceptions pour x et y.

3.6. La conjecture de Hall
En 1971, M. Hall Jr. a énoncé la conjecture suivante [7]:

Conjecture 3.6.1. (Hall). Il existe une constante c > 0 telle que pour
tous entiers x > 1 et y > 0 vérifiant x3 =£ y2 on ait:

I *3 - y21 ^ cmax(x3, y2)1/6

On sait par exemple depuis 1738 (Euler), que les seules solutions non
triviales de l'équation | x3 - y2\ 1 sont (x,y) (2, ±3). La relation
281873513 — 1496516106212 - 1090, montre que dans la conjecture de

Hall, la constante c vérifie c < 0,205305. La conjecture abc n'admet

pour conséquence que la forme faible suivante de la conjecture de Hall
(voir [17], [25]).

Conjecture 3.6.2. Pour tout s > 0, il existe une constante c(s) > 0

telle que pour tous les entiers x > 1 et y > 0 on ait:

I*3 ~ y21 ^ c(8)max(x3,^2)1/6_s

3.7. L'équation de Fermât généralisée

La conjecture abc s'applique particulièrement aux équations diophan-
tiennes à trois termes, dont l'équation de Fermât généralisée.

Théorème 3.7.1. Si la conjecture abc est vraie et si A,B,C sont
des entiers strictement positifs, alors l'équation:

Axl + Bym Czn

n'admet qu'un nombre fini de solutions en entiers positifs x, y, z, /, m, n

vérifiant l ~1 + m ~1 + n ~1 < 1 et (x, y, z) 1.

Preuve. Si z h alors le théorème est clair, même sans admettre

la conjecture abc. Supposons donc que z ^ 2 et que (x,y,z) 1. Soit

d (Axl,Bym, Czn). Alors d est borné. En appliquant la conjecture abc

au triplet (Axl/d, Bym/d, Czn/d), on obtient:

Czn/d ^ Cj(£) (r(ABCxlymzn/d3j)l + e
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d'où l'on tire:

(ABCxlymzn\\ î + E
7

z"^ c2(e,C) |e?r I -= Il <

Puisque Ax1 < Cz" et Bym < Czn, alors x < C)zn/l et y < cs(5, C)z"/m.

Ainsi

z" ^ c6(e, A,B,C)(Z")(i + e)('-1 + <^,+«-1>

ce qui donne:

(z")1"(1 + e)(/"1 + m_1 + n_1) ^ c6(E,A,B, C)

Si /_ 1
4- m ~1 + n ~1 < 1 et si s est assez petit, alors 1 - (1 + s) (/ ~1 + m ~1

+ n ~!) > 0 et donc zn est borné. Ainsi z, x, y, l, m, n sont bornés.

Remarque 3.7.2. On peut trouver d'autres démonstrations de cette

proposition dans [25] et [33]. Dans le cas A B « C - 1, seules 10

solutions sont connues avec l~l + m~l + n~l < l:
1 + 23 32, 132 + 73 29, 173 + 27 712,

25 + 72 34, 35 + 114 22.612,

ainsi que les solutions suivantes, découvertes par Beukers et Zagier (voir [3]):

177 + 762713 210639282, 14143 + 22134592 657,

92623 + 153122832 1137, 438 + 962223 300429072,

338 + 15490342 156133

3.8. Quelques conjectures sur les nombres puissants

Définition 3.8.1. Un entier n est un nombre puissant s'il possède
la propriété suivante: si p divise n et si p est premier, alors p2
divise n.

Si n est un nombre puissant, alors il s'écrit de façon unique sous la
forme n a2b3, où b est sans facteurs carrés et son radical r(n) vérifie
donc r(n) ^ nl/1.

Les conjectures citées dans cette partie proviennent de [22] et de [6] (B16).

Conjecture 3.8.2. (Erdös-Mollin-Walsh). Il n'y a aucun triplet de
nombres puissants consécutifs.

Cette conjecture est vérifiée pour tous les triplets d'entiers inférieurs
à 260 [18] et implique en particulier qu'il existe une infinité de nombres
premiers p tels que
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Ceci fait apparaître un lien avec le premier cas du théorème de Fermât
(voir [22]).

La conjecture ak ne permet pas de répondre totalement à la conjecture

3.8.2, mais permet d'avoir ceci (voir [17]):

Proposition 3.8.3. La conjecture abc implique qu'il n'y a qu'un
nombre fini de triplets de nombres puissants consécutifs.

Les conjectures suivantes concernent les nombres de Fermât et de Mersenne

et il est facile de montrer qu'elles sont des conséquences de la conjecture

abc ([17]).

Conjecture 3.8.4. Pour tout entier 2, soit nk le nombre puissant
le plus proche de 2k avec nk ^ 2k. Alors lim | 2k — nk \ + oo.

k->oo

Conjecture 3.8.5. Il existe une infinité de nombres de Fermât et de

Mersenne qui ne sont pas des nombres puissants.

Pour terminer cette partie, citons la conjecture suivante sur les nombres

4-puissants, qui sont des entiers n tels que r(n)4\n (voir problème B16

de [6], édition 1981). Cette conjecture est aussi une conséquence de la

conjecture abc.

Conjecture 3.8.6. (Erdös). L'équation x + y z n'admet qu'un
nombre fini de solutions en entiers positifs 4-puissants, premiers entre eux.

3.9. La conjecture de Richard

La conjecture suivante est tirée de [23] :

Conjecture 3.9.1. (Richard). Si deux entiers x et y vérifient pour
tout entier n ^ 0:

r(x2n- 1) - r(y2n - 1)

alors ils sont égaux.

A. Schinzel a montré de façon élégante que cette conjecture est une

conséquence de la conjecture abc (voir [17], [23]).

3.10. Le problème de Croft
Le problème de savoir dans quelle mesure la différence | ni - 2m\ peut

être petite par rapport à 2m s'appelle le problème de Croft (voir [6], F23).

Des résultats expérimentaux nous ont motivé pour proposer la conjecture
suivante (voir [17]).
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Conjecture 3.10.1. Il existe une constante c > 0 telle que pour tous

les entiers m et n avec (m, n) -=k (0, 0), (1, 0), (2, 1) on ait:

n ^ c(r(| ni - 2m \))Un

La conjecture abc implique cependant une forme faible de cette conjecture

(voir [17]).

Proposition 3.10.2. La conjecture abc implique que pour tout

s > 0, il existe une constante c(e) > 0 telle que pour tous les entiers m

et n avec (m, n) (0, 0), (1, 0), (2, 1), on ait:

n < c (s) (r(\ni - 2m\j)<<l + ^/n

3.11. Autres conséquences

Nous regroupons dans cette partie plusieurs conséquences de la conjecture

abc. Cela concerne en particulier des équations diophantiennes liées à

des problèmes ouverts.

Proposition 3.11.1. Soient A>0,B>0 et k des entiers. La
conjecture abc implique que l'équation

n'a qu'un nombre fini de solutions en entiers x > 1, y > 1, m > 1, n > 1

avec mn > 4.

Cette proposition est liée à une conjecture de Pillai. Lorsque A 1, B 1

et k 1, cette conjecture porte le nom de conjecture de Catalan, qui
affirme en plus que (x,y, m, n) (3, 2, 2, 3) est Punique solution. En 1976,
R. Tijdeman [32] a montré que l'équation de Catalan n'admet qu'un nombre
fini de solutions.

Proposition 3.11.2. La conjecture abc implique que l'équation

n'admet qu'un nombre fini de solutions en entiers positifs u, w, x, y, m > 1

et n > 1 vérifiant (x, u) 1, (y, w) 1 et mn > 4.

Cette proposition est liée à une conjecture de Shorey et Tijdeman
(voir [26], p. 202). Cette conjecture est vraie en particulier si l'une des

variables u, w, x ou y est composée de nombres premiers fixés.

Axm - Byn k
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Proposition 3.11.3. La conjecture abc implique que l'équation

(x\)n + 1 ym

n'admet qu'un nombre fini de solutions en entiers x > 0, y > 0, n ^ 1

et m ^ 2.

Cette proposition est liée à un problème de Brocard (voir [6], D25) et sa

démonstration (voir [17] et [21]) est basée sur l'utilisation des inégalités
suivantes, déduites des formules de Stirling et de Chebyshev (voir [19], p. 374),
valables pour x^2\

| (x/e)x < xl,
(3.11.4) n p < 4X, p premier

[p^x

Proposition 3.11.5. La conjecture abc implique que l'équation

ni+ 1 pakpbk+i

n'admet qu'un nombre fini de solutions en entiers n > 1, a ^ 0, b ^ 0

et pk- \ ^ n < pk où (Pi), i ^ 1 est la suite des nombres premiers.

Cette proposition est liée à une conjecture d'Erdos-Stewart (voir [6], A2).
Sa démonstration est basée aussi sur les inégalités (3.11.4).

Proposition 3.11.6. La conjecture abc implique que l'équation

xn + yn — n \ zn

n'a qu'un nombre fini de solutions en entiers x > 0, y > 0, z > 0 et

n ^ 4.

Cette proposition est liée à un problème ouvert sur les équations diophan-
tiennes (voir [6], D2).

Proposition 3.11.7. La conjecture abc implique que pour tout
entier a ^ 1, l'équation

xn - yn
azm

x - y

n'a qu'un nombre fini de solutions en entiers x > y > 0, z > 0, n > 3,

m > 1 avec (x,y) 1,3n~l + m-1 < 1.

Cette proposition est une réponse générale à un problème de H. Edgar
([6], D10) et de Shorey-Tijdeman ([26], pp. 202, 203).
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Proposition 3.11.8. La conjecture abc implique que l'équation

xm - 1 yn - 1

x - 1 y - 1

n'a qu'un nombre fini de solutions en entiers x > y > 1 et m > n > 3.

La recherche de solutions pour l'équation ci-dessus est appelée problème

de Goormaghtigh (voir [6], B25). Avec n 3, (x,y, m, n) (2, 5, 5, 3),

(2, 90, 13, 3) sont les seules solutions connues.

Proposition 3.11.9. La conjecture abc implique que pour tout
entier d ^ 1, l'équation

x(x + d)... (x + kd) yn

n'a qu'un nombre fini de solutions en entiers x > 0, k ^ 2, y > 0 et

n^ 2.

Cette proposition montre le lien entre la conjecture abc et les progressions

arithmétiques. P. Erdös et J.L. Selfridge ont montré en 1975 que l'équation
ci-dessus n'a pas de solution dans le cas particulier d 1 (voir [33] pour plus
de détails).

4. A LA RECHERCHE DE FORMES EFFECTIVES

Soient a, b et c trois entiers positifs, premiers entre eux et vérifiant
a + b c. Soit r r(abc), le radical de abc. On définit le rapport de

Oesterlé-Masser pour le triplet (a, b, c) par:

loge
a a (a, b, c)

log/*

On définit de même le rapport de Szpiro pour le même triplet par:

logabc
p p (a,b,c) —

log r

Ce dernier rapport est lié à la conjecture de Szpiro (voir conjecture 3.1.1)
par les courbes elliptiques Ea,hjC que Y. Hellegouarch [9] a mis au point
en 1972 pour étudier le théorème de Fermât. C'est en utilisant ces mêmes
courbes que K. Ribet a établit le lien entre la conjecture de Shimura-Taniyama-
Weil et le théorème de Fermât. Pour un triplet (a, b, c) d'entiers positifs
vérifiant a + b c et (û, b) 1, la courbe EaibjC est définie par:

Ea,b,c'. y2 x(x - a) (x + b)
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Si le triplet (a, b,c) vérifie, par exemple, a 0 (mod 16) et b - 1 (mod 4),
alors E0yb}C est semi-stable et dans ce cas son équation minimale est donnée

par:

a - b - l ab
y2 + xy x5 + x2 x

4 16

Toujours avec les mêmes hypothèses, le discriminant minimal de la courbe

Ea,b,c est égal à (abc/16)2 et la conjecture 3.1.1 donne donc la même

conclusion que la conjecture abc:

Pour tout s > 0, il existe une constante c(s) > 0 telle que Von ait:

abc ^ c(e) (r(abc))3 + &

L'inégalité de la conjecture abc implique que les rapports de Oesterlé-

Masser et de Szpiro vérifient:

lim a(a,b,c) 1 et lim p (a,b,c) 3
r —» oo r —* oo

Ceci implique en particulier qu'il n'y a qu'un nombre fini de triplets
(a, b, c) d'entiers positifs vérifiant a + b c, (a, b) 1 et a (a, b, c) > 1 + k
ou p (a, b, c) > 3 + k, où k > 0 est fixé. On peut voir facilement que ceci

devient faux pour k ^ 0. En effet, définissons les suites (xn), (yn) et (zn)

par x0 37, y0 17, Zo 21, et pour tout n ^ 0,

%n + 1 %n % n T «)>

^» + i -yn(2x3n + yl),
z„ + iz„(xl-.

Alors pour tout n ^ 1,

xl +yl (>z3„, (X„,y„)=1 et ^ 0 (mod 3x2").
Posons

an min | xn \ \ | yn\ 3? I I

»

cn max( | xn |3, \ yn |3, | 6z3n |) et bn cn - an

Alors pour n ^ 1,

r(anbncn) r - j < (anbncn)x/3 <

et donc a(ö„, bn, cn) > 1 et p(a„, bn, cn) > 3.
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On peut se poser maintenant naturellement la question s'il existe un triplet

pour lequel l'un des deux rapports a ou p est maximal. Nous avons en fait

la réponse suivante.

Proposition 4.1. La conjecture abc implique qu'il existe un triplet

d'entiers positifs (a, b, c) vérifiant (a, b) 1 et + pour

lequel le rapport a (a, b, c) (resp. p {a,b,c)) est maximal.

Preuve. Admettons la conjecture abc. Supposons qu'il n existe pas de

triplet (a, b,c)admettant un rapport a maximal. Soit un

triplet d'entiers positifs vérifiant (a0, 1 et a0+bo c0, avec

a(tfo, b0, c0) >1. On peut donc construire une infinité de relations

(an,b„,cn) telles que pour tout n ^ 1, a i, c„_i).
D'autre part, la conjecture abc implique que pour tout réel s > 0, il existe

une constante positive c(e) telle que pour tout n ^ 0, on ait:

c(s)
a(a„,bn,cn)^1 + s + ~ ~ ~ •

log

Choisissons s tel que 1 + s < a (a0, b0, c0). Comme les triplets

(a„, b„,c„) sont différents deux à deux, alors d'après le théorème de Mahler

(voir [26]), lim r{a„b„c„) oo et donc:
n -» oo

lim a (an, bn, cn ^ 1 + s < a (a0, b0, c0)
n -* oo

ce qui contredit la définition de la suite.

Les triplets (a, b, c) d'entiers positifs vérifiant a + b c, (a, b) 1 pour
lesquels les rapports a (a,bfc) ou p (a,b,c) sont proches des valeurs

conjecturales 1 et 3 sont nombreux. Nous convenons de dire qu'un triplet
(a,b,c) est bon pour la conjecture abc si a (a, Z?, c) > 1.4 ou si

p(a,b, c) > 3.8. Dans la suite, on se propose de décrire une méthode de

recherche de bons triplets pour la conjecture abc. Cette méthode est basée

sur la résolution de l'équation diophantienne :

(4.2) Axn - Byn Cz

en entiers x,y, z où les entiers A, B, C et n sont donnés et vérifient A > 0,

B =£ 0, C > 0, n ^ 2 et (A,B) 1. Pour chaque solution (x, y, z) de (4.2),
nous prenons les entiers a, b et c parmi Axn, Byn et Cz de telle sorte que
le triplet (a, b, c) vérifie 0 < a < b, a + b c et (a, b) 1. On calcule enfin
les rapports a (a,b,c) et p (a,b,c) en espérant qu'ils soient bons pour la
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conjecture abc. Pour cela, on doit bien choisir les données A, B et C et on
cherche les solutions de (4.2) dans lesquelles | z | est petit par rapport à C. La
description détaillée de cette méthode se trouve dans [15, 16, 17].

Nous avons ainsi déterminé 86 exemples de triplets (a, b, c) d'entiers

positifs vérifiant a + b c, {a, b) 1 et a (a, b, c) ^ 1.4 et 103 autres

exemples vérifiant p(a,b,c) ^ 3.8. Nous listons dans les tables 4.3 et 4.4

Table 4.3

N. a b c a Auteur

1. 2 310.109 235 1.62991 Reyssat (1987)

2. 112 32.56.73 221.23 1.62599 de Weger (1987)

3. 19.1307 7.292.318 28.322 .54 1.62349 B-B (1992)

4. 283 511.13 2 28.38. 173 1.58076 B-B, Nitaj (1992)

5. 1 2.37 54.7 1.56789 de Weger (1987)

6. 73 310 2U.29 1.54708 de Weger (1987)

7. 72.412.3113 11 16.132.79 2.3 3.5 23.953 1.54443 Nitaj (1994)

8. 53 29.3 17.132 115.17.313.137 1.53671 te Riele-Montgomery (1994)

9. 13.196 230.5 3 13.11 2.31 1.52700 Nitaj (1992)

10. 318.23.2269 173.29.318 210.52 .715 1.52216 Nitaj (1994)

11. 239 58.173 210.37 4 1.50284 B-B, Nitaj (1992)

Table 4.4

N. a b c p Auteur

1. 13.196 230.5 313.112.31 4.41901 Nitaj (1992)

2. 25.112.19 9 515.372.47 3v.7n.743 4.26801 Nitaj (1994)

3. 219.13.103 7" 3 n.53.l 12 4.24789 de Weger (1987)

4. 235.72.172.19 3 27.107 2 515.372.2311 4.23069 Nitaj (1994)

5. '318.23.2269 17 3.29.318 210.52.715 4.22979 Nitaj (1994)

6. 174.793.211 229.23.292 519 4.22960 Nitaj (1994)

7. 514.19 25.3.713 117.372.353 4.22532 Nitaj (1994)

8. 321 7 2.116.199 2.138.17 4.20094 Nitaj (1992)

9. 518.6359 32.476.733 27.1910.79 4.14883 Nitaj (1994)

10. 113.315.101.479 1078 231.34.56.7 4.13000 Nitaj (1994)

11. 7. 116.43 311.5 4 217.173 4.10757 G. Xiao (1986)
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les 11 meilleurs triplets connus actuellement relativement au rapport a
et au rapport p. L'auteur peut fournir, sur demande, la totalité des triplets
dont il dispose. Certains exemples ont été déterminés en même temps par une

méthode différente par J. Browkin et J. Brzezinski et sont notés B-B (voir [2]).
De manière exhaustive, N. Elkies et J. Kanapka ont déterminé tous les

triplets d'entiers positifs (a, b, c) vérifiant a + b c ^ 232, (a, b) 1

et a (a, b, c) ^ 1.2 (communication privée). Récemment, H. te Riele et

P. Montgomery ont déterminé 5 nouveaux exemples en utilisant
l'algorithme LLL de Lenstra, Lenstra et Lovâsz (communication privée). D'autre
part, nous avons continué la recherche de bons exemples pour la conjecture
abc avec une méthode basée sur les approximations /?-adiques. Cette méthode

a permis de découvrir 21 nouveaux exemples avec a > 1.4 et 20 autres

avec p > 4.0.

Les tables 4.3 et 4.4 nous permettent de donner la forme effective suivante
de la conjecture abc:

Conjecture 4.5. Si (a, b, c) est un triplet d'entiers positifs vérifiant
a + b c et (a,b) 1, alors c < r{abc)l-63> et abc < r(abc)4-42.

Cette conjecture est bien entendu plus faible que la conjecture abc. Elle
permet de déterminer des bornes explicites pour les solutions de certaines
équations diophantiennes. A titre d'exemple, elle implique le théorème de
Fermât pour les exposants n ^ 5.

La recherche d'une formule de la constante c(s) de la conjecture abc
en fonction de s est un problème différent. Il faut tenir compte du fait que
lim c(s) + oo, (Proposition 2.4) et du théorème suivant, démontré

8 -> °°

dans [13] et [29]:

Théorème 4.6. Soit ô > 0. Il existe une infinité de triplets (a, b, c)
d'entiers positifs vérifiant a + b c, (a, b) \ et tels que

c > r(i7éc)exp /(4 — 6) jdjjZggl
\ log log

Ce théorème admet la conséquence suivante:

Proposition 4.7. Pour tout k>0et tout kx > 0, existe un
triplet a,b,c)d'entiers positifs vérifiant 1 et tels
que c > kr(abc) (log r(abc))kK



20 A. NITAJ

Preuve. Soient k > 0 et kx > 0. Supposons que tous les
triplets (a, b, c) d'entiers positifs avec a + b c et (a,b) 1 vérifient
c ^ kr(abc) (logr(abc))kK Soit (a,b,c) un triplet vérifiant l'inégalité
du théorème (4.6). Alors:

r(abc)exp 1(4 - ô)
g ^ ] < c ^ kr(abc) (1ogr(abc))ki

\ loglogr(abc))

ce qui donne:

(4 - b)]/logr(abc) < (log k + k{ log log r(abc)) log log r(abc)

et donc r(abc) est borné, ce qui est impossible par le théorème (4.6) et

par le théorème de Mahler.

La proposition 4.7 nous donne maintenant le résultat suivant:

Proposition 4.8. Pour tout k > 0, il existe un réel s > 0 et un
triplet (a,b,c) d'entiers positifs, vérifiant a + b c et (a, b) 1,

tels que

c > — (r(abc))1 + s

ek

Preuve. Soit k > 0. Supposons que pour tout s > 0, et tout triplet
(a, b, c) d'entiers positifs vérifiant a + b c, (a, b) 1 on ait:

c ^ — (r(abc))1 + 8

Le minimum du second membre de cette inégalité est atteint pour
s — k /log r (abc). Alors, on doit avoir:

r (abc) (log r (abc)) k

ce qui contredit la proposition 4.7.

5. Généralisations

La conjecture abc est aussi simple par son énoncé que le théorème de

Fermât, mais certainement beaucoup plus difficile, et en tout cas sa résolution

aura beaucoup de conséquences en théorie des nombres. L'intérêt de cette



LA CONJECTURE abc 21

conjecture nous ramène à envisager la possibilité d'une généralisation dans

différentes directions.

5.1. n - conjecture abc

La conjecture abc peut être étendue à un nombre de paramètres supérieur

à trois de la façon suivante.

Soit « ^ 3. Soient aXia2, • • - an des entiers vérifiant les conditions:

(5.1.1)
ü\ + a2 T ...+ an — 0,

(aua2i • • -,an) 1,

Aucune sous-somme n'est nulle.

Soit r(a{a2 • • • an) le radical du produit axa2 • • • an. La «-conjecture abc
s'énonce ainsi (voir [2]):

Conjecture 5.1.2. («-conjecture abc). Pour tout entier n ^ 3 et

tout s > 0, il existe une constante c(s, «) > 0 telle que pour tout n-uplet
(ax, a2, • • - an) d'entiers vérifiant les conditions (5.1.1) on ait:

max (I «i I, • • - I anI) < c(e, ri) (r(a,a2 ' • • ))2

5.2. L'anneau des polynômes

L'analogue de la conjecture abc dans l'anneau des polynômes K[X]
d'un corps K de caractéristique nulle est en fait un théorème. On peut trouver
sa démonstration dans [10], [17] ou [20].

Théorème 5.2.1. (Mason). Soient A,B et C trois polynômes non
tous constants de K[X], vérifiant A + B + C 0 et (A,B) 1. Soit
r(ABC) la somme des degrés des différents facteurs irréductibles de ABC.
Alors

max (deg(A), deg(£), deg(C)) ^ r(ABC) - 1

L'inégalité du théorème ci-dessus ne peut pas être améliorée (voir [12]).
D'autre part, ce théorème est très utile pour l'étude des équations
polynomials. En particulier il implique le théorème de Fermât dans K[X] et
explique pourquoi on ne peut pas espérer trouver des formules polynomiales
donnant un grand nombre de bons exemples pour la conjecture abc.

La «-conjecture abc dans K[X], où K est un corps de caractéristique
nulle, peut être formulée aussi de la façon suivante (voir [2]).
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Conjecture 5.2.2. Soient n ^ 3 un entier et ait 1 ^ ^ n des

polynômes non tous constants de K[X] vérifiant des conditions analogues

aux conditions (5.1.1). Alors

max deg(tf/) ^ (2n - 5) (r(ax • • • an) - 1)
i < / < «

où r(ax • • • an) désigne la somme des degrés des différents facteurs
irréductibles de ax • • • an.

5.3. Corps de nombres

La conjecture abc existe aussi dans les corps de nombres. Le lecteur
intéressé peut trouver sa formulation par exemple dans [4], [5] ou [35].
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