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FACTOR EQUIVALENCE RESULTS

FOR INTEGERS AND UNITS

by Bart De Smit

Abstract. We give alternative proofs of two results of Fröhlich on the Galois

module structure of the ring of integers and of the group of S -units in a Galois

extension of number fields. We also point out applications to index computations in

rings of integers and to class number relations.

1. Introduction

The purpose of this note is to give a brief presentation of basic factor

equivalence results about the Galois module structure of the ring of integers

and of the group of units in a Galois extension of number fields. Such results

were first given by Nelson [12] and by Fröhlich [8, 9]. In [8] and [4, §3]
these results are proved for abelian and for "admissible" Galois groups. It
was shown later by Ritter and Weiss that all finite groups are "admissible"

[14]. The proofs given below do not use any subtle representation-theoretic

properties such as admissibility.
We set up the terminology in the next section. In Section 3 we show

that the ring of integers in a Galois extension of number fields is "factor

equivalent" to the group ring of the Galois group over the ring of integers
of the base field. The proof uses the conductor discriminant formula, and

it holds in the more general context of extensions of Dedekind domains of
characteristic zero with separable residue field extensions.

In Section 4 the factor equivalence class of the lattice of units is expressed
in terms of class numbers of intermediate fields. The proof uses zeta-functions
and it holds for arbitrary Galois extensions of number fields.

1991 Mathematics subject classification: 11R33
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Finally, we give two applications in Section 5 that show how these results

are related to more concrete questions in algebraic number theory. First we
indicate how to do certain index computations for rings of integers in abelian

extensions of number fields. For a bicyclic quartic field this implies that the

lattice generated by its quadratic integers has index 2 in the ring of integers.
Then we explain that the result for units gives a method to obtain class number

inequalities between so-called "arithmetically equivalent" number fields.

2. Factorizability and factor equivalence

Let G be a finite group. A character of G is said to be rational if it is the

character of a representation of G defined over Q. Denote the additive group
of rational characters of G by R(G). One can view R(G) as the Grothendieck

group of finitely generated Q[G] -modules. It is the free abelian group generated

by the set X(G) of isomorphism classes of irreducible Q[G]-modules.

The trivial character lh on a subgroup H of G induces the permutation
character 1# G R(G), corresponding to the G-module Q[G/H]. Let S denote

the set of subgroups of G and let T be an abelian group. We will use

multiplicative notation for the group operation on T.

(2.1) DEFINITION. A function /: S T is said to be factorizable if
for every collection of integers (a^Hes wfi/z ^fHeS a^Yf 0 we have

n HesfWa" l-

(2.2) Examples. If G is the Galois group of an extension of number

fields L/K then Galois theory gives a bijection between S and the set of
intermediate fields of L/K. For any parameter associated to number fields one

thus obtains a function on S, and one may wonder if it is factorizable. The

discriminant, zeta-function, and the odd part of the number of roots of unity
in a number field, are all factorizable. The p-part of the class number for

p \ [L : K] is also factorizable; cf. [18]. The fact that the parameter hRjw is

factorizable is known as "Brauer's class number relations" (see Section 4). See

Kani and Rosen [10, 11] for factorizability results for curves and Jacobians.

A function /: S -+ T induces a group homomorphism /* : Z[S] —> T,
where Z[S] is the free abelian group generated by S. By definition / is

factorizable if and only if /* vanishes on the kernel of the homomorphism

r: Z[S] —> R(G) given by H For abelian groups G the map r is

surjective. For every group G the image of r has finite index by Artin's
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induction theorem [16, Ch. 13, Th. 30]. If G is abelian or T is divisible, then

it follows that / is factorizable if and only if /* gr for some homomorphism

g: R(G) —> T. We then have

f(H)= n 9(x)',H'x

X^V(G)

where nH,x is the multiplicity of x in 1#» be., J2xnH,xX- This is

the factorization that the word factorizable refers to. One way to show that

a function / is factorizable is by exhibiting such a map g. For instance, to

show that the discriminant function in (2.2) is factorizable one lets g(x) be

the Artin conductor of x (see [15, Ch. VI, §3]).
Let us give another example from linear algebra. Suppose that K is a

field of characteristic zero and that M is a finitely generated K[G\ -module.
Let if be a K[G] -endomorphism of M. Then p maps MH to MH for any
subgroup H of G, and the characteristic polynomial f(H) G K[t\ of the

restriction p\MH is a factorizable function with values in T K(t)*. To see

this, define g(V) for any Q[G] -module V as the characteristic polynomial
of the AT-linear endomorphism of Hom^[G](Af ®q V,M) induced by p. Then

g: R(G) —> T is a homomorphism such that g(lg) =f(H). This result is also

given by Kani and Rosen [11, Prop. 4.6]. It implies the following lemma.

(2.3) LEMMA. The functions dimK(MH) G Z and Ty(p\mh) e K are
factorizable. If <p is an automorphism then d^(H) det((^|mh) <E K* is

factorizable.

Now suppose that K is the quotient field of a Dedekind domain A and
still assume that char AT 0. By an A-lattice we mean a finitely generated
A-module without A-torsion, or equivalently, a finitely generated projective
A-module. An A [G]-lattice is an A [G] -module that as an A-module is an
A-lattice. Denote the group of fractional A-ideals by 1(A). For two A-lattices
X C Y with X 0 K Y 0 K the quotient X/Y is an A -module of finite
length. If the Jordan-Holder factors of X/Y are A/pu A/pm then the
A-index [Y : X]A is defined to be the A-ideal pi • • -pm (cf. [15, Ch. I, §5]).

(2.4) Definition. We say that two A[G]-lattices M and N are factor
equivalent if there is an A[G]-linear map t M —> N for which the following
hold :

(1) the induced map M ®AK ^ N ®AK is an isomorphism;
(2) the index [Nh:(M)H]A e 1(A) is a factorizable function of H.
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(2.5) PROPOSITION. If N and M are factor equivalent then for any A[G]~
linear embedding j: M ^ N the function H *—>> : j(MH)]A is factorizable.

Proof We have j (pi, where i is an embedding as in (2.4) and p is

a K[G] -linear automorphism of N <%)A K. Using [15, Ch. III, §1, Prop. 2] and

the notation of (2.3) we see that

[Nh :j(MH)]A dv(H)• [Nh :

This is a product of two factorizable functions by (2.3) and by our choice

of i.

The fact that "factor equivalence" is an equivalence relation is an easy

consequence of (2.5). If p is a prime of K not dividing #G then
condition (1) of (2.4) implies that the p-part of [Nh : i(M)H] is factorizable.
One can prove this with [16, §15.2] and [16, §14.4, Lemma 21].

(2.6) Remark. The definitions of factorizability given by Fröhlich

[8; 9] and Burns [2] for abelian groups G are in agreement with our
definitions. They also define the notion called Q-factorizability in the abelian

case, which is a stronger condition than factorizability. However, the function
that one wants to be factorizable in the definition of factor equivalence
automatically satisfies this stronger condition if it is factorizable. Thus, Q -factor

equivalence is the same as factor equivalence.

In [4, §3] a factorizable function / with values in I(Q) must also satisfy

an additional condition : there should be a map g from the group of complex
characters Rc(G) to 1(E), where E is some normal number field containing
all character values of G, such that g is Gal(£/Q)-equivariant, and such

that glg) is the E-ideal generated by f(H). It is not hard to see that this

condition is satisfied by all functions that are factorizable in our sense.

3. Rings of integers

Let A be a Dedekind domain with quotient field K of characteristic

zero and let E a Galois extension of K with Galois group G. The integral
closure B of A in L is again a Dedekind domain. Assume that for all primes
of L the residue class field extension is separable.
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(3.1) THEOREM. The A[G\-lattices B and A[G] are factor equivalent.

Proof Define a B[G] -module structure on B Cu B by letting B act on

the left factor and G on the right. We will show first that B Cu B and B[G]

are factor equivalent as B[G] -lattices. Define the canonical B[G] -linear map

Lp\ B B —> B[G] by

x (£) y mn xa(y) a~l
ctGG

Let 7/ be a subgroup of G. If 0T5...,cr„ are the TT-embeddings of LH

in L, and if there is an A-basis of BH, then the restriction

(B <S>a B)H —> B[G]h of (a is a B-linear map with matrix (cr^cj/))// on the

bases {l0cjy} and {£>/}, where bj is the formal sum of those a G G for which
a~l restricts to The square of the determinant of this matrix generates
the discriminant À(BH/A) as an A-ideal. By localization it follows that even

if B is not free over A, we have

[B[G]h : <p(BB)H]l AC B

By Hasse's conductor discriminant product formula [15, Ch. VI, §3] the ideal

À(BH/A) is a factorizable function of H, so B <g>A B and B[G] are factor
equivalent B[G] -lattices.

In order to descend to A[G]-lattices, note that there exists an A[G]-linear
injection i: A[G] —» B by the normal basis theorem, and consider the induced

B[G\ -linear map A : B[G] —> B B that sends ba to b 0 i(a) for b G B
and a G G. We have

[(5 Bf : i, (5[G])//]ß [Bh : /(A[G])Ä]a • B

and by (2.5) we know that the left hand side is a factorizable function of H.
But then the A-index [BH : i(A[G])H]A is also factorizable.

4. S-UNITS

Let L/K be a Galois extension of number fields with Galois group G, and
let Sbe a finite G-stable set of primes of L containing the infinite primes.
The ring of S-integersof L consists of all elements of L that are integral
outside S. Its class number is written as and its unit group, the group
of 5-units of L, is denoted by Us(L). The group of roots of unity in L is
denoted by jiL and its order is written as w(L).
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Define the Z[G]-lattice Xs to be the kernel of the map Z[S] —» Z that sends

each p G S to 1. We have a canonical map logL: US(L) ^ R(g)z Xs sending

x to the formal sum ^2peS (log | x |p) 0 p in R[5]. Here the normalization
of the valuation at a prime fi of L, lying over a prime p of Q, is given
by I u ip ~ |^lp/q (w) I where | • \p is the usual valuation on the completion
Qp of Q (with Qp R if p oo). Dirichlet's unit theorem says that

logL embeds Us(L)/gLL as a discrete cocompact lattice in R^z^. The

S-regulator RS(L) G R>o is defined to be the covolume of this lattice when
the measure on R Xs is normalized to give 1 <g> Xs covolume 1.

For a subgroup H of G we let S(//) be the set of primes of iß that
extend to a prime in S. We will write hs(LH) for hs^(LH) and for
Rs(H)(Lh). Brauer [1] has shown that the function H i—>• hs(LH)Rs(LH)/w(LH)
is a factorizable function with values in R>o- The easiest way to see

this is by noting that this quotient is the absolute value of the leading
coefficient in the Taylor series expansion at s 0 of the zeta-function

(lh,s(s) °f LH ; see Tate [17, Ch. I, 2.2]. Since Cl^sC?) is equal to the Artin
L-series Ls(l^^s), the factorizability result then follows from the fact that

Ls(X i +X2 ,s) Ls(xus)Ls(x2,s).
The group G acts on S, so it acts on Z[S] and on Xs. The map logL

induces an R[G]-linear isomorphism RCz Us(L) ß R^z^s- It follows that
the Q[G]-modules QC>z Us(L) and Q^zXs are isomorphic; see [3, p. 110].

In particular, there exists a Z[G]-linear embedding i: Xs Us(L).

For a prime p of LH all primes q of L lying over p have the same

local degree, which we denote by np(L/LH). Let n{H) be the product of all

np(L/LH) with p G S(H), and let 1(H) be their least common multiple.

(4.1) THEOREM. For any Z[G]-linear embedding i: Xs Us(L), the

function

H n [US(L)H :
m

KH) hs(LH)

with values in Q>o is factorizable.

Proof For Z -lattices L\, L2 spanning the same real vector space V

we define the "index" [La : L\] G R>o as follows: choose a Haar measure

on V such that L2 has covolume 1 and let [L2 : L\] be the covolume of

L\. Note that this notion coincides with the usual index in the case that

L\ C L2, and that [L\ : L2][L2 : L3] ~ [L\ : L3]. Moreover, for any R-linear
automorphism p of V we have \L\ : p(L\)] \det(p\.
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For each subgroup Hof Gwe have an injective map jn ' [S(H)]

sending p to £q|p np(L/LH)q. This map respects the logarithm map in the

sense that we have a commutative diagram

US(LH)R

1 ' (g''",

US(L)H R A'".

where the vertical map on the left is inclusion. We therefore have

RS(L")[XS(H):log,« Us(L»)] •

The composite map Xs —-> Us(L) R 0 Xs induces an R[G] -linear

automorphism (p of R^X^. With the notation of (2.3) one has

\dv(H)\[X? : tfX?)] [X? : log, Us(Lf]

Combining these two formulas, and dividing by hs(LH), we get

(A \ti (T\h;YY ^ I

(4.2) [US(L) .i(Xs)J h^LH) ^^hsiL^RsiL")

The right hand side is factorizable by (2.3) and Brauer's theorem. It remains

to show that [Xf : jH(Xs(H))\ n(H)/l(H). In order to do this we compare

the sequence defining XS(H) with the if-invariants of the sequence

defining Xs :

Xs(H) —Z[S(H)\——> z -

1 l#H

Xs ——> Z[S]H —> z.

The rows in this commutative diagram are exact and the vertical maps are

injective. The cokernel C of the map ju is the group ©pGiS(//) Z/np(L/LH)L,
which has order n(H). It is not hard to see that the image of C in the cokernel
of the rightmost vertical map has order 1(H). With the snake lemma our claim
follows.
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(4.3) Remark. One can shorten this proof somewhat by using results

in Tate's book on the Stark conjectures. Tate shows in [17, Ch. II, 1.1] that

[Us(L) : i(Xs)\/hs(L) is equal to the Stark-quotient A(l,z), where 1 denotes

the trivial character of the trivial Galois group of L over L. Compatibility of
the Stark-quotient with respect to inflation and addition of characters implies
that the number on the left in (4.2) equals A( 1#, i), and that it is a factorizable
function of H.

(4.4) Remark. In order to say that (4.1) determines the factor equivalence
class of Us(L) we should define factor equivalence for Z[G] -modules with Z-
torsion. This can be done by replacing condition (2) in (2.4) by the condition
that the quotient of the order of cokernel and kernel of the map MH —> NH

should be factorizable.

Alternatively, one can look at U(L) Us(L)/pL instead of Us(L). This

approach does introduce new factors into the formula because U(L)H is not

necessarily equal to U(LH). More precisely, c(H) [U(L)H : U(LH)] is the

order of the kernel of the map Hl(H, pL) —> Hl (//, US(L)), so we know that

it is built up from primes dividing both w(L) and #G. For Z[G]-embedding s

i : Xs U(L) it turns out that the map

(4.5) H h-> [U{L)h :y J J

is factorizable. Thus one recovers [4, §3, Th. 3], where it is assumed that L has

odd degree over K and K is totally real, so that c(H) — n(H) 1(H) 1 and

w(Lh) 2. Brauer [1] showed that the odd part of w(LH) is a factorizable

Q*-valued function of //, and his argument inspired the following lemma

(cf. [11, Prop. 4.7]).

(4.6) LEMMA. Let G be a group, let D be a subgroup of G and let N
be a normal subgroup of D of index n such that D/N is cyclic. For every
divisor d of n and subgroup H of G, let m^fH) G Z be the number of
D-orbits of GjH that split up into exactly d orbits under the action of N.
Then md(H) is a factorizable TL-valued function of H.

Proof Let x: D C* be a complex linear character such that x(IV) 1,

and let xG be the induced character of G. We claim that (xG, 1^)g is the

sum of those md(H) for which d is a multiple of the order of x- Since (•, -)G

is a bilinear operation on characters of G (see [16, §7.2]) the integer (%G, \%)g
is a factorizable function of H. We deduce the lemma from the claim by
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taking % of order d and using induction : we start with n — d and then

successively remove prime factors from d. It remains to show the claim.

By Frobenius reciprocity one has (xG, 1h)g — (x> 1h \d)d, which is equal

to the multiplicity of x in the complex representation C[G/H] of D. The

D-set G/H is D-isomorphic to a disjoint union w^cre X runs

over the D-orbits of G/H, and each Dx is a subgroup of D. The multiplicity
of x m C[P/Dx] is either 0 or 1, and it is 1 if and only if Dx C Kerx-
Since N C Kerx, and D/N is cyclic, it follows that (xG, 1#)g is equal to

the number of X for which the order of x divides [D : NDx] This index is

the number of A-orbits of D/Dx, so the claim follows.

If for a prime number p the roots of unity in L of p -power order generate

a cyclic extension of K, then one can show with the lemma (with D — G)
that the p-part of w(LH) is a factorizable Q*-valued function of H. The

condition holds for all p > 2, so the odd part of w(LH) is factorizable.

For any prime p of K and d G Z the number of primes in LH extending p

with residue degree d is a Z-valued factorizable function of H. This follows
from the lemma if we take D and N to be the decomposition group and

the inertia group of p. If p has a cyclic decomposition group D then one

can also take N 1, and deduce the same statement with "residue degree"
replaced by "local degree".

It follows that the factor n(H) in (4.1) can be replaced by the product
of the ramification indices in the extension L/LH of those primes p G S(H)
that extend to a prime of L with non-cyclic decomposition group in L/K. In
particular, n(H) is factorizable if S contains no finite ramified primes.

5. Applications

Without giving proofs we indicate some concrete applications of the factor
equivalence results given in the last two sections.

(5.1) Cyclic subfield integer index. Let K be a Galois extension

of Q with abelian Galois group G and ring of integers Ok. For a

Z[G]-module M let cG(M) be the index in M of where the sum is
taken over those subgroups H of G for which G/H is cyclic. In particular,
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cg(Ok) is the index in Ok of the lattice generated by integers in the cyclic
subfields of K. An argument of Gillard (see [2, Prop. 1]) implies that cg(M)
only depends on the Z[G] -module structure of M up to factor equivalence.
With (3.1) it follows that cg(Ok) <?g(Z[G]). Therefore, one only needs to

consider the group ring for the computation of this "cyclic subfield integer
index". An explicit formula for cg(Z[G]) is given in [6]. For instance, if G has

type (p,p) for some prime number p then one obtains cg(Ok) - pp<^~1^2. In
this case one can deduce in particular that every integral basis of Ok contains

a primitive element of K (cf. [5]).

(5.2) Class number inequalities. Theorem (4.1) gives a relation
between the relative position of the groups of units of fields, and their class

numbers. Let us consider the fields of degree 8 of Perlis [13] : we take

<2 £ Z with \a\ not a square or twice a square. The fields K Q(\/a)
and K'Q(Ukw) are the invariant fields under subgroups H and H' of
G Gal(L/Q) with L — Q(Cs> \fà)- The fields K and K' are "arithmetically
equivalent", i.e., they have the same zeta-function. One way to see this is

by checking that 1# 1#/. Since w(K) - w(K'), Brauer's theorem implies
that hR h'R', where h,h' and R,R' are the class number and regulator

of K and K'. There exist integers a for which h ^ hf, such as

a —15 ; see [7].
Choose any Z[G]-linear embedding p: Xs —» Ug(L), where S is the set

of infinite primes of L. Suppose that we also have an injective Z[G]-linear
homomorphism /: Z[G/Hf] —* Z[G/H]. Applying the functors HomG(— ,XS)

and HoniG(—, Us(L)) to / we get a commutative diagram

With (4.1) and this diagram one sees that the quotient h/h' is given by

vH fx
x VH'

As * As

Us(K) US(K')

h # Cok (Pi # Ker fv #Cokfx [xf : fx(Xg)]
h' " # Cok (/?2

" # Cok fu~[Us(K') :

Thus, h/h! is equal to the index if [xf :fx(X^)] divided by some positive

integer. One obtains a bound in the other direction by switching the role of K
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and K'. The index if is an entirely combinatorial object; it only depends

on / and the signature of K. With a judicious choice of the map / as in

[13, p. 507] one can get if 16 if a>0,and — 4if 0. One now

recovers [13, Th. 8] : we have h/h'— 2^ with | |< 4 if > 0 and | | < 2

if a <0.
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