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FACTOR EQUIVALENCE RESULTS
FOR INTEGERS AND UNITS

by Bart DE SMIT

ABSTRACT. We give alternative proofs of two results of Frohlich on the Galois
module structure of the ring of integers and of the group of S-units in a Galois
extension of number fields. We also point out applications to index computations in
rings of integers and to class number relations.

1. INTRODUCTION

The purpose of this note is to give a brief presentation of basic factor
equivalence results about the Galois module structure of the ring of integers
and of the group of units in a Galois extension of number fields. Such results
were first given by Nelson [12] and by Frohlich [8, 9]. In [8] and [4,§3]
these results are proved for abelian and for “admissible” Galois groups. It
was shown later by Ritter and Weiss that all finite groups are “admissible”
[14]. The proofs given below do not use any subtle representation-theoretic
properties such as admissibility.

We set up the terminology in the next section. In Section 3 we show
that the ring of integers in a Galois extension of number fields is “factor
equivalent” to the group ring of the Galois group over the ring of integers
of the base field. The proof uses the conductor discriminant formula, and
it holds in the more general context of extensions of Dedekind domains of
characteristic zero with separable residue field extensions.

In Section 4 the factor equivalence class of the lattice of units is expressed
in terms of class numbers of intermediate fields. The proof uses zeta-functions
and it holds for arbitrary Galois extensions of number fields.

1991 Mathematics subject classification : 11R33.



384 B. DE SMIT

Finally, we give two applications in Section 5 that show how these results
are related to more concrete questions in algebraic number theory. First we
indicate how to do certain index computations for rings of integers in abelian
extensions of number fields. For a bicyclic quartic field this implies that the
lattice generated by its quadratic integers has index 2 in the ring of integers.
Then we explain that the result for units gives a method to obtain class number
inequalities between so-called “arithmetically equivalent” number fields.

2. FACTORIZABILITY AND FACTOR EQUIVALENCE

Let G be a finite group. A character of G is said to be rational if it is the
character of a representation of G defined over Q. Denote the additive group
of rational characters of G by R(G). One can view R(G) as the Grothendieck
group of finitely generated Q[G]-modules. It is the free abelian group generated
by the set X(G) of isomorphism classes of irreducible Q[G]-modules.

The trivial character 17 on a subgroup H of G induces the permutation
character 1?, € R(G), corresponding to the G-module Q[G/H]. Let S denote
the set of subgroups of G and let T be an abelian group. We will use
multiplicative notation for the group operation on 7.

(2.1) DEFINITION. A function f: S — T is said to be factorizable if
for every collection of integers (am)ucs with ) yes aglG = 0 we have

HpesfE) = 1.

(2.2) EXAMPLES. If G is the Galois group of an extension of number
fields L/K then Galois theory gives a bijection between S and the set of
intermediate fields of L/K. For any parameter associated to number fields one
thus obtains a function on &, and one may wonder if it is factorizable. The
discriminant, zeta-function, and the odd part of the number of roots of unity
in a number field, are all factorizable. The p-part of the class number for
ptIL: K] is also factorizable; cf. [18]. The fact that the parameter AR/w is
factorizable is known as “Brauer’s class number relations” (see Section 4). See
Kani and Rosen [10, 11] for factorizability results for curves and Jacobians.

A function f: & — T induces a group homomorphism f,: Z[S] — T,
where Z[S] is the free abelian group generated by S. By definition f is
factorizable if and only if f, vanishes on the kernel of the homomorphism
r: Z[S] — R(G) given by H — 1%. For abelian groups G the map r is
surjective. For every group G the image of r has finite index by Artin’s
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induction theorem [16, Ch. 13, Th. 30]. If G is abelian or T is divisible, then
it follows that f is factorizable if and only if f, = gr for some homomorphism
g: R(G) — T. We then have

fHEy =[] 900m>

xX€X(G)

where ny , is the multiplicity of x in 1§, ie., 1§ = >, i, xx- This is
the factorization that the word factorizable refers to. One way to show that
a function f is factorizable is by exhibiting such a map g. For instance, to
show that the discriminant function in (2.2) is factorizable one lets g(x) be
the Artin conductor of x (see [15, Ch. VI, §3]).

Let us give another example from linear algebra. Suppose that K is a
field of characteristic zero and that M is a finitely generated K[G]-module.
Let ¢ be a K[G]-endomorphism of M. Then ¢ maps M7 to M for any
subgroup H of G, and the characteristic polynomial f(H) € K[t] of the
restriction |y# is a factorizable function with values in T = K(£)*. To see
this, define g(V) for any Q[G]-module V as the characteristic polynomial
of the K-linear endomorphism of Homgs(K ®q V, M) induced by ¢. Then
g: R(G) — T 1s a homomorphism such that g(lg) = f(H). This result is also
given by Kani and Rosen [11, Prop. 4.6]. It implies the following lemma.

(2.3) LEMMA. The functions dimg(M¥) € Z. and Tr(p|yn) € K are
factorizable. If ¢ is an automorphism then d,(H) = det(p|yn) € K* is
factorizable. [

Now suppose that K is the quotient field of a Dedekind domain A and
still assume that charK = 0. By an A-lattice we mean a finitely generated
A-module without A-torsion, or equivalently, a finitely generated projective
A-module. An A[G]-lattice is an A[G]-module that as an A-module is an
A-lattice. Denote the group of fractional A-ideals by I(A). For two A -lattices
X CY with X® K =Y ®K the quotient X/Y is an A-module of finite
length. If the Jordan-Holder factors of X/Y are A/pi,...,A/p, then the
A-index [Y : X], is defined to be the A-ideal p; - - ‘P, (cf. [15, Ch. 1,85)).

(2.4) DEFINITION. We say that two A[G]-lattices M and N are factor

equivalent if there is an A[G]-linear map i: M — N for which the following
hold :

(1) the induced map M @4 K — N @4 K is an isomorphism;
(2) the index [NH : (M)H} 4 € I(A) is a factorizable function of H.
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(2.5) PROPOSITION. If N and M are factor equivalent then for any A[G]-
linear embedding j: M — N the function H — [N" : j(M™)|  is factorizable.

Proof. We have j = i, where i is an embedding as in (2.4) and ¢ is
a K[G]-linear automorphism of N ®4 K. Using [15, Ch. III, § 1, Prop. 2] and
the notation of (2.3) we see that

[N ja™)], = dy(H) - [N" - iu™)], .

This is a product of two factorizable functions by (2.3) and by our choice

of i. [

The fact that “factor equivalence” is an equivalence relation is an easy
consequence of (2.5). If p is a prime of K not dividing #G then con-
dition (1) of (2.4) implies that the p-part of [N¥ :i(M)"] , s factorizable.
One can prove this with [16,§15.2] and [16,§14.4, Lemma 21].

(2.6) REMARK. The definitions of factorizability given by Frohlich
[8; 9] and Burns [2] for abelian groups G are in agreement with our def-
initions. They also define the notion called Q-factorizability in the abelian
case, which is a stronger condition than factorizability. However, the function
that one wants to be factorizable in the definition of factor equivalence auto-
matically satisfies this stronger condition if it is factorizable. Thus, Q-factor
equivalence is the same as factor equivalence.

In [4,§3] a factorizable function f with values in 7(Q) must also satisfy
an additional condition : there should be a map g from the group of complex
characters Rc(G) to I(E), where E is some normal number field containing
all character values of G, such that g is Gal(E/Q)-equivariant, and such
that g(1%) is the E-ideal generated by f(H). It is not hard to see that this
condition is satisfied by all functions that are factorizable in our sense.

3. RINGS OF INTEGERS

Let A be a Dedekind domain with quotient field K of characteristic
zero and let L a Galois extension of K with Galois group G. The integral
closure B of A in L is again a Dedekind domain. Assume that for all primes
of L the residue class field extension is separable.
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(3.1) THEOREM. The A[G]-lattices B and A[G] are factor equivalent.

Proof. Define a B[G]-module structure on B ®4 B by letting B act on
the left factor and G on the right. We will show first that B ®4 B and B[G]
are factor equivalent as B[G]-lattices. Define the canonical B[G]-linear map
w: B®s B — B[G] by

XQyr— Zxa(y)-a_l .

ceG

Let H be a subgroup of G. If ¢y,...,0, are the K-embeddings of L
in L, and if there is an A-basis wj,...,w, of B then the restriction
(B @4 B — B[G]" of ¢ is a B-linear map with matrix (oi(w;)); on the
bases {1®w;} and {b;}, where b; is the formal sum of those o € G for which
o~ ! restricts to ¢;. The square of the determinant of this matrix generates
the discriminant A(B¥ /A) as an A-ideal. By localization it follows that even

if B 1s not free over A, we have
[BIGY : (B @4 B)], = A(B" JA) - B .

By Hasse’s conductor discriminant product formula [15, Ch. VI, §3] the ideal
A(B¥ /A) is a factorizable function of H, so B ®4 B and B[G] are factor
equivalent B[G]-lattices.

In order to descend to A[G]-lattices, note that there exists an A[G]-linear
injection i: A[G] — B by the normal basis theorem, and consider the induced
B[G]-linear map i.: B[G] — B ®4 B that sends bo to b ®i(c) for b ¢ B
and o0 € G. We have

(B®a B 1. (BIGY)"], = [B" :i(AlG)"], - B |

and by (2.5) we know that the left hand side is a factorizable function of H.
But then the A-index [BH ; i(A[G])H] 4 1s also factorizable. L]

4. S-UNITS

Let L/K be a Galois extension of number fields with Galois group G, and
let § be a finite G-stable set of primes of L containing the infinite primes.
The ring of S-integers of L consists of all elements of L that are integral
outside S. Its class number is written as hg(L) and its unit group, the group
of S-units of L, is denoted by Ug(L). The group of roots of unity in L is
denoted by p; and its order is written as w(L).
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Define the Z[G]-lattice Xs to be the kernel of the map Z[S] — Z that sends
each p € § to 1. We have a canonical map log; : Us(L) — R ®z X5 sending
x to the formal sum ). .;(log|x[)®yp in R[S]. Here the normalization
of the valuation at a prime p of L, lying over a prime p of Q, is given
by |u |p = \NLp /Q,(W) . where |- | , 1s the usual valuation on the completion
Q, of Q (with Q, = R if p = oo0). Dirichlet’s unit theorem says that
log; embeds Us(L)/u; as a discrete cocompact lattice in R ®z Xg. The
S-regulator Rg(L) € Ry is defined to be the covolume of this lattice when
the measure on R ®z X is normalized to give 1 ® X5 covolume 1.

For a subgroup H of G we let S(H) be the set of primes of L that
extend to a prime in S. We will write hg(L) for hgg) (L¥) and Rg(L¥) for
Rsury(LY). Brauer [1] has shown that the function H +— hg(LT)Rg(L™) /w(LH)
1s a factorizable function with values in Rsy. The easiest way to see
this is by noting that this quotient is the absolute value of the leading
coefficient in the Taylor series expansion at s = 0 of the zeta-function
Crr s(s) of L see Tate [17, Ch. I, 2.2]. Since (yx 5(s) is equal to the Artin
L-series LS(lg,s), the factorizability result then follows from the fact that
Ls(x1 + x2,5) = Ls(x1, 5) Ls(X2, 5)-

The group G acts on S, so it acts on Z[S] and on Xs. The map log,
induces an R[G]-linear isomorphism R ®z Us(L) = R ®z Xs. It follows that
the Q[G]-modules Q ®z Ug(L) and Q ®z X5 are isomorphic; see [3, p. 110].
In particular, there exists a Z[G]-linear embedding i: Xg — Us(L).

For a prime p of L all primes q of L lying over p have the same
local degree, which we denote by ny (L/Lf). Let n(H) be the product of all
My (L/L") with p € S(H), and let [(H) be their least common multiple.

(4.1) THEOREM. For any Z|G]-linear embedding i: Xs — Us(L), the
function
n(H)

H — [Us(L)" : i(Xs)"] ICH) he (L)

with values in Q~q is factorizable.

Proof. Yor Z-lattices L;, L, spanning the same real vector space V
we define the “index” [L; : Li] € Rso as follows: choose a Haar measure
on V such that L, has covolume 1 and let [L, : L;] be the covolume of
L;. Note that this notion coincides with the usual index in the case that
L1 C L,, and that [L; : L,][L;, : L3] = [L; : Ls]. Moreover, for any R-linear
automorphism ¢ of V we have [L; : ¢(Ly)] = |detep].
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For each subgroup H of G we have an injective map Jx : Z[S(H)} — Z[S]
sending p to Y, alp (L/LM) - g. This map respects the logarithm map in the
sense that we have a commutative diagram

log
Us(LH) B, R® Xsw)
| s
UsLy! —— RoXE,
where the vertical map on the left is inclusion. We therefore have

(x{ :log, Us(L)]

Rs(L") = [Xsey : log Us(L™)] = (x4  jn(Xsan))

i log . )
The composite map Xs — Us(L) 2L R ® X induces an R[G]-linear
automorphism ¢ of R® Xs. With the notation of (2.3) one has

[UsL)? = i(xth]

dy(H)] = (X5 o] = [X§: log, Us(D)"} == = -

Combining these two formulas, and dividing by hs(LT), we get

w(LH) .
hs(LM)Rs(LH)

XH . (X
4.2) [Us(D) : i(Xs)H}[ - hj fL(Hf(H))]

The right hand side is factorizable by (2.3) and Brauer’s theorem. It remains
to show that [X¥ : jy(Xsgp)|] = n(H)/I(H). In order to do this we com-
pare the sequence defining Xy with the H-invariants of the sequence
defining Xy :

0 —— Xsay —— Z[SH)] ——— Z —— 0

R

0 —— X — ZIS}¥ —— Z.

The rows in this commutative diagram are exact and the vertical maps are
injective. The cokernel C of the map jy is the group @, gy Z/np(L/L¥)Z,
which has order n(H). It is not hard to see that the image of C in the cokernel

of the rightmost vertical map has order [(H). With the snake lemma our claim
follows. [
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(4.3) REMARK. One can shorten this proof somewhat by using results
in Tate’s book on the Stark conjectures. Tate shows in [17, Ch. II, 1.1] that
[US(L) : i(XS)} /hs(L) is equal to the Stark-quotient A(1,7), where 1 denotes
the trivial character of the trivial Galois group of L over L. Compatibility of
the Stark-quotient with respect to inflation and addition of characters implies
that the number on the left in (4.2) equals A(1%,i), and that it is a factorizable
function of H.

(4.4) REMARK. In order to say that (4.1) determines the factor equivalence
class of Ug(L) we should define factor equivalence for Z[G]-modules with Z.-
torsion. This can be done by replacing condition (2) in (2.4) by the condition
that the quotient of the order of cokernel and kernel of the map M7 — N¥
should be factorizable.

Alternatively, one can look at U(L) = Us(L)/uy instead of Ug(L). This
approach does introduce new factors into the formula because U(L)? is not
necessarily equal to U(L"). More precisely, c(H) = [U(L)" : U(L?)] is the
order of the kernel of the map H'(H, ;) — H' (H , US(L)), so we know that
it 1s built up from primes dividing both w(L) and #G. For Z[G]-embeddings
i: X5 — U(L) it turns out that the map

w(L?) n(H)

(4_5) H+— [U(L)H : i(XS)H] hs(LH) C(H) Z(H)

is factorizable. Thus one recovers [4, § 3, Th. 3], where it is assumed that L has
odd degree over K and K 1s totally real, so that c(H) = n(H) = [(H) =1 and
w(L?) = 2. Brauer [1] showed that the odd part of w(L) is a factorizable
Q" -valued function of H, and his argument inspired the following lemma
(ct. [11, Prop. 4.7]).

(4.6) LEMMA. Let G be a group, let D be a subgroup of G and let N
be a normal subgroup of D of index n such that D/N is cyclic. For every
divisor d of n and subgroup H of G, let my(H) € Z. be the number of
D-orbits of G/H that split up into exactly d orbits under the action of N.
Then my(H) is a factorizable Z.-valued function of H.

Proof. Let x: D — C* be a complex linear character such that x(N) = 1,
and let x“ be the induced character of G. We claim that (x%,15)s is the
sum of those my(H) for which d is a multiple of the order of x. Since (-, )¢
is a bilinear operation on characters of G (see [16,§7.2]) the integer (x%,1%)¢
is a factorizable function of H. We deduce the lemma from the claim by
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taking x of order d and using induction: we start with n = d and then
successively remove prime factors from d. It remains to show the claim.

By Frobenius reciprocity one has (x%,15)¢ = (x, 1§ |p)p, Which is equal
to the multiplicity of y in the complex representation C[G/H] of D. The
D-set G/H is D-isomorphic to a disjoint union ][, D/Dx, where X runs
over the D-orbits of G/H, and each Dy is a subgroup of D. The multiplicity
of x in C[D/Dx] is either 0 or 1, and it is 1 if and only if Dx C Kerx.
Since N C Kery, and D/N is cyclic, it follows that (x“,1§)¢ is equal to
the number of X for which the order of x divides [D : NDx]. This index is
the number of N-orbits of D/Dy, so the claim follows. [

If for a prime number p the roots of unity in L of p-power order generate
a cyclic extension of K, then one can show with the lemma (with D = G)
that the p-part of w(L¥) is a factorizable Q*-valued function of H. The
condition holds for all p > 2, so the odd part of w(L¥) is factorizable.

For any prime p of K and d € Z the number of primes in L¥ extending p
with residue degree d is a Z-valued factorizable function of H. This follows
from the lemma if we take D and N to be the decomposition group and
the inertia group of p. If p has a cyclic decomposition group D then one
can also take N = 1, and deduce the same statement with “residue degree”
replaced by “local degree”.

It follows that the factor n(H) in (4.1) can be replaced by the product
of the ramification indices in the extension L/L¥ of those primes p € S(H)
that extend to a prime of L with non-cyclic decomposition group in L/K. In
particular, n(H) 1s factorizable if S contains no finite ramified primes.

5. APPLICATIONS

Without giving proofs we indicate some concrete applications of the factor
equivalence results given in the last two sections.

(5.1) CYCLIC SUBFIELD INTEGER INDEX. Let K be a Galois exten-
sion of Q with abelian Galois group G and ring of integers Ox. For a
Z[G]-module M let c¢g(M) be the index in M of S~ MH | where the sum is
taken over those subgroups H of G for which G/H is cyclic. In particular,
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cc(Ok) is the index in Ok of the lattice generated by integers in the cyclic
subfields of K. An argument of Gillard (see [2, Prop. 1]) implies that c¢g(M)
only depends on the Z[G]-module structure of M up to factor equivalence.
With (3.1) it follows that cg(Ok) = cg(Z[G]). Therefore, one only needs to
consider the group ring for the computation of this “cyclic subfield integer
index”. An explicit formula for cg(Z[G]) is given in [6]. For instance, if G has
type (p,p) for some prime number p then one obtains ¢g(Og) = p??~ /2 In
this case one can deduce in particular that every integral basis of Ok contains
a primitive element of K (cf.[5]).

(5.2) CLASS NUMBER INEQUALITIES. Theorem (4.1) gives a relation
between the relative position of the groups of units of fields, and their class
numbers. Let us consider the fields of degree 8 of Perlis [13]: we take
a € Z with |al| not a square or twice a square. The fields K = Q(¥a)
and K' = Q(3/16a) are the invariant fields under subgroups H and H’' of
G = Gal(L/Q) with L = Q((3, </a). The fields K and K’ are “arithmetically
equivalent”, i.e., they have the same zeta-function. One way to see this is
by checking that 1% = 1§,. Since w(K) = w(K’), Brauer’s theorem implies
that hR = W'R’, where h,h' and R,R’ are the class number and regu-
lator of K and K’. There exist integers a for which h # h’, such as
a= —15; see [7].

Choose any Z[G]-linear embedding ¢: Xg — Ug(L), where S 1is the set
of infinite primes of L. Suppose that we also have an injective Z[G]-linear
homomorphism f: Z[G/H'] — Z[G/H]. Applying the functors Homg(—, Xs)
and HomG(—, US(L)> to f we get a commutative diagram

x{ Xl

J{‘Pl Jﬁm
Us(K) —— Us(K') .
With (4.1) and this diagram one sees that the quotient A/A’ is given by

h  #Cokp,  #Ker fy - #Cok fy [XE: (X))

W #Cokyy #Cok fy [Us(K") = prfu(Us(K))]

Thus, h/k is equal to the index ir = [X¥ : fx(X¥)] divided by some positive
integer. One obtains a bound in the other direction by switching the role of K
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and K’. The index ir is an entirely combinatorial object; it only depends
on f and the signature of K. With a judicious choice of the map f as in
[13, p. 507] one can get if = 16 if a > 0, and if = 4 if a < 0. One now
recovers [13, Th. 8]: we have h/h' = 2% with |k| <4 if a >0 and [k| <2
if a <O0.

(2]
[3]

[5]
[6]
[7]

[9]
[10]

[11]
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