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This paper is largely expository, and much of the material in it is standard.

These notes originated from our interest in the question of whether or not
F is amenable. They were expanded in order to make available Thompson's
unpublished proofs (from [Tl]) of the simplicity of T and V and Thurston's

interpretations of F and T as the groups of orientation-preserving, piecewise
integral projective homeomorphisms of the unit interval and the circle.

In § 1 we define F as a group of piecewise linear homeomorphisms of
the unit interval [0, 1], and then give some examples of elements of F. In
§2 we represent elements of F as tree diagrams, and give a normal form for
elements of F. Two standard presentations for F are given in §3. In §4 we

prove several theorems about F ; these are partly motivated by the question
of whether F is an amenable group. In §5 we define T and give Thompson's
proof that T is simple. In §6 we define V and give Thompson's proof that V
is simple. In §7 we give W. Thurston's interpretations of F and T in terms

of piecewise integral projective homeomorphisms.
The group that we are denoting F was originally denoted F in [Tl] and

in [McT], and was denoted F in [T2]. It was denoted F in [BroG] in
1984, and it was also denoted F in [Bri], [BriS], [Bröl], [Bro3], [Fo], [FrH],
[GhS], [Gre], [GreS], [GuS], and [St]. It is denoted G in [BieS].

The group that we are denoting T was originally denoted C in [Tl]. It was

denoted T in [Bröl] in 1987 and was denoted T in [Bri] and [St]. However,

it was denoted G in [GhS] and [Gre]. It is denoted S in [BieS].
The group that we are denoting V was originally denoted V in [Tl] and

(t! in [McT], and was denoted Ft(u2) in [T2]. It was denoted G2,i in [H] in

1974, and was denoted G in [Bröl], [Bro2], and [St].

We have not included here all of the known results about these groups,
but we have included in the bibliography those references of which we are

aware.

We thank the referee for supplying important references of which we were

unaware and helping to clarify the exposition. We also thank Ross Geoghegan

for helpful comments.

§1. Introduction to F

Let F be the set of piecewise linear homeomorphisms from the closed unit
interval [0,1] to itself that are differentiable except at finitely many dyadic
rational numbers and such that on intervals of differentiability the derivatives

are powers of 2. Since derivatives are positive where they exist, elements of F
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preserve orientation. Let / G F, and let 0 xq < ai < xt < • • • < — 1 be

the points at which / is not differentiate. Then since /(0) 0, /(a) ci\X

for *o < x < jci, where ax is a power of 2. Likewise, since f(x\) is a

dyadic rational number, f(x) a2x + b2 for a'i < .v < a"2, where a2 is

a power of 2 and b2 is a dyadic rational number. It follows inductively

that

f(x1 eux + bj for Xj— i C a 5? -L

and i 1,... .n, where cii is a power of 2 and b\ is a dyadic rational

number. It easily follows that /"' G F and that / maps the set ot dyadic

rational numbers bijectively to itself. From this it is easy to see that F is

closed under composition of functions. Thus F is a subgroup ot the group

of all homeomorphisms from [0. 1] to [0.1]. This group F is Thompson s

group F.

Example 1.1. Two functions in F are the functions A and B defined

below.

x. 0 < .v < I
0 < A- < \ -- - 2 M + 1 1 < V < -
1 <r V <r 2 R(V\ - J 2 4' 2 4

2 - A - 4 ] 1 3^/7
4 < A < 1

' 8 *
~t

'

4 _ ~ I 2.V - 1. < 1

A useful notation for functions f in F will be described next. Construct

a rectangle with a top, which is viewed as the domain of f\ and a bottom,
which is viewed as the range of /. For every point a on the top where / is

not differentiate, construct a line segment from a to /(a) on the bottom. Call
the result the rectangle diagram of /. By juxtaposing the rectangle diagrams
of a pair of functions, it is easy to compute the rectangle diagram of their

composition. We learned about rectangle diagrams from W. Thurston in 1975;

they also appear in [BieS].

Example 1.2. Figure 1 gives some examples of functions in F and their
rectangle diagrams.

Now define functions X0,XUX%,... in F so that X0 A and
Xn A~(n~l)BAn~l for n > 1. From Example 1.2 it is easy to see that
the rectangle diagram of Xn is as in Figure 2.

A(a)

2a- 1.



I

218 J.W. CANNON, W.J. FLOYD AND W.R. PARRY

Figure 2

The rectangle diagram of Xn

§2. Tree diagrams

The notion of tree diagram is developed in this section. Tree diagrams
are useful for describing functions in F ; we first encountered them in
[Bröl].

Define an ordered rooted binary tree to be a tree S such that i) S has a

root vo, ii) if S consists of more than vq, then vo has valence 2, and iii)
if v is a vertex in S with valence greater than 1, then there are exactly two
edges ev^i, eVfR which contain v and are not contained in the geodesic from

vo to v. The edge ev^L is called a left edge of S, and ev^R is called a right
edge of S. Vertices with valence 0 (in case of the trivial tree) or 1 in S will
be called leaves of S. There is a canonical left-to-right linear ordering on the

leaves of S. The right side of S is the maximal arc of right edges in S which
begins at the root of S. The left side of S is defined analogously.

An isomorphism of ordered rooted binary trees is an isomorphism of rooted

trees which takes left edges to left edges and right edges to right edges. An
ordered rooted binary subtree S' of an ordered rooted binary tree S is an
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