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V. Changement de variable

L'objet de cette section est de ramener l'étude de ue e R5* qui est

solution d'une équation de Schrödinger discrète, à celle d'une fonction
harmonique sur Se, solution d'un problème de Dirichlet. Le point de départ
de cette réduction est le

Lemme 1. Soit cp : Se -> R une solution d'une équation de Schrödinger
discrète du type (À + V) (p 0 où V : S& R + et A (p) (s) c5 (p (s)
+ E ^-(pO'), Vs e /£ avec cs > 0, css< < 0, css, cs>s et Vs e Ie,

s' ~ s

cs + £ css> 0. Soit (poiS'g-^R* une autre fonction vérifiant
s' ~ s

(A + K)q>o 0.

Alors la fonction *¥ (p/(p0 est solution de À1^ 0, où l'opérateur
À est donné par Â^O) c^O) + £ Css'^iß')* les coefficients cs

s' ~ s

et cSS' vérifient les mêmes propriétés que les cs et csS* et sont donnés

par: css. (p0(s)(p0(s') css, >

Preuve du lemme 1. Elle est élémentaire: sachant que (A + V) ((po^F) 0,
on a V5e/£,

Cj<Po($)¥($) + X + V0 (*)
s' ~ S

Comme (A + L)(p0 0, on a

cs(po(s) + FO)cp0(s) - Y, <Vs'<PoCO
s' - s

d'où, en reportant dans (*), I cjs.cp0(s') [¥(s')-¥(*)]= 0, d>où
s' ~ S

AV(s) 0 avec <V - <V>'(Pc(.v')(p:,(.v) et cs - £ ç„-(p0(s')<Po(^), ce
S' ~ s

qui prouve le lemme 1.

Pour appliquer ce lemme à cp we et à l'opérateur A^' + obtenu à
la section III, il faut maintenant construire une solution explicite cp0. Voici
un procédé général:

Lemme 2. Soit 't (X), X e] — a, a[ une déformation continûment
dérivable de l'empilement telle que 3tf[, et m8
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e [0, +oo[5e la fonction définie sur Sz associée aux rayons de l'empilement

%f[(X).
Alors on a (A^ ' + V) |x

_ 0
0.

Preuve du lemme 2. Soit FiR^xR^R la fonctionnelle
construite par Yves Colin de Verdière dans [CV] et évoquée à la section III.
Puisque pour tout U]-a,a[, %f[(X) est un empilement de cercles, on a

drF(u^u[ x) 0. En dérivant par rapport à X, il vient:

wi i r v / v &Ks[ue \\ du A
VXe]-a, <x[, L, £ ^ • —^\du\ 0.

selt \ tfc(.s | s) ^ 1 ÖWg dX J

En X 0, on a:

Vï6/ =0
duse \ dX )x o s'~s ô< \ dX /x o

c'est-à-dire exactement (A^ ' + V) • (~yr) X_Q
— 0- D

Il reste maintenant à fabriquer une déformation explicite de l'empilement

En guise de premier essai, on va examiner l'image de l'empilement

par l'homothétie euclidienne de centre 0 et de rapport 1 + X. Pour une raison

qui sera expliquée plus loin, ça n'est pas cet exemple que nous retiendrons en

définitive. Néanmoins, on peut en dégager certaines informations qui seront
utiles :

Lemme 3. Soit, dans le disque hyperbolique, un cercle C de rayon r
et dont le centre est à distance hyperbolique d > r de l'origine. Soit r%

le rayon (hyperbolique) de l'image de C par l'homothétie euclidienne de

centre 0 et de rapport 1 + X.

0. T |_ rl r duX coshd
Si ux- Logtanhy, alors TT k o " •

Figure 2
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Preuve du lemme 3. Notons a le demi-angle sous lequel le cercle C est

vu du point 0 (cf. fig. 2). D'après les formules de trigonométrie hyperbolique

dans le triangle rectangle (voir [B], p. 148), on a

sinh r sin a • sinh d (*)

Notons 8 la distance euclidienne du centre hyperbolique de C à

l'origine. On rappelle que d Logfrf et que 5 tanh^. On en déduit

que sinh d 7^2, de sorte que :

dX
(sinh h)

d / 2(1 + d)S \

x - 0 dX \1 — (1 + X)282]

sinh d - cosh d

25 1 + ô2

x 0 1 - 52 1 - ô2

En dérivant (*) par rapport à X en X -» 0, il vient donc, comme a est

constant,

cosh r •

de sorte

Comme

dr
dX

d
sin a x — (sinh d)

x 0 dX

sinh r
x 0 sinh d

x sinh d • cosh d,

1 dr
sinh r dX

cosh d

cosh r

t 1 r C +00 do du 1

u - Log tanh -2=)r îS on a sl0=" dr_

sinh r dX 10

cosh d
cosh r '

Voici le résultat qui, joint à la section suivante, nous permettra de

conclure :

Lemme 4. Soit K un compact de % et Sf l'ensemble des

sommets de Se dans K. Alors il existe une fonction cp^ : S8- R*
vérifiant:

(i) (A^ + F)(pg 0

(ii) "is, s' e Sf tels que s' ~ s, on a lime
<Pe(s)

_>0 <p£(s')

Preuve du lemme 4. On observe tout d'abord qu'il existe un compact K'
du disque hyperbolique tel que si s est assez petit alors pour tout t e [0, 1],

tous les cercles de correspondant à des sommets dans Sf sont contenus
dans K'. Ceci résulte du point iii) de la proposition de la section IV et du fait
que le diamètre combinatoire de [ est ^ f, la constante C ne dépendant

que de °à.
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Considérons maintenant une isométrie hyperbolique j telle que j(K') ne
contienne pas 0. Notons hx l'homothétie euclidienne de centre 0 de rapport
1 + X. On définit l'emplacement ^A[{X) comme étant l'image de par
l'application j~l o hx ° y.

Avec les notations du lemme 2, on pose

<pUs)
duseJ(t)

dX x o

(Pg vérifie i) d'après ce lemme. De plus, comme j est une isométrie, on a

d'après le lemme 3,

cosh(s)
(p, O)

cosh rl(t)
où d[(s) est la distance à l'origine du centre du cercle de {)
correspondant au sommet s. Déjà, lim8^0 cosh rse (t) 1 d'après le point iii) de

la proposition du IV.
Notons 6 la distance de 0 à j(K'), et o,o' les centres des cercles de

g) images par j de deux cercles tangents de correspondants aux

sommets s et s' de Sf.
Alors les longueurs d[(s) et d[(s') des côtés Oo et Oo' du triangle (Ooo')

sont minorées par 8 > 0 tandis que la longueur rse(t) + rse'(t) du côté gg'
tend vers 0 avec 8 uniformément en t. On en déduit

coshers) (p
lim — s= 1 d ou lim — 1

s^o coshtfeCO 8->o (p8(s')

la limite étant uniforme en t, ce qui prouve le point ii).

VI. Inégalité de Harnack

Le but de cette section est de terminer la preuve du théorème de Rodin-
Sullivan en démontrant la

Proposition (Inégalité de Harnack). Soit K un compact d'intérieur
non vide contenu dans % et A,B deux réels vérifiant 0 < A < B.

~ o
Pour tout compact K d'intérieur non vide contenu dans K, il existe

une constante C C{K) possédant la propriété suivante:
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