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V. CHANGEMENT DE VARIABLE

L’objet de cette section est de ramener 1’étude de u. € RS qui est

solution d’une équation de Schrodinger discréte, a celle d’une fonction
harmonique sur S;, solution d’un probléme de Dirichlet. Le point de départ

de cette réduction est le

LEMME 1. Soit ¢:S8;—> R une solution d’une équation de Schrodinger
discréte du type (A+V)p=0 ou V:S;—=R, et (Ap)(s) = c,0(5)
+ Y Csr@(s"), Vsel, avec c¢;>0, ¢ <0, ¢ =cC5ry et Vsel,
cs+ Y Cssr=0. Soit @¢:S. = R* une autre fonction vérifiant

s’ ~s

(A + V)opo = 0.

Alors la fonction ¥ = ¢/¢, est solution de AY = 0, ou 'opérateur
A est donné par AY(s) = c;VY(s) + ¥ co¥(s'),; les coefficients c;

s'~s

et cCs Vérifient les mémes propriétés que les ¢, et c,o et sont donnés

par: Cso = 0o(S) Qo(s") Cssr.

Preuve du lemme 1. Elle est élémentaire: sachant que (A + V) (¢oP) = 0,
onaVsel,,

cs00()P(S) + T s o(s)E() + V()0o()¥(s) =0. (%)

s’ ~s

Comme (A + V)py=0, on a
CsPo(s) + V() o(s) = — ) ¢ @o(s”)

s’ ~s

(), ¥ s @o(s)[P(s) —¥(s)] =0, d’ou

s’ ~s

d’ou, en reportant dans

Css' Qo (8) Po(s) et cs= — ¥ Cor @o(s)Po(s), ce

[l

s’ ~s

A¥(s) = 0 avec Cogr =
qui prouve le lemme 1.

Pour appliquer ce lemme & ¢ = u, et a I’opérateur Ay + V obtenu a
la section III, il faut maintenant construire une solution explicite @,. Voici

un proceédé général:

LEMME 2. Soit 2#.(\),\L €] — a,a] une déformation continiiment
dérivable de I’empilement ¢, telle que #'(0)= ¢ b,oet uga(0)
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€ [0, + =[5: la fonction définie sur S, associée aux rayons de [’empi-
lement 27 ()).
d”e A

Alors ona (AS'+ V) ,_,=0.

Preuve du lemme 2. Soit F:R% x R’ — R la fonctionnelle cons-
truite par Yves Colin de Verdiére dans [CV] et évoquée a la section III.
Puisque pour tout A €] — o, a[, 2. (L) est un empilement de cercles, on a
d,F(uf,l, ué,x) = 0. En dérivant par rapport a A, il vient:

ey el — a,a[’ Z ( Z aKs[u;,;,k] ) due’x) duz 0.
d.(s

selg |s) <1 Guz dr
En A =0, on a:
0K, (u, du’
Vsel. (ue) (du;, by 0K, (u ) dug "
auz d;\; A=0 s’ ~5s

C’est-a-dire exactement (A} + V) - (%) w_o= 0.

Il reste maintenant a fabriquer une déformation explicite de I’empi-
lement 777 .

En guise de premier essai, on va examiner I’image de I’empilement 5!
par I’homothétie euclidienne de centre O et de rapport 1 + A. Pour une raison
qui sera expliquée plus loin, ca n’est pas cet exemple que nous retiendrons en
définitive. Néanmoins, on peut en dégager certaines informations qui seront
utiles:

LEMME 3. Soit, dans le disque hyperbolique, un cercle C de rayon r
et dont le centre est a distance hyperbolique d > r de [’origine. Soit r,
le rayon (hyperbolique) de l’image de C par [’homothétie euclidienne de
centre 0 et de rapport 1+ A .

Si u, = — Logtanh2, alors = |, _,= — =24

FIGURE 2
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Preuve du lemme 3. Notons a le demi-angle sous lequel le cercle C est
vu du point 0 (cf. fig. 2). D’aprés les formules de trigonométrie hyperbolique
dans le triangle rectangle (voir [B], p. 148), on a

sinh 7 = sina - sinh d (*)

Notons & la distance euclidienne du centre hyperbolique de C a

’origine. On rappelle que d = Logifg et que & = tanhg. On en déduit

. 25
que sinh d = =53, de sorte que:

B 26 1 + 82
>\=0_1—82 ] — &2

d . d( 2(1 +d)6 )
— (sinh A) =
dh

v—o dh\1—(1+2)282
= sinhd - coshd .

En dérivant (*) par rapport & A en A =0, il vient donc, comme a est
constant,

dr . ad . sinh r .
coshr - — = sina X — (sinh d) = - X sinh d - cosh d,

dh 1x=0 di A=0 sinh d

de sorte
1 dr cosh d
sinhr dAlr=o0 coshr
Comme
r + o do du 1 dr coshd

u= _LOgtanhEZSr sinh o on a Hlo = _sinhr‘a 0 = T coshr-* D

Voici le résultat qui, joint a la section suivante, nous permettra de
conclure:

LEMME 4. Soit K un compact de % et Sy [I’ensemble des
sommets de S. dans K. Alors il existe une fonction ¢.:S;—> R*
vérifiant:

(i) A"+ V7)o, =0

£ ’ K / ; e (s
(ii) Vs,s" €S, telsque s’ ~s, ona lim;., 2e ()

Pg(s")

Preuve du lemme 4. On observe tout d’abord qu’il existe un compact K’
du disque hyperbolique tel que si € est assez petit alors pour tout ¢ € [0, 1],
tous les cercles de 27! correspondant a des sommets dans S¥ sont contenus
dans K. Ceci résulte du point iii) de la proposition de la section IV et du fait
que le diamétre combinatoire de 77 é est < %, la constante C ne dépendant
que de %.

= 1.
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Considérons maintenant une isométrie hyperbolique j telle que j(K’) ne
contienne pas 0. Notons %, ’homothétie euclidienne de centre 0 de rapport
1 + A. On définit "emplacement 2] (A) comme étant ’image de 57! par
I’application j~! o A, o J.

Avec les notations du lemme 2, on pose

_dug (1)

t
S .
¢, (s) a0 -

@ vérifie i) d’aprés ce lemme. De plus, comme j est une isométrie, on a
d’aprés le lemme 3,
cosh d. (s)

t
S) =
0:(5) cosh r; (7)

ol d!(s) est la distance a I’origine du centre du cercle de j(#°.) corres-
pondant au sommet s. Déja, lim,_ o coshr;(¢) = 1 d’apres le point iii) de
la proposition du IV.

Notons & la distance de 0 a j(K’), et o,c" les centres des cercles de
j(&#°!) images par j de deux cercles tangents de 27, correspondants aux
sommets s et s de S¥.

Alors les longueurs c?é (s) et c?é (s") des cOtés 0o et 0o’ du triangle (0cc”’)
sont minorées par 8§ > 0 tandis que la longueur r;(¢) + rj'(z‘) du c6té oo’
tend vers 0 avec € uniformément en 7. On en déduit

cosh d’ (s)

t
S
im = =1, dou lim (pf( ) =1
e—0 COShdS(S’) e—0 (DS(S,)

4

la limite étant uniforme en ¢, ce qui prouve le point ii). [

VI. INEGALITE DE HARNACK

Le but de cette section est de terminer la preuve du théoréme de Rodin-
Sullivan en démontrant la

PROPOSITION (Inégalité de Harnack). Soit K wun compact d’intérieur
non vide contenu dans % et A,B deux réels vérifiant 0 < A < B.

Pour tout compact K d’intérieur non vide contenu dans K, il existe
une constante C = C(K) possédant la propriété suivante:
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