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4 A. NITAJ

2. La conjecture abc

Dans cette partie, nous allons rappeler la conjecture abc, ainsi que les

quelques tentatives qui ont été faites pour essayer de la démontrer. La
définition suivante est étroitement liée à la conjecture abc.

Définition 2.1. Soit n un entier non nul On appelle radical de n

et on écrit r{n) le produit

r(n) II p {p premier)
P I n

des facteurs premiers distincts divisant n, avec par convention r(l) 1.

Le radical est quelquefois appelé support, conducteur ou noyau et

vérifie r{n) | n.
Motivés par un théorème de Mason ([10], [20]) sur les polynômes et

par certaines conjectures de Szpiro [31], J. Oesterlé et D.W. Masser

ont formulé en 1985 la conjecture suivante, plus connue sous le nom de

conjecture abc [20]:

Conjecture 2.2. {abc). Pour tout s > 0, il existe une constante

c(s) > 0 telle que pour tout triplet (a,b,c) d'entiers positifsvérifiant
a + b c et (a, b) 1 on ait:

c ^ c{s) (r{abc)) 1 + 8

Une première analyse de l'inégalité de la conjecture abc montre que si

un triplet (a,b,c) d'entiers positifs vérifie a + b c et (a, b) 1, alors

le produit abc est composé de nombres premiers distincts avec pour la

plupart un exposant relativement petit. On peut constater ce fait dans les

tables de factorisation de nombres de la forme an - bn, données à la fin du

livre de H. Riesel (voir [24], pp. 388-437).

Pour s > 0 fixé, la constante c(s) qui lui correspond dans la conjecture

abc peut être unique, en prenant:

(2-3) c(£) inf
(a,b,c)ei (r{abc))l + z

avec I {{a, b, c)eN3, (a, b)1 a + bQuant à la possibilité de

prendre e 0 dans la conjecture abc, la proposition suivante montre que ce

choix n'est pas possible.
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Proposition 2.4. Pour s > 0, soit c(s) la constante définie

par (2.3) vérifiant l'inégalité de la conjecture abc. Alors

lim c(s) + oo
s -» 0

Preuve. On définit les entiers xn et yn par la relation:

x„ + y„]/2 (3 + 2]/2)"

Alors pour tout n^1, 1+2 y2nx2.Sin 2"', on vérifie facilement

par récurrence que 2m + l \yn. Appliquons la conjecture abc à la relation
x2n 1 + ly2n. On obtient pour n 2m:

x2„< c(e) (r(xnyn))1+* < c(s) (xny„/< 2m<1+£>

Alors c(e) > 2m(1 + £Vx2e et donc

lim c(s) ^ 2m
e -»• 0

ce qui montre que lim c(s) + oo.
s -»• 0

Des démonstrations différentes de la proposition 2.4. se trouvent
dans [10] et [20].

Depuis sa formulation en 1985, peu de résultats théoriques ont été

découverts sur la conjecture abc. Il n'existe actuellement que deux théorèmes
la concernant. Les démonstrations de ces deux théorèmes s'appuyent sur
des méthodes utilisant des formes linéaires de logarithmes complexes et

/?-adiques. Nous donnons ici ces deux théorèmes. Leurs démonstrations se

trouvent dans [29] et [30] respectivement.

Théorème 2.5. (Stewart, Tijdeman, 1986). Il existe une constante
effectivement calculable k > 0 telle que, pour tout triplet (a, b, c) d'entiers
positifs, vérifiant a + b c et (a,b) 1 on ait:

c < exp{k(r(abc))15}

Théorème 2.6. (Stewart, Yu, 1990). Il existe une constante effectivement

calculable k > 0 telle que, pour tout triplet (a, b, c) d'entiers
positifs, vérifiant a + b c et (a,b) 1 on ait:

c < çxp{{r(abc))2n + kn°^Xo^ri<abc)}

Remarquons que les inégalités des deux théorèmes ci-dessus sont
exponentielles en r{abc), alors que l'inégalité de la conjecture abc est seulement
polynomiale.
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