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4 A. NITAJ

2. LA CONJECTURE abc

Dans cette partie, nous allons rappeler la conjecture abc, ainsi que les
quelques tentatives qui ont été faites pour essayer de la démontrer. La
définition suivante est étroitement liée a la conjecture abc.

DEFINITION 2.1. Soit n wun entier non nul. On appelle radical de n
et on écrit r(n) le produit

r(ny=I1 p (p premier)

pln
des facteurs premiers distincts divisant n, avec par convention r(l) = 1.

Le radical est quelquefois appelé support, conducteur ou noyau et
vérifie r(n)|n.

Motivés par un théoréeme de Mason ([10], [20]) sur les polynOmes et
par certaines conjectures de Szpiro [31], J. Oesterlé et D.W. Masser
ont formulé en 1985 la conjecture suivante, plus connue sous le nom de
conjecture abc [20]:

CONJECTURE 2.2. (abc). Pour tout € >0, il existe une constante
c(e) > 0 telle que pour tout triplet (a,b,c) d’entiers positifs, vérifiant
a+b=c et (a,b)=1 on ait:

c < c(e) (r(abe))t+=.

Une premieére analyse de I’inégalité de la conjecture abc montre que si
un triplet (a, b, ¢) d’entiers positifs vérifie a + b = ¢ et (a, b) = 1, alors
le produit abc est composé de nombres premiers distincts avec pour la
plupart un exposant relativement petit. On peut constater ce fait dans les
tables de factorisation de nombres de la forme ¢” — b”, données a la fin du
livre de H. Riesel (voir [24], pp. 388-437).

Pour € > 0 fixé, la constante c(g) qui lui correspond dans la conjec-
ture abc peut étre unique, en prenant:

23) () = inf .
. c(e) = in ,
(@, b,c)e1 (r(abe))!*e
avec I ={(a,b,c) e N3, (a,b) =1,a+ b =c}. Quant a la possibilité¢ de
prendre ¢ = 0 dans la conjecture abc, la proposition suivante montre que ce
choix n’est pas possible.
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PROPOSITION 2.4. Pour €>0, soit c(g) la constante définie
par (2.3) vérifiant I’inégalité de la conjecture abc. Alors

lim c(g) = + oo .
e—0

Preuve. On définit les entiers x, et y, par la relation:

Xo + Yal/2 =@ +2)/2)".

Alors pour tout n>1, 1 +2y2=x2. Si n=2", on vérifie facilement
par récurrence que 2”*!|y,. Appliquons la conjecture abc a la relation
x2 =1+ 2y2. On obtient pour n = 2":

X2 < c(e) (r(xaya)) ' +e < c(8) (xaya/2m) 4o < c(g)x, 9/ 2m+e)

Alors c(g) > 2m1+9)/x% et donc

lim c(g) > 27,

e—0

ce qui montre que lirr%) c(e) = + . [
8'—)

Des démonstrations différentes de la proposition 2.4. se trouvent
dans [10] et [20].

Depuis sa formulation en 1985, peu de résultats théoriques ont été
découverts sur la conjecture abc. 1l n’existe actuellement que deux théoreémes
la concernant. Les démonstrations de ces deux théorémes s’appuyent sur
des méthodes utilisant des formes linéaires de logarithmes complexes et
p-adiques. Nous donnons ici ces deux théorémes. Leurs démonstrations se
trouvent dans [29] et [30] respectivement.

THEOREME 2.5. (Stewart, Tijdeman, 1986). [/ existe une constante effec-
tivement calculable k > 0 telle que, pour tout triplet (a,b,c) d’entiers
positifs, vérifiant a+ b =c et (a,b) =1 on ait:

c < exp{k(r(abc))'s}.

THEOREME 2.6. (Stewart, Yu, 1990). I/ existe une constante effecti-
vement calculable k > 0 telle que, pour tout triplet (a,b,c) d’entiers
positifs, vérifiant a+ b =c et (a,b) =1 on ait:

c< exp{(r(abc))2/3+k/loglogr(abc)} _

Remarquons que les inégalités des deux théorémes ci-dessus sont eXpo-

nentielles en r(abc), alors que I'inégalité de la conjecture abc est seulement
polynomiale.
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