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Inserting this into (105), we arrive at

A(n;0Q 1 log q
(log x) ! Z ——£~——2 < — +

< qi(x;0)1re,
nex h2%0M T log,x

Since g, (x;0) is a non-decreasing function of x, this implies (107) and
the proof is thereby completed.

Proof of Corollary 11. Putt(n,0):= Y ,, d®. When f = log, we have
that g,(n) = t(n, 2nv). By lemma 30.2 of [14] we infer that, uniformly for
1<16]< exp)/logx,

1

191 2
Y @0 _ ¥ | cos (38loep) | _ Zlogx + 0(1) .
p<x D pP<X p n

This is proved by partial summation from a strong form of the prime
number theorem. Thus we obtain that we have uniformly for 1 < v < logx

C,(x;log) = (1 —-2/m)log,x + O() .

Inserting this into (105) with 7 = logx and choosing optimally y = n/2,
we obtain

4\ Qm
A(n; f) < &(n) (logyn) (;) pp!

for all £(n) — oo. This implies the required result by a now standard device.

6. METRIC RESULTS

In this last section, we investigate the problem of uniform distribution on
divisors from a further statistical point of view, regarding as random not only
the integer n but also the function f. Thus, we define a measure p on the
set A of all real valued arithmetical function as the inverse image of the
Haar measure on the compact group (R/Z)N by the canonical mapping
f = <f>. In other words, m is characterised by the property that for all

finite families {£;:1 < j < k} of measurable subsets of the torus R/Z
and for all integers n,, n,, ..., ny, we have

k

pifeA:(f(n)eE A<ji<h}= [] ME),

Jj=1
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where A stands for the Lebesgue measure on R/Z. The only basic property
of p that we shall use is the orthogonality relation

1 if = n,
(113) s e(vf(n)—vf(m))du(f)={ s
i 0O if m#+#n.

If an arithmetic function behaves statistically, then one expects that the
Weyl sums

gv(n):: Z e(Vf(d)) ’

d|n

and hence the discrepancy A(n; f), will normally have size roughly |/ t(n).
The purpose of the next theorem is to establish that this is indeed the case.

THEOREM 14. Let &(n)— o. For w -almost all arithmetic func-
tions f, we have

(114) A(n; f) < &(n) (logyn)3(t(n))2  ppl.
Moreover, the exponent % is sharp in this statement.

Proof. The upper bound follows from (24) with y = 2, T = (logx)?,
namely

1 A(n; f)?
S(x; f)i= — ¥ ———
logx n<x 29 p
(115)
< 1 N log, x E IH( P
< - v X; ’
(log x)3 I/ (logx) 1<vsr V
with

= e(vftkm)) |*

me1 m1+02£2(m)

(6:=1/logx) .

o 1 Q (k) 1
H,(x;f):= —
whi= ¥ (2) —

We have H,(x;f) < ZHI(x;f) + ZHE(x;f) where the m-sum is
restricted to m < (logx)? in HI and to m > (logx)? in H%. We note right
away the trivial estimate

Hl(x; f) <)/Togx log, x ,

which follows from (6) by partial summation. We deduce from this and (115)
that

(116) S(x; f) < (logz2x)? + R(x; f),

with
R(x; f) :=

lngx 1 i
- Hj(x; .
|/ log x 1<§:<T \% /)
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Expanding the square and integrating over f with respect to p we get
from (113) that

oo 1 1
1 - - - < 1/(ogx)?.
SAH\,(x,f)dM(f) L Sanps L g < 1/ 00eD)
Hence
(log, x)?
R(x; £)Ap(f) < ————
A (log x)*%

Markov’s inequality thus implies that
p{feA:RQ, f)=21t<1/12 (U=12,..),
so it follows by the Borel-Cantelli theorem, that for w-almost all f we have
R2fH)<1 (U=1,2,..).

In view of (116), we see that the estimate S(2/; f) < (log2/)® holds
p-almost surely in f and uniformly for / > 1. However, using the trivial
bound A(n; f) < t(n), we readily see that

S(x; f)—8SQL5 ) <1 QRI<x<2iH).
This yields that for g -almost all £ and uniformly in x > 3, we have

S(x; f) < (logyx)* ,
which in turn implies (114).
To show that the exponent % is sharp, we simply use (109) with v =1
in the form

47t2§ A(n; f)2dp(f) 2 S | g1(n) [2dp(f) = t(n),
A A
where the equality follows from (113). This plainly implies that there is

no a < such that A(n; f) < t(n)*pp/ for p-almost all f: such a bound
is actually false as soon as t(n) is large enough.

The same quadratic mean approach that we used for Theorem 14 yields
metric results for more restricted classes of arithmetic functions. We quote
without proof the following theorem.

THEOREM 15. The function dr 09 is erd for almost all 0 > 1
and the function d A0? is erd for all 0 >1 and almost all \.
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More precisely, the corresponding discrepancies satisfy
(117) A(n; f) <t(n)/2t°®  ppl,
under the indicated hypotheses, and the exponent % is sharp.

Theorems 14 and 15 together provide an optimal strengthening of
theorem 5 of Dupain, Hall & Tenenbaum [4].
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