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Inserting this into (105), we arrive at

/I X 1 V A(w;0Q) 1 log# ^ / Y.n\-l + 0(l)
(log x) ~ Y, ^ 1

K ë ; £x n2Qw T log2x

Since qx(x\ 0) is a non-decreasing function of x, this implies (107) and

the proof is thereby completed.

Proofof Corollary 11. Put t (n,0): ï,dl„d">. When log, we have

that gv(n) t(n, 2nv). By lemma 30.2 of [14] we infer that, uniformly for
1 < I 0 I ^ exp]/logx,

£
1 HP,8)1_ J,

Icos^eiog^)! 2
logJ + 0(1)

P^X p P^X P 7C

This is proved by partial summation from a strong form of the prime

number theorem. Thus we obtain that we have uniformly for 1 < v < logx

Cv(x; log) (1 - 2/ log2x + O(l)

Inserting this into (105) with T logx and choosing optimally y
we obtain

/ 4\ Q(n)

A(n;f) < ^(n)(\og2n) 1-1 pp/

for all - oo. This implies the required result by a now standard device.

6. Metric results

In this last section, we investigate the problem of uniform distribution on
divisors from a further statistical point of view, regarding as random not only
the integer n but also the function /. Thus, we define a measure |x on the

set A of all real valued arithmetical function as the inverse image of the

Haar measure on the compact group (R/Z)N by the canonical mapping

/ </). in other words, & is characterised by the property that for all
finite families {Ej : 1 ^j^k} of measurable subsets of the torus R/Z
and for all integers ri\, n2,nk, we have

IX {/ e A: </(«,)> Ej (1 sjy < {[
j= i
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where X stands for the Lebesgue measure on R/Z. The only basic property
of ^ that we shall use is the orthogonality relation

Jf 1 if m — n,e(yf(n)-v/(m))dK/) '

n
A 0 if m n

If an arithmetic function behaves statistically, then one expects that the

Weyl sums

gv(n) :£
d I n

and hence the discrepancy A(«;/), will normally have size roughly ]/x{n).
The purpose of the next theorem is to establish that this is indeed the case.

Theorem 14. Let £(«)- oo. For jjl -almost all arithmetic functions

f, we have

(114) A(n; /) < £,(«) (log2 «)3 (x(n))1/2 pp/.

Moreover, the exponent ^ is sharp in this statement.

Proof. The upper bound follows from (24) with y 2, T (logx)2,
namely

1

v A (rvJY
\ogx F 2

(115)
1 log2x 1

+ L -Hv(x~,f),
(logx)3 ]/(logx) io<r v

with

ft"" ' -***"»
2/ k 1 + a

(o : 1/logx)
î i +

We have Hv(x; f) ^ 2h\{x\ f) + 2H\{x\ f) where the m-sum is

restricted to m ^ (log x)3 in h\ and to m > (log x)3 in //J. We note right
away the trivial estimate

H\(x\f) < l/logx log2x

which follows from (6) by partial summation. We deduce from this and (115)

that

(116) S(x\ f) < (log2x)3 + R(x\ f)
with log2x „ 1 tR(x>f):"7== I -//I(x;/).

1/ log X l^v^T V
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Expanding the square and integrating over / with respect to v we get

from (113) thatÎi 1

hUx- f)dix( f) Y Y <l/(logx)2.
A

vi ,J) ^U) tx 2+ ° m>kgx)3 4^)m2 + 2°

Hence

(log 2 x)2
i?(x;/)d|x(/) ^

(log x)5/2

Markov's inequality thus implies that

pif e A:R(2l;f) > 1} < l//2 (/= 1,2,...)

so it follows by the Borel-Cantelli theorem, that for |x-almost all / we have

R{2*\f)<\ (1= 1,2,...)

In view of (116), we see that the estimate S(2l; f) < (log 2/)3 holds

jji-almost surely in / and uniformly for / ^ 1. However, using the trivial
bound A(n; f) ^ x(«), we readily see that

S(x;f) - S(2!;f) < 1 (2^x<2/+1).
This yields that for jx -almost all / and uniformly in x ^ 3, we have

S(*;/M(log2x)3,
which in turn implies (114).

To show that the exponent \ is sharp, we simply use (109) with v 1

in the form

4ti2 I A(n;f)2dv(f) ^ 1 I gi (") |2djx(/) x(n)
Ja JA

where the equality follows from (113). This plainly implies that there is

no a < \ such that A(n; f) < T(n)appl for jx-almost all /: such a bound
is actually false as soon as i(n) is large enough.

The same quadratic mean approach that we used for Theorem 14 yields
metric results for more restricted classes of arithmetic functions. We quote
without proof the following theorem.

Theorem 15. The function d^>Qd is erd for almost all 0 > 1

and the function d^XQd is erd for all 0 > 1 and almost all X.
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More precisely, the corresponding discrepancies satisfy

(117) A(n;f) <x(n)U2 + 0^ pp/,
under the indicated hypotheses, and the exponent \ is sharp.

Theorems 14 and 15 together provide an optimal strengthening of
theorem 5 of Dupain, Hall & Tenenbaum [4].
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