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212 E. LEUZINGER

7 Y — A we set Ag(s) := maop ! (ng(s)) C A. The set Ag(s) is contained
in an “affine” subspace of A of the form a;a.(s)A9* where aja.(s) € A and
A%7% is a q — k-dimensional subgroup of A (see Sections 3 and 4 of [L2)).
We denote the restriction of duy to AY™% by dwvye-r; for k = g we have
A% = ¢ and we set dvs = 1. By Lemma 3.3 we have (for k equal to the
number of elements of @)

Vol (ViE*(s)) < / p(a) L dvy A dug A dvge-x .
p (Hie(s)

Since the horospherical piece H;g(s) is part of a Siegel set S, , with w

relatively compact (and hence of finite volume) in UM we get

/ | p(a)‘ldvy A dvz N dvge—r <
w (Hels)

~ / dvU/\de/ p(a)"ldqu_k </ p(a)”ldqu_k.
w Ap(s) Ao(s)

Also by definition of a Siegel set we have afa) > 7 > 1 for all a € A.
Moreover, the computations in the proof of Lemma 4.1 (and Lemma 3.5) in
[L2] show that for all « € ® one has a(ala*(s)) — ele® with p, > 0.
Hence, as © C A is not empty and since p = ) ., cqe(cq > 0), there is a
uniform constant ¢ > 0 such that p(a)~! < e= for all a € Ag(s). As noted
above the set Ag(s) is contained in a (g — k)-dimensional affine cone in A.
It is similar (in the sense of Euclidean geometry) to Ag(0) with similarity
factor s (see the proof of Lemma 4.1 in [L2]). Hence we eventually get
| Ao (s) Was—r = s9=% and the Lemma follows. [

4. A NEW PROOF OF THE GAUSS-BONNET FORMULA

In this section we present a new simplified proof of the Gauss-Bonnet
theorem for higher rank locally symmetric spaces.

THEOREM 4.1. Let X be a Riemannian symmetric space of noncompact
type and R-rank > 2 and let 1" be an irreducible, torsion-free (non-uniform)
lattice in the group of isometries of X. Then for the locally symmetric space
V =T\X the Gauss-Bonnet formula holds :

x(V) = / Ydv.
14
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Proof. By Proposition 2.2 there is an exhaustion V = Uszo V(s) of V
by Riemannian polyhedra V(s). Each polyhedron V(s) in this exhaustion 18
equipped with the Riemannian metric induced by the one of V. Proposition 1.1
applied to V(s) yields

'(~1)"‘x’ (V(9) — / ¥ dv

V(s)

q
< / |WE || dwk—1 dve(p)
;;L%m

where g = dimA is the Q-rank of G (see Section 2.1) and where the index E
runs through a finite set. As we remarked in Section 1 the function ¥ 1s
locally computable from the components of the metric and the curvature tensor
of V(s) and from the components of the second fundamental form of Vg_k(s)
in V(s). The fact that V is locally symmetric together with Lemma 3.2 thus
implies that |Wg || < 1 for all E, k. Using Lemma 3.4 we conclude that

<Y Vol(ViR(s) < ey 5T
k,E

q
k=1

’(-1)”X’(V(s)) — / Ydv
V(s)

By Proposition 2.3 we have y’ (V(s)) = x(V). The polyhedra V(s) exhaust V

and (V) is an integer; hence (—1)"x(V) = fV(s) Y dv for sufficiently large s.

Finally, for n odd ¥ = 0 by definition (see [AW]) and the claimed formula

follows. [
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