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358 J. LOTT

2. If M is an irreducible noncompact globally symmetric space G/K, with
G = Isom(M) and K a maximal compact subgroup, then one can say more

about the bottom of the spectrum. If rk(G) = rk(K) then Ker (AM> is

infinite-dimensional and the spectrum of /\ is bounded away from zero
otherwise. If rk(G) > rk(K) then Ker(A) =0 and 0 € g(4,) if and only
if

dim(M) B rk(G) — rk(K) dim(M)  rk(G) — rk(K)
2 2 2 + 2
[19, Section VIIB].

Finally, we state a result about uniformly contractible Riemannian
manifolds.

DEFINITION 6 [15, p. 29]. A metric space Z has finite asymptotic dimension
if there is an integer n such that for any r > 0, there is a covering Z = UiEI C;
of Z by subsets of uniformly bounded diameter so that no metric ball of radius
v in Z intersects more than n+ 1 elements of {C;}icr. The smallest such
integer n is called the asymptotic dimension asdim,(Z) of Z.

PROPOSITION 8 (Yu [33]). If M is a uniformly contractible Riemannian
manifold with finite asymptotic dimension then 0 € o(,) for some p.

The proof of Proposition 8 uses methods of coarse index theory [28].

4. VERY Low DIMENSIONS

In this section we show that the answer to the zero-in-the-spectrum ques-
tion is “yes” for one-dimensional simplicial complexes and two-dimensional
Riemannian manifolds.

4.1 ONE DIMENSION

As a one-dimensional manifold is either S' or R, zero is clearly in the
spectrum. '

A more interesting problem is to consider a connected one-dimensional
simplicial complex K. Let V be the set of vertices of K and let E be the set
of oriented edges of K. That is, an element e of E consists of an edge of
K and an ordering (s.,f,) of Je. We let —e denote the same edge with the
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reverse ordering of Oe. For x € V, let m, denote the number of unoriented
edges of which x is a boundary. We assume that m, < oo for all x. Put

C%K) = {f : V — C such that Z;nx1f(x)|2 < 00},

xXev
4.1) CY(K) = {F : E — C such that

F(—e) = —F(e) and %; |Fe)|” < oo} .

Then C%XK) and C'(K) are Hilbert spaces. The weighting used to define
C%K) is natural in certain respects [8].

There is a bounded operator d : C%K) — CY(K) given by (df)(e) =
f(t,) — f(s.). Define the Laplace-Beltrami operators by /Ay = d*d and
A, = dd*. An element of Ker(/\;) is an F € C}(K) such that for each
vertex x the total current flowing into x vanishes, i.e. Zee Eito—x F(e) =0.

The next proposition is essentially due to Gromov [15, p. 236], who proved
it in the case when {m,}.cy is bounded.

PROPOSITION 9. 0 € g(A\g) or 0 € o(A\}).

Proof. As the nonzero spectra of d*d and dd* are the same, for
our purposes it suffices to consider o(4y) and Ker(A;). We argue by
contradiction. Suppose that 0 ¢ o(4y) and Ker(A;) = 0. First, K must
be infinite, as otherwise Ker(£y) # 0. Second, K must be a tree, as if K
had a loop then we could create a nonzero element of Ker(/A\;) by letting a
current of unit strength flow around the loop.

We now show that K has lots of branching. For x,y € V, let [x,y] be

the geodesic arc from x to y and let (x,y) be its interior. Let d(x,y) be the
number of edges in [x,y].

LEMMA 5. There is a constant L > 0 such that if d(x,y) > L then there

s an infinite subtree of K which intersects (x,y) but does not contain x
or y.

Proof. If the lemma is not true then for all N > 1, there are vertices x and
y such that d(x,y) > N but there are no infinite subtrees as in the statement
of the lemma. In other words, the connected component C of K — {x} — {y}
which contains (x,y) is finite. As K is a tree, x is only connected to the

vertices in C by a single edge, and similarly for y (see Fig. 5). Define
f e C%K) by
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42) ()_{1 if veCdC,
' J) = 0  otherwise.
Then

< =
As N can be taken arbitrarily large, this contradicts the assumption that

O%O’(Ao) D

/! N

FIGURE 5

It follows that K contains a subtree K’ which is topologically equivalent
to an infinite triadic tree, with the distances between branchings at most L
(see Fig. 6). We can create a nonzero square-integrable harmonic 1-cochain
F’ on K’ by letting a unit current flow through it, as in Fig. 6. Let F € C'(K)
be the extension of F’ by zero to K. If x is a vertex of K’ then the total
current flowing into x is still zero, as no new current comes in along the
edges of K — K’. Thus Ker(/A\;) # 0, which is a contradiction. [

FIGURE 6
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