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If Y is homotopy-equivalent to RP3#RP® then 7;(Y) is amenable, which
is a contradiction. So we must be in the second case. Using Property 3, we
may assume that ¥ = Y’. Then as Y is prime, it follows from [24, Chapter 1]
that either Y = S' x D? or Y has incompressible (or empty) boundary. If
Y = S! x D? then m;(Y) is amenable. If Y has incompressible (or empty)
boundary then from (21, Theorem 0.1.5], a»(¥Y) < 2 unless Y is a closed
3-manifold with an R?, Rx S? or Sol geometric structure. In the latter cases,
I is amenable. Thus in any case, we get a contradiction. [

The next proposition gives examples of big groups.

PROPOSITION 14.
1. A product of two nonamenable groups is big.
2. If Y is a closed nonpositively-curved locally symmetric space of dimension

greater than three, with no Euclidean factors in Y, then m(Y) is big.

Proof. 1. Suppose that I' =T xI, with I'; and I, nonamenable. Then
I' is nonamenable. Let K; and K, be presentation complexes with fundamental
groups I'; and I, respectively. Put K = K; X K,. Then I' = m(K). Let
AP(IN{), AP(E) _and A[il?;) denote the Laplace-Beltrami operator on p-

cochains on K, K; and K;, respectively, as defined in Subsection 5.2 below.
Then

inf (o (A1(K))) =min(inf (o (A1(K)))) + inf (o (20(K2))),
inf (o (Lo(K))) + inf (0 (L1(K2)))) > 0.

Using Proposition 11, the first part of the proposition follows.

(5.4)

2. If Y is irreducible then part 2. of the proposition follows from the second
remark after Proposition 7. If Y is reducible then we can use an argument
similar to (5.4). [

REMARK. Let I' be an infinite finitely-presented discrete group with
Kazhdan’s property T. From [6, p. 47], H' (I'; () = 0. This implies that
I' is nonamenable and b(lz)(F) = 0. We do not know if it is necessarily true
that (') = co™.

5.2 TwO AND THREE DIMENSIONS

In this subsection we relate the zero-in-the-spectrum question to a question
in combinatorial group theory. Let K be a finite connected 2-dimensional
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CW-complex. Let K be its universal cover. Let C*(INQ denote the Hilbert
space of square-integrable cellular cochains on K. There is a cochain complex

(5.5) 0 — C'K) 2 c'(K) 4 C2(K) — 0.

Define the Laplace-Beltrami operators by Ay = didy, L1 = dod} + did,
and A, = d;d} . These are bounded self-adjoint operators and so we can talk
about zero being in the spectrum of K.

PROPOSITION 15. Zero is not in the spectrum of K if and only if m(K)
is big and x(K) = 0.

Proof. Suppose that zero is not in the spectrum of K. From the analog
of Proposition 11, I' must be big. Furthermore, from Properties 1 and 7,
x(K) =0.

Now suppose that m;(K) is big and x(K) = 0. From the analog of
Proposition 11, 0 ¢ o(4Ay) and 0 ¢ o(A;). In particular, Ker(£y) =
Ker(A;) = 0. From Properties 1 and 7, Ker(A;) = 0. As C*K) =
Ker(A\;) & d; CY(K), we conclude that 0 ¢ o(N,y). O

Let I' be a finitely-presented group. Consider a fixed presentation of
I' consisting of g generators and r relations. Let K be the corresponding
presentation complex. Then x(K) = 1—g+r. Thus zero is not in the spectrum
of K if and only if m;(K) is big and g —r = 1.

Recall that the deficiency def(I') is defined to be the maximum, over all
finite presentations of I', of g —r. If b§2>(r) = 0 then from the equation

(5.6) X(K) =1—g+r=>bI) - b7 ([1) + b (K),

we obtain def(I') < 1. This is the case, for example, when I' is big or when
I" is amenable [5].

As any finite connected 2-dimensional CW-complex is homotopy-
equivalent to a presentation complex, it follows from Proposition 15 that
the answer to the zero-in-the-spectrum question is “yes” for universal covers
of such complexes if and only if the following conjecture is true.

CONJECTURE 1. If I is a big group then def(I') < 0.
REMARK. If 7;(K) has property T then the ordinary first Betti number of

K vanishes [6], and so x(K) = 1+ b,(K) > 0. Thus zero lies in the spectrum
of K.
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Now let Y be a 3-manifold satisfying the conditions of Proposition 1}. If
0Y + @, we define A, on Y using absolute boundary conditions on JY.

PROPOSITION 16. Zero lies in the spectrum of Y.

Proof. This is a consequence of Propositions 11 and 13. [

5.3 FOUR DIMENSIONS

In this subsection we relate the zero-in-the-spectrum question to a question
about Euler characteristics of closed 4-dimensional manifolds.
If M is a Riemannian 4-manifold then the Hodge decomposition gives
(5.7) A(M) = Ker(No) @ A°(M)/ Ker(d),
A (M) = Ker(Ay) & dAY(M) & A'(M)/ Ker(d),
A2(M) = Ker(A,) @ dAYM) & «dAL(M),
A3(M) = x Ker(A)) @ *dA'(M) @ (A (M)/ Ker(d)),
A*(M) = x Ker(Ao) @ *(A°(M)/ Ker(d)).

Thus for the zero-in-the-spectrum question, it is enough to consider Ker(Ay),
Ker(/\)), J(Ao on AY/ Ker(d)), O'(Al on Al/Ker(d)) and Ker(A\,).

Let I" be a finitely-presented group. Recall that I' is the fundamental
group of some closed 4-manifold. To see this, take a finite presentation of
I". Embed the resulting presentation complex in R> and take the boundary of
a regular neighborhood to get the manifold.

Now consider the Euler characteristics of all closed 4-manifolds X with
fundamental group I'. Given X, we have y(X#CP?) = x(X) + 1. Thus it is
easy to make the Euler characteristic big. However, it is not so easy to make
it small. From what has been said,

{x(X): X is a closed connected oriented 4-manifold with
(5.8) mX)=T}={neZ:n>ql)}
for some ¢q(I’). A priori gI') € Z U {—oc0}, but in fact gI) € Z
[17, Theorem 1]. (This also follows from (5.9) below.) It is a basic problem

in 4-manifold topology to get good estimates of g(I').
Suppose that 7;(X) = I'. From Properties 4, 7 and 8 above,

(5.9) X(X) = 26(T) — 2630 + BP(X) .

In particular, if 5{’(I") = 0 then x(X) > 0 and so ¢(T)) > 0. This is the case,
for example, when I' is big or when T" is amenable [5].
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