Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 42 (1996)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: THE ZERO-IN-THE-SPECTRUM QUESTION

Autor: LOTT, John

Kapitel: 5.2 Two and Three Dimensions

DOI: https://doi.org/10.5169/seals-87882

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

If Y is homotopy-equivalent to $\mathbb{R}P^3\#\mathbb{R}P^3$ then $\pi_1(Y)$ is amenable, which is a contradiction. So we must be in the second case. Using Property 3, we may assume that Y=Y'. Then as Y is prime, it follows from [24, Chapter 1] that either $Y=S^1\times D^2$ or Y has incompressible (or empty) boundary. If $Y=S^1\times D^2$ then $\pi_1(Y)$ is amenable. If Y has incompressible (or empty) boundary then from [21, Theorem 0.1.5], $\alpha_2(Y)\leq 2$ unless Y is a closed 3-manifold with an \mathbb{R}^3 , $\mathbb{R}\times S^2$ or Sol geometric structure. In the latter cases, Γ is amenable. Thus in any case, we get a contradiction. \square

The next proposition gives examples of big groups.

PROPOSITION 14.

- 1. A product of two nonamenable groups is big.
- 2. If Y is a closed nonpositively-curved locally symmetric space of dimension greater than three, with no Euclidean factors in \widetilde{Y} , then $\pi_1(Y)$ is big.
- *Proof.* 1. Suppose that $\Gamma = \Gamma_1 \times \Gamma_2$ with Γ_1 and Γ_2 nonamenable. Then Γ is nonamenable. Let K_1 and K_2 be presentation complexes with fundamental groups Γ_1 and Γ_2 , respectively. Put $K = K_1 \times K_2$. Then $\Gamma = \pi_1(K)$. Let $\triangle_p(\widetilde{K})$, $\triangle_p(\widetilde{K}_1)$ and $\triangle_p(\widetilde{K}_2)$ denote the Laplace-Beltrami operator on p-cochains on \widetilde{K} , \widetilde{K}_1 and \widetilde{K}_2 , respectively, as defined in Subsection 5.2 below. Then

(5.4)
$$\inf(\sigma(\triangle_{1}(\widetilde{K}))) = \min(\inf(\sigma(\triangle_{1}(\widetilde{K}_{1}))) + \inf(\sigma(\triangle_{0}(\widetilde{K}_{2}))), \\ \inf(\sigma(\triangle_{0}(\widetilde{K}_{1}))) + \inf(\sigma(\triangle_{1}(\widetilde{K}_{2})))) > 0.$$

Using Proposition 11, the first part of the proposition follows.

2. If \widetilde{Y} is irreducible then part 2. of the proposition follows from the second remark after Proposition 7. If \widetilde{Y} is reducible then we can use an argument similar to (5.4).

REMARK. Let Γ be an infinite finitely-presented discrete group with Kazhdan's property T. From [6, p. 47], $H^1(\Gamma; l^2(\Gamma)) = 0$. This implies that Γ is nonamenable and $b_1^{(2)}(\Gamma) = 0$. We do not know if it is necessarily true that $\alpha_2(\Gamma) = \infty^+$.

5.2 Two and Three Dimensions

In this subsection we relate the zero-in-the-spectrum question to a question in combinatorial group theory. Let K be a finite connected 2-dimensional

366 J. LOTT

CW-complex. Let \widetilde{K} be its universal cover. Let $C^*(\widetilde{K})$ denote the Hilbert space of square-integrable cellular cochains on \widetilde{K} . There is a cochain complex

$$(5.5) \qquad 0 \longrightarrow C^0(\widetilde{K}) \xrightarrow{d_0} C^1(\widetilde{K}) \xrightarrow{d_1} C^2(\widetilde{K}) \longrightarrow 0.$$

Define the Laplace-Beltrami operators by $\triangle_0 = d_0^* d_0$, $\triangle_1 = d_0 d_0^* + d_1^* d_1$ and $\triangle_2 = d_1 d_1^*$. These are bounded self-adjoint operators and so we can talk about zero being in the spectrum of \widetilde{K} .

PROPOSITION 15. Zero is not in the spectrum of \widetilde{K} if and only if $\pi_1(K)$ is big and $\chi(K)=0$.

Proof. Suppose that zero is not in the spectrum of \widetilde{K} . From the analog of Proposition 11, Γ must be big. Furthermore, from Properties 1 and 7, $\chi(K)=0$.

Now suppose that $\pi_1(K)$ is big and $\chi(K)=0$. From the analog of Proposition 11, $0 \notin \sigma(\Delta_0)$ and $0 \notin \sigma(\Delta_1)$. In particular, $\operatorname{Ker}(\Delta_0)=\operatorname{Ker}(\Delta_1)=0$. From Properties 1 and 7, $\operatorname{Ker}(\Delta_2)=0$. As $C^2(\widetilde{K})=\operatorname{Ker}(\Delta_2)\oplus \overline{d_1C^1(\widetilde{K})}$, we conclude that $0 \notin \sigma(\Delta_2)$. \square

Let Γ be a finitely-presented group. Consider a fixed presentation of Γ consisting of g generators and r relations. Let K be the corresponding presentation complex. Then $\chi(K) = 1 - g + r$. Thus zero is not in the spectrum of \widetilde{K} if and only if $\pi_1(K)$ is big and g - r = 1.

Recall that the *deficiency* $def(\Gamma)$ is defined to be the maximum, over all finite presentations of Γ , of g-r. If $b_1^{(2)}(\Gamma)=0$ then from the equation

(5.6)
$$\chi(K) = 1 - g + r = b_0^{(2)}(\Gamma) - b_1^{(2)}(\Gamma) + b_2^{(2)}(K),$$

we obtain $def(\Gamma) \leq 1$. This is the case, for example, when Γ is big or when Γ is amenable [5].

As any finite connected 2-dimensional CW-complex is homotopy-equivalent to a presentation complex, it follows from Proposition 15 that the answer to the zero-in-the-spectrum question is "yes" for universal covers of such complexes if and only if the following conjecture is true.

Conjecture 1. If Γ is a big group then $def(\Gamma) \leq 0$.

REMARK. If $\pi_1(K)$ has property T then the ordinary first Betti number of K vanishes [6], and so $\chi(K) = 1 + b_2(K) > 0$. Thus zero lies in the spectrum of \widetilde{K} .

Now let Y be a 3-manifold satisfying the conditions of Proposition 13. If $\partial Y \neq \emptyset$, we define \triangle_p on \widetilde{Y} using absolute boundary conditions on $\partial \widetilde{Y}$.

PROPOSITION 16. Zero lies in the spectrum of \widetilde{Y} .

Proof. This is a consequence of Propositions 11 and 13. \Box

5.3 FOUR DIMENSIONS

In this subsection we relate the zero-in-the-spectrum question to a question about Euler characteristics of closed 4-dimensional manifolds.

If M is a Riemannian 4-manifold then the Hodge decomposition gives

(5.7)
$$\Lambda^{0}(M) = \operatorname{Ker}(\triangle_{0}) \oplus \Lambda^{0}(M) / \operatorname{Ker}(d),$$

$$\Lambda^{1}(M) = \operatorname{Ker}(\triangle_{1}) \oplus \overline{d\Lambda^{0}(M)} \oplus \Lambda^{1}(M) / \operatorname{Ker}(d),$$

$$\Lambda^{2}(M) = \operatorname{Ker}(\triangle_{2}) \oplus \overline{d\Lambda^{1}(M)} \oplus *\overline{d\Lambda^{1}(M)},$$

$$\Lambda^{3}(M) = * \operatorname{Ker}(\triangle_{1}) \oplus *\overline{d\Lambda^{0}(M)} \oplus *(\Lambda^{1}(M) / \operatorname{Ker}(d)),$$

$$\Lambda^{4}(M) = * \operatorname{Ker}(\triangle_{0}) \oplus *(\Lambda^{0}(M) / \operatorname{Ker}(d)).$$

Thus for the zero-in-the-spectrum question, it is enough to consider $\operatorname{Ker}(\triangle_0)$, $\operatorname{Ker}(\triangle_1)$, $\sigma(\triangle_0 \text{ on } \Lambda^0/\operatorname{Ker}(d))$, $\sigma(\triangle_1 \text{ on } \Lambda^1/\operatorname{Ker}(d))$ and $\operatorname{Ker}(\triangle_2)$.

Let Γ be a finitely-presented group. Recall that Γ is the fundamental group of some closed 4-manifold. To see this, take a finite presentation of Γ . Embed the resulting presentation complex in \mathbf{R}^5 and take the boundary of a regular neighborhood to get the manifold.

Now consider the Euler characteristics of all closed 4-manifolds X with fundamental group Γ . Given X, we have $\chi(X\#\mathbb{C}P^2)=\chi(X)+1$. Thus it is easy to make the Euler characteristic big. However, it is not so easy to make it small. From what has been said,

(5.8)
$$\{\chi(X): X \text{ is a closed connected oriented 4-manifold with}$$

$$\pi_1(X) = \Gamma\} = \{n \in \mathbf{Z} : n \ge q(\Gamma)\}$$

for some $q(\Gamma)$. A priori $q(\Gamma) \in \mathbf{Z} \cup \{-\infty\}$, but in fact $q(\Gamma) \in \mathbf{Z}$ [17, Theorem 1]. (This also follows from (5.9) below.) It is a basic problem in 4-manifold topology to get good estimates of $q(\Gamma)$.

Suppose that $\pi_1(X) = \Gamma$. From Properties 4, 7 and 8 above,

(5.9)
$$\chi(X) = 2b_0^{(2)}(\Gamma) - 2b_1^{(2)}(\Gamma) + b_2^{(2)}(X).$$

In particular, if $b_1^{(2)}(\Gamma) = 0$ then $\chi(X) \ge 0$ and so $q(\Gamma) \ge 0$. This is the case, for example, when Γ is big or when Γ is amenable [5].