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THEOREM 6.9. 'V is simple.

Proof. Suppose N is a nontrivial normal subgroup of Vi, and let
0: Vi — Vi/N be the quotient homomorphism. Then there is an element
g € Vi with g # 1 and 60(g) = 1. By Lemmas 5.6.ii), 5.6.iv), 6.7,
6.8.i) and Theorem 5.7 we have g = prC"g~! for some positive elements
p and ¢, some integers m,n with 0 < m < n + 2, and some element
7 € II(n). Then O(wC™) = O(p~'q). Lemma 6.8.ii) implies that mC has
finite order, say, k. Furthermore the subgroup of V; generated by A and B
is torsion-free because it maps injectively to F C V by Theorem 3.4. Hence
either (p7'g)* # 1 and 0((p~'g)*) =1 or 7C™ # 1 and O(xCT) = 1.
Suppose that 7C7" # 1 and O(nC?) = 1. If m = 0, then © # 1 and
0(m) = 1. This implies that 6(my) = 6(m;), and hence by Lemma 6.5 that
0(moCa) = O(Cymry) = O(Camop) = O(mom1C3). But then (w;Cy) = 1, so we may
assume that m > 0. Next suppose that m > 0. Then 7wCI' = TXnt1-mCriy 1
by Lemma 5.6.ii1). Lemma 6.4 implies that there exists a nonnegative integer
i and 7" € Il(n + 1) such that 7C;} = X;n'C}" ;. Thus we are in the above
case in which (p™'¢)* # 1 and 6((p~'g)*) = 1.

In each case there is an element £ € V| such that h £ 1, 8(h) = 1, and h
can be represented as a word in A*!, B!, and C*!. Let a: T; — V;/N be
the homomorphism defined by a(A) = 6(A), a(B) = 0(B), and «(C) = 6(C).
Then there is an element A € T; with A’ # 1 and «(h’) = 1. Since
T, is simple by Theorem 5.8, 0(A) = 6(B) = 6(C) = 1. Because 7; and
7; are conjugate via a power of A, 0(m;) = 0(m;) for all nonnegative
integers [ and j. By Lemma 6.6.11) with £k = 1, m = 2 and n = 2,
0(1) = 0(C3my) = O(mom C3) = O(momy), and hence O(mp) = 1. This implies
that the quotient group is trivial. [

§7. PIECEWISE INTEGRAL PROJECTIVE STRUCTURES

The definition of piecewise integral projective structures is due to
W. Thurston. These structures arise naturally on the boundaries of Teichmiiller
spaces of surfaces. The interpretations of F and T as groups of piecewise
integral projective homeomorphisms are also due to Thurston; we learned this
from him in 1975. Greenberg [Gr] used this interpretation in his study of
these groups.

Fix a positive integer n.
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The symbol /A, denotes the n-simplex {(x1,...,%n41) € R+
E?;Lll x; =1 and x; > 0 for all i}. The n-simplex /\, is an orientable n-
manifold with boundary. A rational point of A\, is apoint (x, ... ,Xn+1) € Py
with each x; € Q.

Set RV = {(x1,... ,xp1) € R iy > 0 for i = 1,...,n+ 1},
One defines p : R%\ {0} — A, using the projective structure of R™™1;
that is, p(x) = 77, where |x| = S x|, Let U € A,. A function
f: U — A, is integral projective if there exists A € GL(n + 1,7Z) such
that UC {xe A, :Ax) e RT'} and f=p oAlU. It is easily seen that an
integral projective map is a homeomorphism onto its image.

A rational subsimplex of /\, is a subsimplex of A, in which each vertex
is a rational point; a rational subdivision of A\, 1s a simplicial subdivision in
which each n-simplex is a rational subsimplex. An integral subsimplex of A,
is a subsimplex of A\, which is homeomorphic to A, by an integral projective
map. Similarly, an integral subdivision of A, is a simplicial subdivision of
/\, in which each n-simplex is an integral subsimplex of A,.

A piecewise integral projective (PIP) homeomorphism of A, is a home-
omorphism f: A, — /\, such that there is an integral subdivision & of
A, with f |U integral projective for each simplex o of S. Define PIP(A,)
to be the set of all PIP homeomorphisms of A,. We wish to prove that
PIP(/,) is a group by proving that it is closed under inversion and com-
position. It is easy to see that PIP(A,) is closed under inversion. It is
not immediately obvious that the composition of two PIP homeomorphisms
is a PIP homeomorphism. The stumbling block is whether two integral
subdivisions of 74\, have a common refinement which is an integral sub-
division. According to Exercise 5 on page 15 of [RS] their intersection
is a cell complex which is a common refinement of both, and it is easy
to see that the cells of this intersection complex have rational points as
vertices. Proposition 2.9 of [RS] states that such a cell complex can be
subdivided to a simplicial complex without introducing any new vertices.

Hence to prove that PIP(/\,) is a group it suffices to prove the following
theorem.

THEOREM 7.1.  Every rational subdivision of A, has a refinement that is
an integral subdivision.

Proof. We define the [ift of a rational point x in A, to be the unique
point X in Z"t1 N R’fg“ such that p(x) = x and the greatest common divisor
of the coordinates of x is 1. We define the index of an n-dimensional
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rational subsimplex o of A, as follows. Let vy,... ,v,11 be the vertices of
o. Then the subgroup of Z"™! generated by ;,...,7,4; has finite index
in Z""!'. The index ind(c) of o is by definition this index. Equivalently,
ind(o) = |det(vy,... ,Uy11)|, the absolute value of the determinant of the
matrix whose columns are vy,...,v,r1. It is easy to see that ind(c) = 1 if
and only if o is integral.

The argument will proceed as follows. Let S be a rational subdivision of
A, . Suppose that ¢ is an n-simplex in & with ind(c) > 1. A rational point
v in o will be suitably chosen. We will let 'R be the simplicial complex
obtained from & by starring at v as on page 15 of [RS]. If 7 is an n-simplex
in R which does not contain v, then 7 € §. If 7 is an n-simplex in R
which contains v, then we will prove that ind(7) is less than the index of the
n-simplex in S which contains 7. From this it easily follows that performing
finitely many such starring subdivisions yields a rational subdivision of A,
all of whose n-simplices have index 1, and so this subdivision is integral, as
desired.

So let & be a rational subdivision of A,, and let ¢ be an n-simplex in
S with ind(o) > 1. Let the vertices of o be vy,...,v,+1. Since ind(o) > 1,
there exists ¥ € Z"*! and an integer m > 1 such that mu lies in the subgroup
of Z"t! generated by ¥),...,7,4; but u does not. Let aj,...,a,41 be
integers such that mu = ZH'H a;v;. For every integer { with 1 <i<n+1

i=1

let b; be an integer such that 0 < @; + mb; < m. Then

n+1 n+1
m (l/t 4 Z b,‘/’l\)/,'> = Z(di + mbi)ﬁi ‘
i i=1

Because u is not in the subgroup of Z"*! generated by ¥1,..., V41, it is
impossible that a; + mb; = 0 for i = 1,... ,n+ 1. Reindex if necessary so
that a; +mb; # 0 if i <k and a; +mb; =0 if i > k for some integer k with
1 <k<n+1. The vector w = u + Z?;I b/v; is a positive rational linear
combination of v1,..., v, and so v = p(w) is a rational point of A, which
lies in the open simplex with vertices vy, ... ,v;. Since w € Z"! ﬂR’fl, w
is a positive integer mulitple of v. It follows that v = ZJ].;I c;v; for rational
numbers ci,...,c with 0 <¢; <1.

Now let R be the simplicial complex obtained from S by starring at v.
Let 7 be an n-simplex in R which contains v. Let ¢’ be the n-simplex in
S which contains 7. Then vy,... , v, are vertices of ¢, and so the vertices
of ¢’ have the form vy,... , v, vy, v, . Hence the vertices of 7 have
the form vy, ..., 0% .. Uk, Vpprs--- > Upyp, v for some i € {1,... k}. Thus
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A~

. ~ ~ ~ o~y
ind(7) = |det(vy, ... , Vi, » Uks Ugg1s -+ » ,hL],v)l
= = pe ot o= 5
= [det(V1, .. , Uiy -+ s Uky Vg1 - - Unt1s 2 iV
k
~ = el 5 Nl )
= E c;det(Vy, ... Uiy e v s Uky Vg1 - -+ 9 Upt 15 U
j=1

In the last expression we have a linear combination of k determinants of
which all but one are 0 because the corresponding matrices have two equal
columns. Hence ind(7) = ¢;ind(¢’) < ind(c¢”). This completes the proof of
Theorem 7.1. [

We denote by PIP1(/\,) the subset of PIP(A,) of orientation-preserving
piecewise integral projective homeomorphisms of A,. Then PI PT(A,) is a
group, and is a subgroup of PIP(A,) of index 2.

We next investigate PIPT (/). Let A} be the 1-simplex in R? consisting
of points (¢, 1) with ¢ in the closed interval [0, 1]. The linear automorphism of
R? which maps (1,0) to (1,1) and (0,1) to (0, 1) induces a homeomorphism
from A; to Af. This linear automorphism is given by a matrix in SL(2,Z).
Thus we can “conjugate” the above discussion leading to the definition of
PIPY(A)) to A}: we get a group PIPT(A}]) which is isomorphic to
PIPT(/A}). In so doing, p is replaced by the map p’ that sends (x,y)
to (;%, 1) if y#£0 and to (0,1) if y = 0. An integral projective map for A}
is the composition of p’ and a function induced by a matrix in GL(2,Z). An
integral subsimplex of A} is a subsimplex of A} which is homeomorphic to
A} by a A]-integral projective map.

Now we identify [0,1] with A{ via the map 7 — (#,1). Let a be a
nonnegative integer and let b,c,d be positive integers such that a < b and
¢ < d. Then ged(a,b) = 1 = ged(e,d), 7 < 5, and [%g] is an integral
subsimplex of [0, 1] if and only if ad — bc = —1. Suppose a,b,c,d are as
above such that [4,<] is an integral subsimplex of [0,1]. By definition the
left part of [§,5] is [§, 45| and the right part of [%,5] is [, ¢]. The
left and right parts of [%, ﬂ are integral subsimplices of [0,1]. The tree
of integral subsimplices of [0,1] is the tree 7' with vertices the integral
subsimplices of [0,1] and with edges the pairs (I,J) where I and J are
integral subsimplices of [0, 1] and I is either the left part of J or the right
part of J. An edge (I,J) of 7' is a left edge if I is the left part of J and

is a right edge if I is the right part of J. If we replace each vertex [¢,<]
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of 7’ by the Farey mediant Zj:fl of 7 and 5 and keep the same incidence

relation, then 7’ becomes the Farey tree.

To see that 7' is connected, let a be a nonnegative integer and let b,c,d
be positive integers such that ged(a,b) = 1 = ged(c,d), [§,<] # 10,11,
and [%, 5] is an integral subsimplex of [0, 1]. First suppose that a < c. Let
r=c—a andlet s =d—b. Then —1 = ad—bc = a(b+s)—b(a+r) = as—br,
so as = ar + (b — a)r — 1, which implies that s > r. Furthermore, [%, ﬂ
is an integral subsimplex of [0,1] and [%,<] is the left part of [4,%].
Now suppose that a > c. Let r = a —c and let s = b — d. Then
—1l=ad—-bc=(c+rd—(d+s)c=dr—cs,so cs=rd+1 and s > r.
Furthermore, [g, g} is an integral subsimplex of [0, 1] and [%, 5] is the right
part of [£, €] . If a=c,then a=c=1, b=d+1, and [§,%] is the right
part of [%, %} It follows that 7’ is connected and hence 7’ is an ordered
rooted binary tree.

[0,1]

T

[0,1/2] [1/2,1]

/

[0,1/3] [1/3,1/2] [1/2,2/3] [2/3,1]

)N NS

[0,174] [1/4,1/3] [1/3,2/5] [2/5,172] [1/2,3/5] [3/52/3] [2/3,3/4] [3/4,1]

AWANAWAWAWANAYE

FIGURE 20
The tree 7’ of integral subsimplices of [0, 1]

Now we consider integral projective maps for [0, 1]. It is easy to see that
they are given by linear fractional transformations corresponding to matrices in
GL(22,Z). Let [%, 2] and [%,%] be integral subsimplices of [0,1] as above.
There is a unique integral projective map f: {% 2] — [4,5] with f (%) =1
and f(3) = $. The function f is defined by

_ (eB—ad)+ (ay —ca)
~(df — bt + (by — da)

f®
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as a linear fractional transformation and is given by the matrix

, GG
G- = GHE)-GH)

it follows that f(%FY) = £, and hence f([%,%}g]) = [$, 4] and

B+é b+d’
C\(-"’}’ 1 a+c c . . . . ma
f ([——5 ) 5]) [b T d}. This shows that an integral projective p

B
o a+y a a+c ety a) | Jate E}
A F s s | I = R et

The converse is also true; if

a o+ a a+c nd ‘{a—i—'y 7] . [CH—C c}
‘2 2<% . ' ¢ y
N3 B+rs) b b+d 2 15%5°5|  |pb+ad

are integral projective maps, then they are the restrictions of an integral
projective map ¢ : [%,%] — [4,<]. It follows as in §2 that there is a
bijection between PIP*(/\;) and the set of reduced tree diagrams.

Suppose f,g € PIPT(A), and let (P,Q) and (R,S) be reduced tree
diagrams for f and g. Let Q' be a 7'-tree such that Q C @’ and R C Q'
Then there are 7'-trees P’ and § such that P C P/, S C S, (P',Q)) is
a tree diagram for f and (Q',S’) is a tree diagram for ¢g. Then (P’,S’) is
a tree diagram for gf. This implies that the group structure for PIPT(/\;)
can be determined by the tree diagrams. Since the tree 7 of standard dyadic
intervals is isomorphic, as an ordered rooted binary tree, to the tree 7', this
proves the following.

THEOREM 7.2. F = PIPT(/\)).

We still view S' as [0, 1] with the endpoints identified. A piecewise integral
projective (PIP) homeomorphism of S! is a homeomorphism f: S — S!' such
that there is an integral subdivision S of [0, 1] with f |O integral projective
for each simplex o of S. We denote by PIPT(S') the group of orientation-

preserving PIP homeomorphisms of S'. The proof of Theorem 7.2 also
proves Theorem 7.3.
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THEOREM 7.3. T = PIPT(S").

The three functions in PIPT(S') corresponding to A, B, and C are the
following.

[Ban]
[BieS]

[Bri]
[BriS]
[Brol]

[Bro2]

[Bro3]

[BroG]
[C]

[Da]
[DeV]

A(t) =

( 1
t 0<tr< 5
t 1 ’ - — 2
10 0 S 4 S 2 3r—1 1 <t < 2
—t+1 1 2 J 4t—17 2 — S 3
a0 2 >t< 5 Bl)= —6145 2 3
2r—1 2 —11149° 3 St 4
T :<t< 1
t 3 \ 2[;—]’ % S t S 1
=342 1
—5t+3 0<t< 2
CH=¢ 2= <<
5t=3 2
-1 = =tx|
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