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Proposition (Lemme de Schwarz-Pick discret dans [B-St2]).

i) (monotonie). Si rs ^ r's pour tout sommet frontière s, alors

rs ^ r's pour tout sommet intérieur s. De plus, si rSQ r'SQ pour un

sommet intérieur s0 alors Vs e S, rs r's;

ii) (lemme de Schwarz discret). Si fP est un empilement d'Andreev

(i.e. r's + oo pour s e B) alors rs ^ r's, Vs e S;

iii) (lemme de Pick discret). Si cé" est un empilement d'Andreev
alors la distance entre deux sommets s0 et s{ dans Wr est inférieure
à la distance entre les deux sommets correspondants dans Wf*.

Preuve de la proposition. Prouvons le point i). On réalise la variété

§V, comme le temps 1 d'une déformation {Wr(t) ; t e [0, 1]} de la

variété Wr comme ci-avant, à ceci près que les rayons frontières de Wr(f)
sont définis par

us(t) V(rs(t)) (1 - t)W(rs) + M(r's)

Pour tout t, il existe un opérateur de Schrödinger discret À' + Vt sur
(le 1-squelette de §?) tel que:

'

A'ii(f) + V'ù(t) 0

ùs(t) *F(r^) - *F(rs) si s e B.

Comme ¥ est décroissante, on a us(t) ^ 0, Vs e B. D'après le principe du
maximum pour les opérateurs de Schrödinger on a également ùs(t) ^ 0

pour tout sommet intérieur 5-, donc ^ *F(rs) donc r's ^ rs pour ces

sommets. De plus, rSQ r'SQ pour un sommet intérieur s0 implique
ùSo(t) 0, Vt e [0, 1] donc, d'après le même lemme, ùs(t) 0, Vt, Vs e S

et donc rs r's, Vs e S.

Les points ii) et iii) résultent de (i).

IV. Estimations à priori des rayons

Soit K un compact d'intérieur non vide contenu dans et Sf l'ensemble
des sommets de contenus dans K. On note re (rsE)seSe la collection
des rayons de l'empilement d'Andreev Le but de cette section est
de démontrer la
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Proposition. Il existe trois constantes c1} c2, c3 ne dépendant que
de K et % telles que, si s est assez petit, alors, pour s et
s' g Sf, et t g [0, 1],

l) 1 ^ Tô ^ Cl '

il) JL ^ C2 >

re (0

iU) 71 < re(0 ^ C3£.

Cette proposition a été mise en évidence par Kenneth Stephenson: c'est

le lemme 3 de [Stl] et le lemme de comparaison 8.4.1 de [St2]. Voir aussi

le lemme 8.3.1 de [St3]. Nous en reproduisons ici la démonstration, en

suivant [St2]. Celle-ci est assez technique, et utilise à plusieurs reprises le lemme

de Schwarz-Pick discret de la section précédente. Il faut tout d'abord un

Lemme de distorsion («Distortion Lemma» 8.3.1 de [St2]). Soit
a g ]0, 1 [ et 8 g]0,^[. Soit A le disque ouvert de centre Ç et de

rayon a supposé contenu dans le disque unité. Soit 77 l'ensemble des
in

cercles de rayon s contenus dans À et centrés sur Ç, + 2sZ + 2se 3 Z.
Soit Co le cercle de 77 entré en Ç et C0 le cercle de l'empilement
d'Andreev 77 de 77 dans D correspondant à C0 et supposé centré

en 0.

Alors on a p ^ a
_s64s, où p désigne le rayon euclidien du cercle C0.

Preuve du lemme de distorsion. Il suffit de traiter le cas où Ç 0 et

a= 1, le cas général s'en déduisant aussitôt. Notons 6 77 (resp. 8^0
l'ensemble des cercles du bord de 77 (resp. 77). Soit v77 l'homothétique
de 77 dans l'homothétie (euclidienne) de centre 0 et de rapport v. Soit
Cs un cercle de 877 et Cs, C's les cercles qui lui correspondent dans les

empilements 77 et v77. Notons p5 le rayon euclidien de Cs. Les rayons
euclidiens de Cs et C's sont respectivement s et vç>s. On note enfin rs et

r's les rayons hyperboliques de Cs et C's (le rayon hyperbolique de Cs

vaut + oo). Nous allons démontrer que, lorsque v 1 - 64s, alors r's ^ rs.

Commençons par minorer rs. On observe que §77 est contenu dans

l'anneau {1 - 8s<|z|< 1} sur lequel la densité de Poincaré est minorée

par i _
(12_8e)2> de sorte que l'on a:

2s 2s 1 1 1

" 1 - (1 - 8B)2
~

16e - 64B2
~

8 1 - 4B 8
'

A présent, majorons r's. Comme 8 77 est contenu dans l'anneau

{1 - 8s < | z | < 1}, il en est de même pour 8^ d'après le lemme de
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Schwarz-Pick discret, de sorte que p5 < 4s, donc le rayon euclidien de C's

vérifie vp5 < 4sv. Par ailleurs, C's est contenu dans le disque {| z \ < v} sur

lequel la densité de Poincaré est majorée par en déduit clue

2 _ 2 8s v 8s 1

r' ^ x vp5 ^ x 4sv x ^ -
l — y2 1— v2 1—v 1 + v 1—v 8

si v 1 — 64b

Nous pouvons conclure: si v 1 — 64s, alors pour tout sommet frontière

5, on a r's^rs. D'après le principe de monotonie du lemme de

Schwarz-Pick discret, on a r'0 ^ r0 ou r'0 et r0 désignent les rayons
hyperboliques des cercles C'0 et C0. Ces cercles étant centrés en 0, on a la

même inégalité pour leurs rayons euclidiens, à savoir vp0 ^ £, d'où

s
Po

"̂1 - 64s

qui est bien l'inégalité annoncée.

Le lemme que voici, qui peut paraître surprenant au premier abord, est

vraiment spécifique à la géométrie hyperbolique (voir [B-St2]):

Lemme. Soit, dans le disque de Poincaré, un cercle C de rayon r,
et C Cn, n cercles tangents extérieurement à C, d'intérieurs deux
à deux disjoints, tels que Cj soit tangent à Cj+ j et Cn à Cx.

Alors on a r < \fn.

Preuve du lemme. Le cercle C est contenu dans un polygone géodé-
sique P à n côtés dont les sommets sont les centres des cercles Cx, C„,
donc:

aire(C) < aire(P) ^ (n - 2) tc

et le résultat découle de la formule donnant l'aire d'un disque hyperbolique
en fonction de son rayon: aire(C) 47isinh2 de sorte que

7ir2 471 |-j ^ 471 sinh2 < (n - 2)n < nn

Remarque. L'inégalité optimale est r ^ - Log sin ^ (cf. [B-St3], p. 34

et [M], p. 75).

Preuve de la proposition. Prouvons i). D'après le principe de monotonie
du lemme de Schwarz-Pick, on a Vf e [0, 1], rs& ^ rse(t) ^ rse de sorte qu'il
suffit de comparer les rayons hyperboliques des cercles de et ^8.
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Posons 8 distCK; C\ ^). On applique le lemme de distorsion au disque
À {| z - s | < ô} où 5 est un sommet fixé de Sf. L'ensemble ^ défini
dans l'énoncé du lemme est un sous-empilement de le cercle C0 est ici
le cercle Cse et le cercle C0 est noté C'ss. Le rayon euclidien p^ de ce dernier
cercle vérifie donc

1 2 ô
— ^ ^ — des que s ^
s 0 - 648 ô 128

Revenons aux empilements et Quitte à appliquer une transformation

de Möbius à on peut toujours supposer que Css est centré à

l'origine. Notons p^ le rayon euclidien de Cs&. Comme ^ est un sous-

empilement de l'empilement il résulte du lemme de Schwarz-Pick i)
et ii) que le rayon hyperbolique de est inférieur au rayon hyperbolique de

Cg5. Comme ces cercles sont centrés en l'origine, ceci reste vrai pour leurs

rayons euclidiens. On en déduit:

2e
Ps ^ Ps ^ •

O

Comme Cse est centré en 0 et que rse ^ ]/6 d'après le dernier lemme, on

déduit que rse ^ où a
~

j Par ailleurs, comme s < rs& on a

77 < ' "7" ^ 5(1
!a2) ce fournit une constante cx ne dépendant que

de °à et K.

Prouvons ii). Soit s et s' e S*, t e [0; 1] et b
l _ ^_ —. Dans la

succession d'inégalités qui suit, nous utilisons respectivement: le lemme de

Schwarz-Pick discret; le résultat i) ci-dessus; la comparaison des rayons euclidiens

et hyperboliques de <^8 dans la région {| z \ < 1 - ô} ; le fait que le

rayon euclidien d'un cercle est toujours inférieur à son rayon hyperbolique;
et le principe de monotonie:

rse(t) ^ rse ^ Ci • rse < cx • b • s ^ cx • b • rf ^ cx • b • rse' (t)

de sorte que c2 cx • b convient.

Enfin, prouvons iii). Fixons s e S*, et soit b la constante introduite
ci-avant. On a rs& ^ b8. D'après l'inégalité i), on a: rsz(t) ^ rse ^ cx

- rse ^ Ci • b&. Comme 8 ^ rse ^ rs&(t), on a l'inégalité cherchée avec

c3 Cl • b(= c2).
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