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PROPOSITION (Lemme de Schwarz-Pick discret dans [B-St2]).

7

i) (monotonie). Si ry<r. pour tout sommet frontiere S, alors

! pour tout sommet intérieur s. De plus, si 15 = rs’0 pour un

sommet intérieur s, alors Vse€S,rg=r.;

re S r

ii) (lemme de Schwarz discret). Si ' est un empilement d’Andreev

’

(ie. rl= 4o pour se€B) alors ry<r,,VseS;

S
iii) (lemme de Pick discret). Si ¥’ est un empilement d’Andreev
alors la distance entre deux sommets s, et s, dans O, est inférieure
a la distance entre les deux sommets correspondants dans O, .

Preuve de la proposition. Prouvons le point i). On réalise la variété
Z,, comme le temps 1 d’une déformation {@,(¢); € [0,1]} de la
variété @, comme ci-avant, a ceci prés que les rayons frontiéres de @, ()
sont définis par

us (1) = U(rs(2)) = (L = )P (rs) + 1¥(ry) .

Pour tout ¢, il existe un opérateur de Schrodinger discret A + V' sur &'
(Ie 1-squelette de @) tel que:

{Afz;(r) + Via(t) =0
us(t) = P(r) — ¥(r;) siseB.

Comme ¥ est décroissante, on a u,(¢) < 0, Vs € B. D’aprés le principe du
maximum pour les opérateurs de Schrodinger on a également u,(¢) <O
pour tout sommet intérieur s, donc W(r;) < W(ry) donc r. > r; pour ces
sommets. De plus, r;y=r; pour un sommet intérieur s, implique
us, (1) = 0, V¢ € [0, 1] donc, d’aprés le méme lemme, w,(¢) = 0, V£, Vs € S
et donc ry=r., Vs e S.

Les points ii) et iii) résultent de (i). [

IV. ESTIMATIONS A PRIORI DES RAYONS

Soit K un compact d’intérieur non vide contenu dans %, et SX ’ensemble
des sommets de @, contenus dans K. On~note re = (r;)ses, la collection

des rayons de I’empilement d’Andreev 27°.. Le but de cette section est
de démontrer la
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PROPOSITION. I existe trois constantes c,,c,,c; ne dépendant que
de K et % telles que, si & est assez petit, alors, pour s et
s'eSK, et telo,1],

iii) 033 < ri(t) € cse.

Cette proposition a été mise en évidence par Kenneth Stephenson: c’est
le lemme 3 de [St1] et le lemme de comparaison 8.4.1 de [St2]. Voir aussi
le lemme 8.3.1 de [St3]. Nous en reproduisons ici la démonstration, en
suivant [St2]. Celle-ci est assez technique, et utilise a plusieurs reprises le lemme
de Schwarz-Pick discret de la section précédente. Il faut tout d’abord un

LEMME DE DISTORSION («Distortion Lemma» 8.3.1 de [St2]). Soif
a€l0,1[ et e€]0,5[. Soit A le disque ouvert de centre ( et de
rayon a supposé contenu dans le disque unité. Soit ¢ [’ensemble des
cercles de rayon ¢ contenus dans A et centrés sur ( + 2eZ + 2ee 7.
Soit C, le cercle de ¢ entré en { et (:’0 le cercle de I’empilement
d’Andreev % de ¥ dans D correspondant a C, et supposé centré
en 0.

Alorsona p < =%, ou p désigne le rayon euclidien du cercle éo.

Preuve du lemme de distorsion. 11 suffit de traiter le cas ou { = 0 et
a =1, le cas général s’en déduisant aussitdt. Notons 0% (resp. 6(5)
I’ensemble des cercles du bord de ¥ (resp. & ). Soit vé I’homothétique
de ¥ dans I’homothétie (euchdlenne) de centre 0 et de rapport v. Soit
C, un cercle de 8% et CS, C les cercles qui lui correspondent dans les
empilements % et v%. Notons p, le rayon euclidien de C,. Les rayons
euclidiens de C; et C. sont respectivement € et vp;. On note enfin 7, et
r. les rayons hyperboliques de C; et C; (le rayon hyperbolique de (:‘S
vaut + o). Nous allons démontrer que, lorsque v = 1 — 64¢, alors r, < rs.

Commencons par minorer r,. On observe que 8% est contenu dans

’anneau {1 — 8¢ < |z| < 1} sur lequel la densité de Poincaré est minorée
2

par ;T de sorte que I’on a:
2¢€ 2¢€ 1 1 1
rs 2 = = — > -,
1—-(1-8¢)?2 16e—64e2 8 1 —4g 8

A présent, majorons r.. Comme 8% est contenu dans l’anneau
{1 -8e<]|z|<1}, il en est de méme pour d% d’aprés le lemme de

[ A



EMPILEMENTS DE CERCLES 137

Schwarz-Pick discret, de sorte que p, < 4¢, donc le rayon euclidien de C;
vérifie v, < 4ev. Par ailleurs, C’ est contenu dans le disque {|z| < v} sur
lequel la densité de Poincaré est majoree par 1_2v2' On en déduit que
2 2 8¢ \Y 8¢ 1
< X Vps S—— X 4gv = X < = —

1 —v? 1 —v2 l1-v 14v 1-v 8

siv=1-64e.

Nous pouvons conclure: si v =1 — 64¢g, alors pour tout sommet fron-
tiere s, on a r.<r,. D’aprés le principe de monotonie du lemme de
Schwarz-Pick discret, on a rj < ro ou rg et ro désignent les rayons hyper-
boliques des cercles C; et C,. Ces cercles étant centrés en 0, on a la

méme inégalité pour leurs rayons euclidiens, a savoir vp, < g, d’ou

N

r

’
N

€

S
POST gae

qui est bien I’inégalité annoncée. [

Le lemme que voici, qui peut paraitre surprenant au premier abord, est
vraiment spécifique a la géométrie hyperbolique (voir [B-St2]):

LEMME. Soit, dans le disque de Poincaré, un cercle C de rayon r,
et Cy,...,C,, n cercles tangents extérieurement a C, d’intérieurs deux
a deux disjoints, tels que C; soit tangenta C;., et C, a C.

Alors on a r<|)/n.

Preuve du lemme. Le cercle C est contenu dans un polygone géodé-
sique P a n cotés dont les sommets sont les centres des cercles Cy, ..., C,,
donc:

aire(C) < aire(P) < (n —2)m ,

et le résultat découle de la formule donnant I’aire d’un disque hyperbolique
en fonction de son rayon: aire(C) = 4n sinh? (g) de sorte que

r 2
nr:=4n (5) < 47 sinh? (%) <(n-2mn<nr. U

REMARQUE. L’inégalité optimale est r < — Logsin - (cf. [B-St3], p. 34
et [M], p. 75).

Preuve de la proposition. Prouvons i). D’aprés le principe de monotonie
du lemme de Schwarz-Pick, on a V¢ € [0, 1], r; < ri(z) < 72 de sorte qu’il
suffit de comparer les rayons hyperboliques des cercles de &7, et %&.
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Posons 6 = dist (K; C\ %). On applique le lemme de distorsion au disque
A ={|z—5s|<8} ol s est un sommet fixé de S.. L’ensemble ¥ défini
dans I’énoncé du lemme est un sous-empilement de 77, le cercle C, est ici
le cercle C; et le cercle 60 est noté C.5. Le rayon euclidien p, de ce dernier
cercle vérifie donc

[\

s 1 )
< — << —désquee<—.
€ S — 648 ) 128

Revenons aux empilements 57, et j/g. Quitte a appliquer une transfor-
mation de Mdbius & &7,, on peut toujours supposer que C . est centré a
I’origine. Notons p, le rayon euclidien de éz. Comme % est un sous-
empilement de ’empilement 277, il résulte du lemme de Schwarz-Pick i)
et ii) que le rayon hyperbolique de 62 est inférieur au rayon hyperbolique de
C.*. Comme ces cercles sont centrés en 1’origine, ceci reste vrai pour leurs
rayons euclidiens. On en déduit:

Comme C; est centré en 0 et que 75 < /6 d’aprés le dernier lemme, on
265 \ e]/6 -1 . s

; ou o ="7=—". Par ailleurs, comme € <r; on a
- a eV "+ 1

déduit que r; <]
e 2 P

S 10?2 s TN (1 - g2)

de % et K.

ce qui fournit une constante c¢; ne dépendant que

Prouvons ii). Soit s et s’ eSf, tef0;1] et b= 1_—(5—_—6-)—2- Dans la

succession d’inégalités qui suit, nous utilisons respectivement: le lemme de
Schwarz-Pick discret; le résultat i) ci-dessus; la comparaison des rayons eucli-
diens et hyperboliques de 7, dans la région {|z| < 1 — &8}; le fait que le
rayon euclidien d’un cercle est toujours inférieur a son rayon hyperbolique;
et le principe de monotonie:

ré(t) < ciri<e-b-e<c-b-ri<eb-rl)

€

de sorte que ¢, = ¢; - b convient.

Enfin, prouvons iii). Fixons s € SX, et soit b la constante introduite
ci-avant. On a r; < be. D’aprés Iinégalité i), on a: r.(¢) < ri < c
“r;<c - be. Comme e<r;<r.(t), on a linégalité cherchee avec
cs=c - b(=cy). U
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