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324 A.L. EDMONDS

Now, proceeding inductively, consider the case of k > 1 homology classes.
One of these homology classes, say «y, has a minimal partition C, Dy, in
the sense that C; contains no other C; or D; for j< k. By the preceding
argument we may assume that Ay = A;. One side of A; contains no other
simple closed curves A; or A;. Excise this side to obtain a new planar surface
H containing the remaining simple closed curves. By induction there is a
homeomorphism 4 of H moving A; onto AJ’- for 1 <j<k—1. and mapping
each boundary curve into itself. We can then reinsert the excised domain to
complete the argument.

The results of this section, with the exception of Theorem 5.6 above, hold
mutatis mutandi for compact non-planar surfaces G with boundary, provided
one only considers homology classes given as linear combinations of the
classes represented by the boundary curves. Each such simple closed curve in
the interior of G would separate G. Uniqueness, however, is obstructed by
needing to know the genus of each complementary domain.

6. SUFFICIENCY IN THEOREM 3

Let S C H{(F) denote a finite set of distinct homology classes satisfying
the Intersection Condition, the Summand Condition, and the Size Condition
of Theorem 1, which we wish to represent by pairwise disjoint simple closed
curves. Suppose that the linear span of S has rank n and extract from S n
elements «j,...,q, that form a basis for this span. Now each element -y; in
the remaining subset 7 of S can be expressed as a linear combination

Vi = E €ij -
J
We refer to the ~; as “composite classes.”

LEMMA 6.1. Each coefficient ¢;; in the linear combination ~y; = Zj Eij O
is 1, —1, or O.

Proof. To see this, consider the span of the set consisting of any one
~; together with all a4, k # j. Elementary change of basis operations show
that this span is the same as the span of ¢;«; and the o, k # j. By the
Summand Condition, this span must be a summand, and it therefore follows
that ;; = &1 or 0.
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If card T = m, then the collection of all «; € T can be described by an m
by n matrix M of 0’s, 1’s, and —1’s. Then the proof of Lemma 6.1 extends
to give the following consequence of the Summand Condition.

LEMMA 6.2. Each square submatrix N of M has |detN | < 1.

Proof Let N be a k x k submatrix. Up to relabeling we may
assume that N consists of the ¢;, 1 < i,j < k. Now consider the span

of Yi,..-, Yk, Qka1s- - -5 0. On the one hand, the Summand Condition says
that this span must be a direct summand. On the other hand, the span 18
the same as the span of J1,..., 5k, Qktl,- .-, Qn, Where 53 = > . €504 18
the projection of ~y; into the span of «j,...,ar. But this span is clearly
the direct sum of the span of #i,...,% and of ag41,...,q,. It follows
that the span of #,...,%; is a direct summand of the span of «y,..., .
Standard matrix theory then implies that the determinant of the matrix of
coefficients of #p,...,9 is =1 or 0. But this matrix is the upper left
matrix N.

In what follows here we will assume that F has genus n. By this we
mean that there is a corresponding set of homology classes in a surface of
genus n, and that we may view the given surface as being obtained from the
genus n surface by attaching handles. It is clear that if the homology classes
can be realized in the surface of genus n, then they can be realized in the
given surface. The converse of this statement is also true, but less obvious.
We will prove it in a subsequent section.

We may also assume that we have already represented elements «y, ..., o,
by disjoint simple closed curves elements Ay, ...,A,, by Proposition 4.2. We
attempt to represent the remaining classes in 7, the complement of ay,...,q,

in S. Let F denote F cut open along the A;. Then Fisa?2- sphere with 2n
holes, with orientable boundary consisting of one copy A;" of each A; and
one copy A;” of each A; with its orientation reversed.

By the results in Section 5 we understand completely when a family of
homology classes in F can be realized by pairwise disjoint simple closed
curves. We need to see how to lift the classes in T to realizable class in F.
Now H, (1?) is generated by the classes [A;"] and [A;"] subject to the single
relation Y, ([A] + [A;]) = 0. The natural inclusion of F in F induces a
homomorphism H, (1?7) — H(F) where [Af] — [A;] and [A7] — —[A;]. This
homomorphism maps surjectively onto the subgroup generated by Ay, ..., A,.
Its kernel is generated by terms of the form [A7]+[A;] subject to the single
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global relation Zi([A,?L] + [A7 ]) = 0. We will slightly abuse notation and
suppress the square brackets from such formulas below.

LEMMA 6.3. Any single element v, € T can be realized by a simple
closed curve in F.

Proof. Write 1 = ) . €j;a; as above, with g5; € {0, £1}. By replacing
some of the «; with —o; as necessary, we can assume that v, = Z;c:l Q.
“ AT in F is then represented

The corresponding homology class 4 = =14,

by a simple closed curve, as required.

LEMMA 6.4. If o and oy both have nonzero coefficients in the expansions
of both of 1 and -y, then either €; = €;; and €1, = €y Or €1j = —E2y;
and ey, = —ex. That is, the coefficients either agree or disagree.

Proof. If not, the matrix M representing the ~; has a 2 by 2 submatrix

of the form
1 1
1 -1

up to multiplying rows and/or columns by —1, contradicting the matrix
interpretation of the Summand Condition as given in Lemma 6.2.

For +; € T define its support (with respect to {ay,...,a,}) to be the set
of «; with nonzero coefficient in the expression ~y; = ZJ. g;ja;. Note that up
to relabeling there are just three ways for the supports of v; and v, in T
to relate to one another. The two classes may have nested supports, disjoint
supports, or properly overlapping supports.

LEMMA 6.5. Any two distinct elements vy,v, € T can be realized by
disjoint simple closed curves in F. '

Proof. There are three cases to consider, organized by the relative
placement of the supports. Without loss of generality we can assume that
card supp y; > card supp 7». Then either

(1) supp 2 C supp 71 or
(2) supp yiNsupp 2 =& or
(3) supp 1 Nsupp v2 # & and suppyi N supp v, 7 supp 7z.

As in the proof of Lemma 6.3 we may assume that v; = ZJI.‘ZI Q;.
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‘

In case (1) we may, by Lemma 6.4, assume that -, has the form Zj:l o%
for some ¢ < k. Then the two corresponding classes 71 = Z]I.;lAj*' and
= Zle A;r can be realized disjointly in F as required, by Proposition 5.2.

In case (2) we may assume that v, has the form Zf: y41 @ for some L>k.

Then the two corresponding classes 7 = Zjlle AJ-Jr and 7, = Ef:k 41 A;L can
be realized disjointly in F as required.
In case (3) we may assume, again by Lemma 6.4, that -+, has the form

ZJS-:,. «; for some r < k and s > k. Then the two corresponding classes

N = Z]]le Aj+ and v, = Z;:r A" can be realized disjointly in F as required.

PROPOSITION 6.6. Any three distinct elements vy, Y2, vz in T can be
realized by disjoint simple closed curves in F.

Proof. Once again we organize the analysis according to the relative
positions of the supports of the three homology classes. There are several
cases to consider. In each of several cases we shall normalize the expressions
for the <; in terms of the ;. The operations we will use are permutation
of the -;, permutation of the «;, changing the sign of one or more -;, and
changing the sign of one or more o;.

Suppose that the support of one class is contained in the support of another
class. Without loss of generality we may assume that

k £
Y = Z Q; and Yo = Z ij for some /¢ <k.
j=1 j=1

Now the signs of all coefficients of ~3; involved in +; may be assumed to be
negative, by Lemma 6.4. So we may assume that

v
V3= E —Qy
Jj=u

Then the three preferred lifts

k 14 v
’YAIZZAPL : %ZZA]L , and %:ZAJ.‘
=1 Jj=1

J=u

can clearly be realized disjointly in F . Henceforth we may assume that no one

of the three given homology classes has its support contained in the support
of one of the others.
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If the underlying support of one of the 3 classes, say of -3, is disjoint
from the supports of both of the other two, then this is easy. Realize 43
and 7, as above; then realize the preferred lift 43 of -3, which has support
disjoint from those of 4; and +;.

Suppose now that two classes have disjoint support, but that no homology
class has support disjoint from the supports of both of the other two. Without
loss of generality we may assume that

k ¢
P = Zozj and v = Z Q
j=1

j=k+1
for some ¢ > k+ 1. Now -3 involves some, but not all, of the support
of =, some, but not all, of the support of <, and, perhaps, some terms
not involved in either of 7, or 7,. After permuting basis elements we have
V3 = Z;:r€3jaj+z;l:£+1€3jC¥j, where 2 <r<k—1, k+1<s</{-1.
Now the Summand Condition implies that all e3;, r <j < k, have the same
sign; and all e3;, k+1 <j <, have the same sign. By changing the global
sign of -3 if necessary we may assume that e3; = —1 for r < j < k. Further,
by changing the sign of «;, i > £ as needed we may assume that €3; < 0
for i > £. Thus at this point we have arranged that

k s t
’73:—ZQJZEZC¥J"—ZCKJ'
j=r

j=k+1 Jj=£+1
where 2 <r<k—-1, k+1<s</¥/—1,and /+1<1t<n, and the third
sum might not actually appear at all. If the “—" sign prevails in the formula

for ~s, then the preferred lifts of ~;, 72, and =3 are disjointly realizable in
F as required. On the other hand, if the “4” sign prevails we can reduce
to the previous case by first replacing oy 1, ...,y with their negatives, and
then replacing -, with its negative.

Now we may suppose for the rest of the argument that no two classes
have disjoint support, and that no class has support contained in the support
of one of the other two classes.

For the penultimate case suppose that the intersection of all three supports
is empty. We divide the supports of the -y; three pieces: S;; = supp-y; Nsuppy;
and T; = supp ;—supp y;Usupp v, where {i,j,k} = {1,2,3}. In what follows
we will, for notational simplicity, sometimes identify «; with its index j. Then,
without loss of generality, after changing the signs of various «; as necessary,

we can assume that
= Zai+z&i+z&i-

I€S) €S €T
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Then, replacing «y, by its negative if necessary, and changing the sign of
a;, i € S3 UT, as necessary, and invoking the 2 X 2 Summand Condition,

we can assume that
“/zz—zai—zai-z@i-

IES €873 i€l

Similarly, we can arrange that

D ILE LTS
IE€S13 €S €T3
Now the 3 x 3 Summand Condition tells us that the + sign must prevail

in the expansion of 3. For otherwise the matrix M would contain a 3 X 3

submatrix of the form
1 1 0

-1 0 -1

0o -1 -1
which has determinant —2. Now with all these normalizations, the preferred
lifts of ~;, 72, and 3 are disjointly realizable in F as required.

Finally, at last, we have the case that the intersection of all three supports
is nonempty but that no support set is contained in one of the other supports.
Let §; =suppy;, S; =S5NS;, and Si23 =51 N5 NS # @. Now as always
we can assume one of our homology classes, say <, has all nonnegative
coefficients, i.e., y; = ZjESI aj. Next we can assume by the 2 by 2 Summand
Condition that -, has positive coefficients on Sy, and of course that it has
positive coefficients on S — S12. In particular, then, we have v, = Zje 5, O
Since Sip3 # @, all coefficients of elements of S3 M (S; US,) must have the
same sign, which we may assume is positive. It follows that we may arrange
that v3 = Zje s, @j. In this case the preferred lifts of the +; will not be
disjointly realizable and we have to choose other lifts as follows. For v; we
do use the preferred lift

A=Y

JES)
For ~;, however, we add on to the preferred lift canceling pairs corresponding
to elements of §; — S, and define

EED IR DTS
JES2 JESI =S,
and, finally, for v; we define
= ZA;L + Z (Aj+ +4;7).

JES3 JES|US, -85
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These choices of lifts of the ; to homology classes in F satisfy the conditions
for disjoint realizability given in Section 5. (We emphasize again that the
conditions for realizability in planar surfaces continue to hold for homology
classes in nonplanar compact surfaces with boundary provided the homology
classes in question are all linear combinations of the classes of the boundary
curves.)

The one remaining aspect to consider in the proof of the sufficiency part
of the Theorem 3 is given by the following result.

PROPOSITION 6.7. If rank S < 4, then S can be realized by disjoint simple
closed curves in F.

Proof sketch. We will only outline the proof, which is a tedious case-
by-case check. In light of the preceding results, we may assume that F has
genus 4 and that S consists of «y,...,aq together with 4 or 5 additional
classes ;. We describe the system of ~; by a matrix with 4 or 5 rows and
4 columns, consisting of entries 1, —1, or 0. (Conversely, any such matrix
determines a collection of homology classes which one can try to realize.)
We can normalize each such matrix according to the following principles :
First of all we can arrange that the rows have monotonically nonincreasing
size of support as one goes down the rows. Next, within any collection of
rows with supports of the same size we can assume that the rows appear
in lexicographical ordering according to the alphabet ordering +1, —1, 0.
Next, by changing signs of the elements of § as required we can assume
that the first nonzero element in each row and in each column is +1. A
computer can easily crank out a list of all such matrices in lexicographical
order. (It follows from the Summand Condition that there is at most one
element of length 4 (i.e., involving all 4 classes «;). Similarly, there are at
most 2 elements of length 3. Again this follows from the Summand Condition,
since two elements of length 3 must have two support elements in common
and since the coefficients of the «; appearing in the overlap of the supports
of two classes must all have the same signs. The remaining classes must have
support size 2.) At this point one should check the Summand Condition by
checking that the determinant of every square submatrix is also +1, —1,
or 0 and throw out those that do not meet this condition. Finally, in any
particular case there may be extra symmetries at hand, exchanging pairs of
rows or pairs of columns so as to produce a matrix higher up on our list.
This last step is done by hand. Ultimately in this way we produce a list of |
36 such matrices which one must show are realizable by actually drawing
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an appropriate planar diagram as above. (There is some redundancy in that
some of the 4 by 4 matrices appear as submatrices of 5 by 4 matrices later
in the list.) Although some of the required diagrams were a little difficult to
discover, in the end all 36 were shown to be realizable. As just one example,
here is one of the trickier realizable families :

1 1. 0 O
1 0 1 0
1 0 O 1
o 1 -1 0
o1 0 -1

This corresponds to the family
S = {a, a2, 03, g, ) + 2, 01 + a3, Q1 + Q0 — 03,00 — Q4 f

The following classes on the 4 x 2-punctured sphere lift the five composite
classes :

AT AT AT AT AT + AT AT + AT AT + AT AL +AfF

This collection of classes can be realized by pairwise disjoint simple closed
curves on the punctured sphere, and this realization then descends to give a
realization of the given homology classes.

Discussion of the proof of Theorem 6, an algorithmic solution to the
realizability problem. The results of Section 5 on realizing curves on a
planar surface and of the first part of this Section 6, combine to provide
a finite algorithm for realizing any family of homology classes by pairwise
disjoint simple closed curves. As usual, let S C H;(F) denote a finite set of
distinct homology classes satisfying the Intersection Condition, the Summand
Condition, and the Size Condition of the the Main Theorem, which we wish
to represent by pairwise disjoint simple closed curves. Suppose that the linear
span of § has rank n and extract from § n elements «;,...,q, that form a

basis for this span. Now each element y; in the remaining part of S can be
expressed as a linear combination

i = E €ij &
J

in which we know by Lemma 6.1 that the coefficients satisfy |e;] < 1.
Moreover, we may also assume that we have already represented elements
ap, ..., by disjoint simple closed curves A;, ... , A,, by Proposition 4.2.
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We attempt to represent the remaining classes in 7', the complement of
a,...,0, In S. Let F denote F cut open along the A;. Then F is a 2-
sphere with 2n holes (possibly with some additional handles attached, which
play no role in the present discussion and which can safely be ignored), with
orientable boundary consisting of one copy Al of each A; and one copy
A; of each A; with its orientation reversed. As in Section 5, the relevent
homology B C H| (F) is generated by the homology classes of the boundary
curves. Now the set S of homology classes can be realized by pairwise disjoint
simple closed curves in F' if and only if the classes in 7' can be lifted to a
set T of homology classes in B C H; (F) that can be realized by pairwise
disjoint simple closed curves in F. Now, the classes ~; have infinitely many
pre-images in H, (F), but only finitely many pre-images can be represented by
simple closed curves, since by Lemma 5.1 the coefficients of the classes of
the boundary curves must have absolute value at most 1, and all must have the
same sign. There are only finitely many such lifts of each homology class and
they may all be considered one-by-one for realizability using Proposition 5.3,
which is itself finitely verifiable.

7.  VARIOUS INSTRUCTIVE EXAMPLES

Here we present three interesting examples that point to some of the
difficulties in finding necessary and sufficient conditions for realizability of
a system of homology classes by pairwise disjoint simple closed curves. To
start with we give an example showing that even when a system is realizable
it is possible to get stuck, in the sense that one might realize all but one class
and then have no way to realize the last class so as to be disjoint from the
other curves. In particular, one might have to go back and change the curves
already realized in order to complete the construction.

EXAMPLE 7.1. Non-extendable partial realizations of a realizable family
of homology classes.

Let S = {a,ap, a3, 04,1 + 0,03+, a1 + 0+ a3, +a3+ a4} be a
system of homology classes on a surface of genus 4, in which {a, as, a3, ay}
is part of a standard symplectic basis. One can check that this collection
satisfies all the necessary conditions in the Theorem 1. By Theorem 3, it is
realizable by a system of pairwise disjoint simple closed curves. Explicitly,
we can first realize {a1, s, a3, a4} by standard curves Aj,A;,As, A4 in the
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