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DOUBLE VALUED REFLEXION 43

In particular, it follows that J(w), the elliptic modular function [5], is
real at ®. In each case one has to determine the possible reflections p,
determine their fixed-point sets, and add a suitable 1;.

We consider the rectangular case (1) of the lemma, for application in
the next section. Let

(5.19) w;=1,o,=0=Ii0",n”" >1

be a normalized basis. For a = 1, /, is the real axis, wg =0, or wo = 1,
b=iby,, or b=3;+ib;, 0<by<w®”. In the first case @, =0, or
®, = o, while there is no ®} in the second case. Thus, we have

(5.20) p()=t+ib,, FP(p)={Imt=>by/2} u{Imt= (b, +®")/2}.

For a = —1,/, is the imaginary axis, wo=0 or wy=®, b = b,
or b=>b,+in"/2, 0< b, <1. w;j=0,1 in the first case, and there is
no m, in the second case. We have

(5.21) p(t)= —t+ by, FP(p) ={Ret =b;/2} U{Ret = (b, +1)/2}.
If e, = — 1, then
(522) FP(TI) = {C1/2, (Cl + (01)/2, (Cl + (Dz)/z, (C1 + w; + 0)2)/2} .

If we have g, = + 1, 2¢; € A, c; ¢ A, then 1, has no fixed points. T, is
then the deck transformation of an unbranched covering of another torus.

6. EMBEDDING OF TORI

We turn to the problem of concretely realizing the data of the previous
section in the main case. Given a complex torus I' = C/A, with a pair of
holomorphic involutions induced by

(6.1) Ti(t)=—-t+c¢,i=1,2,

we look for a pair of two-fold branched coverings

(6.2) ni:F—->P,mot,=mn;,i=1,2.
The problem is immediately solved by taking

(6.3) 2i=ni(t)= P(t—-c¢/2),i=1,2,
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where
(6.4) Pt =~ + ) (——1—- - —1—)
12 wen-(op \(1—®)?2 2
i1s the Weierstrass #-function [5], [6]. We set
(6.5) n (1) = (m: (1), m2(2)) -
If n(syg) = n(ty), Sog # ty, then so = —fy + ¢;, mod A. Thus n will be

one-to-one, as a map into P; x P, if we assume
(6.6) c,—Ci A .

To represent m as a map into P, with homogeneous coordinates
C,z1=0,/C0,2,=105/Cy, we again use the sigma function (4.13). We
have [6]

(6.7) Z(t) = —0’logS(t) = — s, A=S()S"(t) - S'(1)?.

S(1)*
Since A(0) = — S’(0)? # 0, we may write 7 as

Co= S(t—c1/2)?>S(t—cy/2)?
(6.8) Ci=A({t—c/2)S(t—cy/2)2
(o= A(t—cy/2)S(t—c1/2)?

The branch points of the map m; are given by (5.22), with w; = 1,
and w, = w. By (6.6) the curve m has no finite singular points. Since m;(¢)
has a pole of order two at ¢ = ¢;/2, i = 1, 2; the plane curve has two cusps
on the line at o corresponding to these two parameter values. Such curves
are considered in [3], for example.

To find the equation G(z,,z,) = 0 of this plane curve, we change the
variable, r = ¢t — ¢,/2, so that G(Z(t), Z(t + ¢)) = 0, where
(6.9) c=(c;—c¢c)/2.
We set
x=Z({t+c),p= Z),p = Z'(),
6.10) ( /)p ,()/{9 (7)
B=Z)B = 7).

The addition theorem and differential equation satisfied by # [6] give

x+p+[3=i(p’—g’
-

2
) , p'2=4p* — g,p — g3
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We rewrite these as

(p,_ B’)Z :A(xsp):plz = B(p) ’

and eliminate p’. This gives

(6.11)  F(x,p)=F(x,p,B,B)=A-B-p"?)?-48"”B=0.

Note that A — B is quadratic in p, and B'? = B(B). Since F is an even
function of B, and # is an even function, changing ¢ to — ¢ shows that
we also have F(p, x) = 0. Since the coefficient of x2 in F is 16(p — B)?2,
we must have

F(x,p) = G(x,p) (p —B)*.
Expanding in powers of p — B gives
F(x,p)=0,0,F(x,p) =0,

G(x,p) = (1/2)8,F(x,B) + (1/6)8,F(x, B) (p — B)

(6.12) )
+ (1/24)8F(x, B) (p — B)? .

After some computation we get

G(z1,22) = (21 = B)* (22— B)* + Bi(z1 — B) (22— B)

(6.13)

+ Ba(z1+ 2, —2B) + B3,
where
(6.14) Bi= —(12B> - &)/2, B, = - B(B),

Bs = (12B2 — g,)> - 3BB(B) .
Next we consider the reality condition (3.11). From (5.9) and (6.4) we get

(6.15) 2(t) = a? P (ai) .

By definition g, = 60G,, g; = 140G5, where [6]

1
O

It follows from (5.9) that G, = a*cGy, so that
(6.16) g2 =a'g,, g3 =a‘g; .

By (5.7) we have ¢ = (¢, —ac, — b + ab)/2, so that a¢ = — c. Hence,
(6.17) BZGZB,Bl =a4l31,[§2=a6[32,[§3=a8[33.
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To satisfy (3.11) we redefine

(6.18) n;(t) =aZ(t—-ci/2),
and set

(6.19) Go(z1,22) = a*G(z,/a,z,/a) ,
so that

(6.20) Go(z1,22) = Go(2,721) -

In summary we have

PROPOSITION 6.1. Let A =C/A have the holomorphic involu-
tions (6.1) intertwined by the anti-holomorphic involution (5.6). Then
(I', p, t;) is realized by the map (6.5), (6.18) onto the quartic curve
Go(z1,22) =0 given by (6.13), (6.14), (6.19). If the fixed-point set of p is
non-empty, then this is the complexification of the real curve Gy(z,z) = 0.

7. A RECTANGULAR LATTICE

We consider the special case of A, p,T; as given in (5.19), (5.6), (6.1),
with

(7.1) a=+1,b=0,co=c,=c]+ic{,c=icy.

From (6.16), (6.15) it follows that g,, g3, B are real, and B’ is purely ima-
ginary. Thus, the coefficients B;,B,,B; of G(zi,z,) are real. With
t=1t"+it", we have

(7.2) FP(p)={t"=0}u{t’ =w"/2},
(7.3) {7 =0 ={t"=c}, n{t" =" /2}={t"=¢c/+0"/2} .

Let us assume that 0 < ¢;" < ®”/2. Then the torus A is divided into
four annuli

A/ ={0<t”"<ci}, Ay ={c/'<t"<w0"/2},
As={0"/2<t"<c{+0"/2}, As={c] +0"/2<t"<w"}.
The fixed points of t; are, by (5.22),

(7.4) c1/2,(c;+1)/2 € Ay,
(7.5) (cir+in"")/2,(c;+1+in")/2 € A;.
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