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In particular, it follows that J(co), the elliptic modular function [5], is

real at co. In each case one has to determine the possible reflections p,

determine their fixed-point sets, and add a suitable ii.
We consider the rectangular case (1) of the lemma, for application in

the next section. Let

(5.19) coi 1, co2 co — /co", co" > 1

be a normalized basis. For a 1, la is the real axis, co0 0, or co0 1,

b ib2, or b \ + ib2, 0 < b2 < co". In the first case C0q 0, or
cog co, while there is no C0q in the second case. Thus, we have

(5.20) p(0 t + ib2, FP{p) {Im t b2/2} u {Im t (b2 + co")/2}

For a - 1, /« is the imaginary axis, co0 0 or co0 co, b bx,
or b bx + zco"/2, 0 ^ bx < 1. C0q 0, 1 in the first case, and there is

no coo in the second case. We have

(5.21) p(0 - ~t + bu FP(p) {Ret by/2} u {Ret (b{ + l)/2}
If Si - 1, then

(5.22) FP(ti) {ci/2, (Ci + c0i)/2, {cx + co2)/2, (c{ + coi + co2)/2}

If we have Si +1, 2cx e A, cx $ A, then %x has no fixed points. Xj is
then the deck transformation of an unbranched covering of another torus.

We turn to the problem of concretely realizing the data of the previous
section in the main case. Given a complex torus F C/A, with a pair of
holomorphic involutions induced by

6. Embedding of tori

(6.1) l(0 - t + ci9 i 1,2

we look for a pair of two-fold branched coverings

(6.2) 71 / : F Pi, 71/ o x/ nh i 1,2

(6.3)

The problem is immediately solved by taking

*) Zi 71/(0 &(t - Ci/2), / 1, 2
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where

(6.4) $»(,) !+ " 1 1

co 6 A - {0} \(t — CO)2 CO"

is the Weierstrass .^-function [5], [6]. We set

(6.5) 7i(0 MO)
If 7t(j0) 71 (/0), s0 ^ t0i then s0 - m°d A. Thus 7i will be

one-to-one, as a map into Pi x Pl5 if we assume

(6.6) c2 - Cj $ A

To represent ji as a map into P2 with homogeneous coordinates
£>, Z\ Çi/Ço, £2 Ç2/Ç0, we again use the sigma function (4.13). We

have [6]

(6.7) .^(0 - a?log5(0 —2 A - S'(02
5(0

Since A(0) — 5'(0)2 1= 0, we may write n as

Co 5(i-c1/2)25(?-c2/2)2
(6.8) Ci A(r — c,/2)5(?- c2/2)2

C2 A(t - c2/2) S(t—Cj/2)2

The branch points of the map tt2 are given by (5.22), with (Oj b 1,

and co2 co. By (6.6) the curve n has no finite singular points. Since M0
has a pole of order two at t cz/2, i 1,2; the plane curve has two cusps

on the line at oo corresponding to these two parameter values. Such curves

are considered in [3], for example.
To find the equation G(z\, Zz) 0 of this plane curve, we change the

variable, t t - C\J2, so that G(M0> Mt + c)) 0, where

(6.9) c (ci — c2)/2

We set

x #0 + c), p M0, p' »

ß= MO, ß'- MO-
The addition theorem and differential equation satisfied by [6] give

ß
1 lP'~P'l'2 /I 3X + p+ ß - — p 2 - g2p ~ gl

(6.10)

4 U-ß



DOUBLE VALUED REFLEXION 45

We rewrite these as

(P' - ß')2 A(x,p),

and eliminate p'. This gives

(6.11) F(x,p) F(x,p, ß, pr) (A-B- ß'2)2 - 4ß'2£ 0

Note that A - B is quadratic in p, and ß'2 F(ß). Since F is an even

function of ß\ and & is an even function, changing c to - c shows that
we also have F(p,x) 0. Since the coefficient of x2 in F is \6{p - ß)2,

we must have

F(x,p)G(x,p)ß)2

Expanding in powers of p— ß gives

F(x, ß) 0, dpF(x, ß) 0

(6.12)
G(x,p) (1/2 )djF(x,ß)+ (1/6)9 ß) (p - ß)

+ (1/24)9^, ß)(^-ß)2
After some computation we get

tf. 1T> G(Zi,Z2)Zi-ß)2(z2 - ß)2 + ß,(zi - ß) - ß)
(6.13)

+ ß2 (^ 1 + Z2 — 2ß) + ß3

where

(614)
ßi= "(12ß2-g2)/2,ß2= -F(ß),

ß3 - (12ß2 - g2)2 - 3ßF(ß)

Next we consider the reality condition (3.11). From (5.9) and (6.4) we get

(6.15) &{t) a2^(at)
By definition g2 60G2,g3 140G3, where [6]

°«= s -L
co e A - {0} CO

It follows from (5.9) that Gka2kGk, so that

(6-16) §2 a4g2, gi a6g2

By (5.7) we have c (c, - ac1 - b+ 2,so that - Hence,

(6.17) ß ö2ß,ß! ß4ß,, ß2 ßSß2) ß3 a8ß3
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To satisfy (3.11) we redefine

(6.18) 7i/(0 a/A{t - Ci/2)

and set

(6.19) G0(zi,z2) a4G(z\/a,z2/a)

so that

(6.20) G0(zi,Z2) G0(Z2,ZI)

In summary we have

Proposition 6.1. Let A C/A have the holomorphic involutions

(6.1) intertwined by the anti-holomorphic involution (5.6). Then

(T, p, T/) is realized by the map (6.5), (6.18) onto the quartic curve
Go(zi, z 2) 0 given by (6.13), (6.14), (6.19). If the fixed-point set of p is

non-empty, then this is the complexification of the real curve G0(z, z) 0.

7. A RECTANGULAR LATTICE

We consider the special case of A, p, t, as given in (5.19), (5.6), (6.1),
with

(7.1) a =* + 1, b 0, c% Cj c\ + zcj% c - ic
From (6.16), (6.15) it follows that g2, gi, ß are real, and ß' is purely

imaginary. Thus, the coefficients ßi,ß2,ß3 of G(z\,z2) are real. With
t t' + it", we have

(7.2) FP{p) - {t" 0} u {t" - co,V2}

(7.3) i\{t" 0} 0 c"}, 7,\{t" co,V2} {t11 cf + cd"/2}

Let us assume that 0 < c" < co"/2. Then the torus A is divided into
four annuli

Ai' {0 < t" < c"}, A2 {c" < t" < co,,/2}

A3 {co'V2 < t" < c" + co/,/2}, A4 {c" + œ,,/2 < t" < (jL),,}

The fixed points of are, by (5.22),

(7.4) c1/2,(c1 + l)/2 e A \

(7.5) (ci -f- i(ù")/2, (C\ + 1 + /co )/2 g A3
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