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BARBIER'S THEOREM

FOR THE SPHERE AND THE HYPERBOLIC PLANE

by Paulo Ventura AraÜJO

1. Introduction

Curves of constant width are a class of plane curves with surprising

properties, not the least being the very existence of such curves which

are not circles (see ch. 25 of [RT] for an elementary introduction). Also
remarkable is the fact that all curves of the same constant width have

the same perimeter : this is the content of Barbier's theorem (whose original
proof, using probabilistic methods, appears in [B] and is reproduced in [C],

pp. 161-163). Here we investigate how Barbier's theorem generalizes to the

complete, simply connected surfaces of constant curvature K, which we denote

by Sk (thus Sk is the sphere of radius ^ if K > 0 ; the euclidean plane if
K 0 ; and the hyperbolic plane with curvature K if K < 0). The formulas in
our main Theorem B are originally due to Blaschke (for K > 0) and Santalö

(for K < 0), but it seems worthwhile to bring them together using a unified
differential geometric approach.

Curves of constant width are defined as follows. Let 7 be a convex closed
Jordan curve on the euclidean plane, and consider the strips Q bounded by two
parallel lines r0, r\ such that 7 Ç and both tq r\ touch 7 at some point.
We call such sets £2 enveloping strips of 7. There is exactly one enveloping
strip of 7 which is parallel to any given direction. If all enveloping strips of
7 have the same width W then we say 7 has constant width W.

The following lemma gives an alternative characterization of these curves.
For a curve 7 and a point p on it, we let V(p) max {|p — q\ : q e 7}.
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LEMMA A. A simple closed curve 7 is of constant width W if and only

if V(p) W for all p G 7.

This lemma allows us to define curves of constant width in metric spaces
other than the euclidean plane, and in particular we consider them in regular
(differentiable) surfaces endowed with a riemannian metric and associated

intrinsic distance. We prove the following result extending Barbier's theorem

to SK.

THEOREM B ([Bl], [S]). If a curve of constant width W in Sk has

perimeter C and bounds a region of area A then

C H(K, W) {2tr - KA}

where H(K, W) is given by

There exists a generalization for SK of the well-known isoperimetric
inequality for the euclidean plane. It states that if a curve 7 in SK of
perimeter C bounds a region of area A then

(1) C2 > 4ttA-KA2,

and that the equality holds if and and only if 7 is a (geodesic) circle

(see [O] for a proof). From (1) and the above theorem we obtain the following
corollary :

COROLLARY C. If K > 0 (respectively K < 0) then, of all the curves 7
in Sk with the same constant width W, the circle has the least (resp. the

greatest) perimeter. More precisely, we have

r^2ir fVKW\ [ ^ 2tt

r"'v^slnhl—2—'
and equality holds if and only if 7 is a circle.

From Theorem B we see that, for fixed W and K < 0, curves of longer

perimeter enclose larger areas, whereas for K > 0 larger areas correspond

to shorter perimeters. Thus Corollary C can be expressed by saying that, in
all cases, the curve of a given width enclosing the largest area is the circle
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(for K — 0 this follows immediately from combining Barbier's theorem with

the isoperimetric inequality).

If 7 is a curve of constant width W in Sk, we say that p, p £ 7 are

antipodal points if the (intrinsic) distance between them is W, which is to

say that they realize the diameter of 7. We prove a result that was already

known in the case of the euclidean plane (see [HS]) :

Theorem D. If 7 is a curve of constant width W in SK such that every

pair of antipodal points divides 7 into two arcs of equal length (and, in the

case of the sphere, if W < then 7 is a circle.

We must emphasize that, except for Lemma A, proofs are only given for

regular curves, which for us means that they have no corners and the natural

parametrization by arc-length is C°° (or just Ck for big enough k). By the

expedient of using parallel curves, as explained in the next section, we can

extend our results to curves consisting of regular pieces and a finite number

of corners (piecewise regular curves), but further extension does not seem

possible using our methods.

The remainder of this article is organized as follows. In the next section

we discuss curves of constant width in the familiar setting of the euclidean

plane, and prove Lemma A and Barbier's theorem. Our proof of Barbier's
theorem is similar to that in section 1.13 of [St], but we choose to present it
here since the proof we give for S% (K 0) is an elaboration of our proof
for So-

In §3 we consider general oriented surfaces and construct systems of
geodesic parallel coordinates suitable for dealing with our curves, proving
a number of technical results about these coordinates, and also proving
Theorem D. In the last section all pieces are put together to give the proofs
of Theorem B and Corollary C.

2. Curves of constant width in the euclidean plane

We now review some background on convex curves; the basic reference
here is [E]. Given a closed curve 7 Ç R2, a straight line r is called a

supporting line of 7 if r touches 7 at some point and 7 is entirely contained
in one of the closed half-planes bounded by r. One possible characterization
of convex curves is the following : 7 is convex if and only if through every
point of 7 there passes a supporting line of 7. If some boundary line of an
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enveloping strip £2 of 7 touches 7 at the point p then we say £2 is supported
on p (of course £2 is supported on at least two points of 7).

Proof of Lemma A. The diameter of 7 is by definition

Let p0, pi be any two points in 7 realizing its diameter (\po ~P\ \ 22), and

let r0, r\ be the lines through po, Pi which are orthogonal to the segment

P0P1. Then the set bounded by r0, r\ is an enveloping strip of £2 and has

width V.
Now assume 7 has constant width W. We have just shown that W V.

Given p G 7, choose a supporting line ro through p, and let r\ be the other

supporting line parallel to ro, touching 7 at the point q. Then \p — q\ > W
(for the distance between r0 and r\ is W) and hence V(p) > W. But we
also have V > V(p), and from these inequalities we obtain V(p) W.

Now we prove the "if part". Given p G 7, let p G 7 be such that

|p — p| W. Then p, p realize the diameter of 7, and therefore the enveloping

strip £2 orthogonal to pp has width W. If 7 has a well-defined tangent at p
(i.e., if 7 is smooth at p) then £2 is the only enveloping strip supported on p.
Otherwise p is a corner of 7 and the supporting lines at p vary between two
extreme positions, the "left" and "right" tangents rl and rr, which are the

limiting positions of the tangents to 7 at pln and prn as (pln)n> 1 and (prn)n> 1

approach p from the left and from the right, respectively (convexity ensures

that the points at which 7 is smooth are dense in 7).

V max {|p — q\ : p, q G 7} max (P(p) : p G 7}

Figure 1
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To each pln there corresponds a point pln G 7 such that \pln - pln | W

and which is situated along the normal to 7 at pln. Therefore pl limpln is

a point of 7 such that \p -pl\ W and which is on the line through p

orthogonal to rl ; and similarly for a point pr on the line orthogonal to r'. It
follows that the lines through pl and p1 parallel to r/ and r1, respectively,

are supporting lines of 7. Now take an interior point q in the arc plpr of

7 opposite p, and consider any supporting line r of 7 at q : this line r
is parallel to some supporting line through p. Hence every enveloping strip

supported on q must also be supported on p, and it follows that p is the

point of 7 at the maximum distance W from q. Therefore plp' is an arc of

circle with centre p and radius W. Hence all enveloping strips supported on

p have width W.
We have thus shown that all enveloping strips of 7 have width W.

The important point to retain from the proof of Lemma A is that, if we

choose a supporting line r at a point p of a curve 7 of constant width W,
then the perpendicular to r through p intersects 7 at a point p such that

\p — p\ W — i.e., at an antipodal point of p.
For completeness, we observe that if 7 is a simple closed curve such that

V(p) — W for all p on 7 then 7 is convex. For, given p G 7, choose pe 7
such that \p - p\ W : 7 is entirely contained in the closed disk D with
center p and radius W, and the circumference C of D touches 7 at the point

p. Hence the tangent to C at p is a supporting line of 7, and we conclude

that through every point of 7 there passes a supporting line. This means 7
is convex.

If 7 is twice differentiable at p then the preceding argument shows that
the absolute value \k(p)\ of the curvature of 7 at p is not less than ^ (which
is the curvature of C).

For the rest of this section we consider a regular curve 7^) of constant
width W and perimeter £, parametrized by the arc length s. We define 7(5")

for all 5 G R by letting 7(s + C) 7(s), and assume that 7 is traversed in
the counterclockwise direction.

Let ip(s), s G R, be a differentiable determination of the oriented angle
between the positive x-axis and the tangent vector 7/(s). This simply means
that 7/(s) (cos ip(s)y sin p(s)). The tangent vector 7/(s) completes one
counterclockwise revolution as the point j(s) travels once around 7, which
implies that ip(s + C) p(s) + 2n. Since 7 is convex, p is non-decreasing,
so that p'(s) > 0 for all s G R. The signed curvature of 7 at the point 7(G)
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is given by k(s) <p'(s), and so we have

I(2) k(s)ds (f(C) — cp(0) 2ir.

Now define the normal vector n(s) (—sin cp(s), cos ^(»), so that for each

s the pair (y'(s),n(s)) is a positively oriented orthonormal basis of R3. The

following formulas (special cases of Frenet's formulas) are readily verified :

Let us indicate by TJ(y(s)) the antipodal point of y(s). This map n is

an involution of the curve 7, in the sense that II o n is the identity. By the

above discussion we have

which shows that s h-> Yl o y(s) is differentiate. Thus II is an orientation-

preserving diffeomorphism of the curve onto itself (if the orientation were
reversed then n would have a fixed point, which it does not). As in the case

of circle diffeomorphisms, there exists a continuous function /: R — R that

"lifts" n — i.e., that satisfies the equality 1107 70/.

LEMMA E. There exists a diffeomorphism f : R —» R such that

n o 7 (s) 7 0/(5),

f(s + C) =f(s)-\rC

for all s G R. All other liftings of n are of the form f+ n£ for some n G Z.

In the case of circle diffeomorphisms, which is in essence no different from
the one above, this is a standard result, and so we omit the proof of Lemma E.

The uniqueness assertion has, however, some interesting consequences. For

instance, from the equality (HoYl)oy Tloyof yo(f of) it follows that

f of(s) s + nC, since both / of and the identity function are liftings of the

diffeomorphism II o n id.

We now prove Barbier's theorem. By Lemma E, we can rewrite (4) as

70/(5) y(s) + W n(s). Taking the derivative of both sides and using Frenet's

formulas (3) we get

(3) 7"(s) k(s)n(s)j n'(s) —k(s)y\s).

(4) n o y(s) 7(s) + W n(s),

={l-Wk(s)}C(s).
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Since 7'(/(s)) and i(s) are unit vectors pointing in opposite directions, this

implies f(s) W k(s) - 1. Integrating and using Lemma E and (2), we finally

which concludes the proof.

When we allow piecewise regular curves, the antipodal map is no longer

well-defined, let alone being a diffeomorphism — and the above approach fails

to work. Thus so far our proof of Barbier's theorem does not even include

the simplest non-circular curve of constant width : the Reuleaux triangle.

One way to overcome this deficiency is to consider parallel curves. If 7 is

a convex curve then its parallel curve 7d surrounds 7 at a fixed distance d > 0

from it. Assuming 7 has constant width W, 7d has constant width W + 2d.
When 7 is piecewise differentiate then each of its corners is replaced by an

arc of circle with radius d in 7^ ; and jd no longer has corners, possessing a

continuously turning tangent and a continuous, piecewise differentiate angular
determination ipd(s). With minor adaptations, our proof of Barbier's theorem
shows that the perimeter of 7d is given by

have

Figure 2

The Reuleaux triangle with one of its parallel curves

cd 7T(W + 2d)

— and letting d —» 0 we obtain C 7rW as we want.
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3. Geodesic parallel coordinates

In this section we consider an oriented, connected, C°° surface S. For the

sake of simplicity, we assume S is embedded in R3 whenever convenient (of
course the hyperbolic plane cannot be embedded in R3, but our arguments
have a local character, involving only the computation of derivatives; and

there are surfaces in R3 which are locally isometric to the hyperbolic plane).
We consider a regular closed Jordan curve j(s) in S of constant width

W. If C is the perimeter of the curve, we extend 7(5) periodically by setting

7 (s + £) 7(5).
We would like to say that the antipodal point p of p is situated along the

geodesic that cuts 7 orthogonally at p. But some care is necessary, and we
make an extra assumption on 7 :

Standing Assumption (SA). There exists e > 0 such that, for every

p G 7, the restriction of the exponential map expp to

{n£TpS:IMI< W + £}

is a diffeomorphism onto its image.

Condition SA ensures that there is exactly one minimizing geodesic between

any two points of 7, and that 7 is indeed the boundary of some Jordan region
in S. On the hyperbolic plane, SA represents no restriction whatever, whereas

on the sphere of radius it is equivalent to the requirement that W <
— and this is no strong restriction either, for in any case we would have

W < » since the maximum (intrinsic) distance between distinct points on
the sphere is ^ •

CLAIM 1. If a curve 7 of constant width W satisfies SA then the

minimizing geodesic between any pair of antipodal points p, p intersects 7
orthogonally at both p and p.

Proof Take a system of geodesic polar coordinates 0(p, 0) centered at

p. If 7(^0) P then there exists 6 > 0 such that, for s G ]so — 6,so + <5[,

we can write j(s) O(p(s),0(s)j for some differentiate functions p(s),
6(s). Our assumption implies that p(so) W and p(s) < W for all s, and

therefore p'(s0) 0. Hence 7/(s0) 0'{sq)Q>q, which implies that 7 and the

radial (minimizing) geodesic from p to p cut each other orthogonally at p.
Reversing the roles of p and p we show that the intersection at p is also

orthogonal.
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We have just observed that if p, p are antipodal points of 7 then 7 is

inside the geodesic circle C(p, W) of centre p and radius W, and touches it
at the point p. As in the euclidean case, the geodesic curvature of C(p, W) at

p is a lower bound for the geodesic curvature of 7 at p, as we now proceed
to show. We assume that both curves are traversed counterclockwise (i.e., the

Jordan region bounded by 7 is always to our left as we move around 7), and

recall that the coeficients E, F, G of the first fundamental form of 0(p, 0)

are such that E 1 and F 0 (see [dC], p. 287).

CLAIM 2. Let the coordinates of p be p W, 6 — 0$, and denote by
kg{p) and kg(p) the geodesic curvatures at p of 7 and C{p, W), respectively.
Then we have

kg(p)> £<,(/?)
2̂G

(W,0O)

Figure 3

Proof. We can reparametrize 7 in a neighbourhood of p by setting
7(0 <1 ''(pit),#0+1) for f G ]—<5, <5[. Thus p(0) W and, as in the proof of
Claim 1, p{t) attains a maximum at t0, so that p'(0) 0 and p"(0) < 0
The geodesic curvature of 7 at 7(t) is given by

t'<') ih4F(l"<'),°<')>'

where h(£) is the unit vector such that (7ft), n(tfj is a positively oriented
orthogonal basis of T1^S. We have 7/(0) & O#, and therefore rc(0) —O
||7/(0)|[ G, and

kg(p) kgi0)= i(7"(0),-<hp>-

Since 7"(0) p"(0)<ï>p + it follows that
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(5) kg(p) -ip"(0) - ^{®ee,®>-^(<fes,<s>p)

Our calculations also show that the right-hand side of (5) is just kg(p). By
taking the derivative with respect to 9 of the equality (O#, Op) 0, we obtain

(O00,Op) —\Gp — and this, together with (5), proves our claim.

At this point we recall ([dC], p. 289) that in Sk the coefficient G is

given by

2 sin 2(VKp)if K>0;p2if K0; --sinhif <0K K

— and thus in Sk Claim 2 reduces to :

The geodesic curvature kg(s) of a curve of constant width W in Sk is

such that

(6)

where F(K, W) is given by

VKcos{VKW) ^ n— if K > 0;
sin(V^W)

Notice that we do not necessarily have kg{s) > 0 : for K > 0 and

W > the lower bound in (6) is negative. Related to this is the fact that

not all curves of constant width in the sphere are convex (see the remark at

the end of this section).

Now we let n(s) be the unit vector field along 7(s) which is orthogonal
to 7/(,s') and points to the interior of the region bounded by 7, so that

(7f(s), n(s)) is positively oriented. If we travel a distance W along the geodesic

t 1—> exp7(5) (tn(s)) we reach the antipodal point 11(7(5')) of 7(5). In other

words,

(7) n o 7 (s)exp7W (W n(s)).

It is only natural to consider the map tn(s)) where the

minus sign ensures that OF,,^) is positively oriented for small t. This is not

really a parametrization, since it is not injective and may have singularities.
We define the coefficients £, T, Q by

kJs)>F(K,W),

1 „ n V^Kcosh(V=
— if K0 ; 0
W sinhCv^W)
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CLAIM 3. The following equalities hold: S 1; T 0; 0(0, s) — 1

for ail s G R.

Proof For fixed .s-, the curve 1i— Tfiï, s) is a geodesic parametrized with

constant speed ||ft(s)|| m 1, and therefore S 1. The third equality is obvious.

To prove the second one, we observe that ^(0,^) (—n(s), j'(s)) 0 and

that

D*¥
where ——- denotes the covariant derivative of the "velocity" vector field

at
11—* Wfit, s) along the geodesic t i-> ¥0, s) (which is identically zero by the

definition of a geodesic).

In the neighbourhood of any point {t) s) where Q is non-zero, the map
is a true parametrization, and by Claim 3 its coefficients S, J-, Q are

analogous to the coefficients E, F, G of the geodesic polar coordinates. Thus

the proof of Claim 2 shows that, provided Mfiï, s) agrees with the orientation
of S, the geodesic curvature of the curves t constant is given by

Qj_

2Q '

in particular, setting t 0 and using Claim 3, we obtain

(8) (VGUO,s)~kg(s).
There exists a very useful formula for the Gaussian curvature K in terms

of the coefficients of an orthogonal parametrization ([dC], p. 237), which in
this case simplifies to

WQ)„ + KVÇ o.

This formula holds whenever Ç(t,s) ^ 0. Turning our attention to SK,
is then the solution of the differential equation

(9) x"(t) + Kx{t) 0

which, by Claim 3 and (8), satisfies the initial conditions x(0) 1 and
x'(0) kg(s). Thus we find that is given by :

(10) cos(VKt)+ sin(VTr) if /C > 0,
VK

(11) ifK 0,

(12) cosh(v/^r) + sinh(\/^ÄT) if/T<0.V-K
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We are running into trouble here : formulas (10)-(12) may assume negative
values for t ^ 0, and \/Q is necessarily non-negative. However, we must keep
in mind that in any case Q is a differentiate C°° function, as its definition
ensures. The only way to reconcile this with the fact that t y/Q(t,s) is a

solution of (9) whenever Q(t, s) ^ 0 is that Q(t, s) be equal to the square of
formulas (10)-(12) for all (t,s).

Let / be a lifting of the antipodal map n as in Lemma E. We can rewrite
(7) as

70 f(s) V(-W,s).

Taking the derivative of both sides we obtain and

from here we get

(13) [/'(s)]2 S(-W,s).

The reader should now check that inequality (6) yields that, for t — —W,
each of the formulas (10)-(12) is non-positive for all s G R. Since f'(s) > 0,

(13) and the above discussion imply that f'(s) is equal to

(14) &m(VKW) - cosiVKW)
VK

(15) Wkg(s)-1 if ÄT 0,
k lil

(16) -p=L sinh(v^W) - cos^v^ W) if 0.
V-K

Formula (15) was already known from §2. In the next section we use formulas

(14) and (16) to prove Theorem B and Corollary C. As an appetizer we now

prove Theorem D.

Proof of Theorem D. This is a simple consequence of the uniqueness part
of Lemma E. Under our hypothesis, a possible lifting of II is f(s) s+
and therefore f(s) 1 for all s R. Each of the formulas (14)-(16) then

implies that the geodesic curvature kg of 7 is constant. Substituting the

value of kg in (10)-(12) we find that 0 for all s eR. Hence

s ^ T/(— ^W,s) is constant, say equal to p, and therefore 7 is the geodesic

circle C(p, ^W).
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Remark. We have so far excluded from our discussion curves of constant

width ^ on the sphere x2 + y2 z2 (K > 0). Although our methods do

not apply to these curves, they are easily dealt with, being characterized as

the Jordan curves 7 which remain invariant under the isometry g : Sk —> Sk

given by g(x,y,z) — (—x, —y, —z). This map g exchanges the two regions
bounded by 7 in Sk (so these regions have the same area 7?), and also

exchanges the two arcs into which 7 is divided by any pair of antipodal
points (so these two arcs have the same length). Hence Theorem D is not
valid in this case. If we consider (for small d) a parallel curve 7d to 7
then 7 has constant width ^ — 2d. Since 7 has arbitrarily long perimeter
and does not need to be convex, the same applies to 7^ (but the longer the

perimeter of 7, the smaller d must be in order to ensure that 7^ has no
self-intersections).

We have now gathered all the necessary tools, and the proofs of Theorem B
and Corollary C are a simple matter.

Proof of Theorem B. We assume K > 0, the case K < 0 being similar.
Using (14) we have

4. Proof of the main results

c=f(o-m= f>c sin(y/KW) fc
LJo

kg(s)ds-Ccos(VkW),
0

and therefore

by the Gauss-Bonnet theorem.

Proof of Corollary C. First we treat the case > 0. From Theorem B
we see that A < which means that the region we are interested in has
the smallest area of the two regions bounded by 7 in We also assume
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that C < -j=, otherwise C is too large for 7 to be a circle and the desired

inequality holds trivially. Under these conditions inequality (1) is equivalent to

(17) _4< |{2tt-V4Tr2—/T£2}.

Combining Theorem B and (17) we obtain

C > —tan

which is equivalent to

,,m 2?r fVKW\

— and this is the inequality we want. If equality holds in (18) then it also

holds in each of the equivalent inequalities (17) and (1) — and therefore 7
is a circle.

The case K < 0 has a similar (and easier) treatment. We begin by rewriting
(1) in the form

A < —I A/47t2 — K C2 — 27r|,

and then proceed as before.
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