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BARBIER’S THEOREM
FOR THE SPHERE AND THE HYPERBOLIC PLANE

by Paulo Ventura ARAUIO

1. INTRODUCTION

Curves of constant width are a class of plane curves with surprising
properties, not the least being the very existence of such curves which
are not circles (see ch. 25 of [RT] for an elementary introduction). Also
remarkable is the fact that all curves of the same constant width have
the same perimeter : this is the content of Barbier’s theorem (whose original
proof, using probabilistic methods, appears in [B] and is reproduced in [C],
pp. 161-163). Here we investigate how Barbier’s theorem generalizes to the
complete, simply connected surfaces of constant curvature K, which we denote
by Sk (thus Sk is the sphere of radius ﬁ if K > 0; the euclidean plane if
K = 0; and the hyperbolic plane with curvature K if K < 0). The formulas in
our main Theorem B are originally due to Blaschke (for K > 0) and Santal6
(for K < 0), but it seems worthwhile to bring them together using a unified
differential geometric approach. |

Curves of constant width are defined as follows. Let v be a convex closed
Jordan curve on the euclidean plane, and consider the strips £2 bounded by two
parallel lines ro, ri such that v C Q and both ry, r; touch ~ at some point.
We call such sets Q enveloping strips of . There is exactly one enveloping
strip of ~y which is parallel to any given direction. If all enveloping strips of
v have the same width W then we say +~ has constant width W .

The following lemma gives an alternative characterization of these curves.
For a curve ~ and a point p on it, we let D(p) = max {|p — q| : ¢ € 7}.
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LEMMA A. A simple closed curve v is of constant width VW if and only
if D(p) =W for all p €.

This lemma allows us to define curves of constant width in metric spaces
other than the euclidean plane, and in particular we consider them in regular
(differentiable) surfaces endowed with a riemannian metric and associated
intrinsic distance. We prove the following result extending Barbier’s theorem
to Sk.

THEOREM B ([Bl], [S]). If a curve of constant width VW in Sk has
perimeter L and bounds a region of area A then

L=HKW){2r — KA},

where H(K, W) is given by
1 (MEW) W 1 (\/—KW
3 tanh| ————

—1; f K>0;— if K=0; f K <O0.
\/Ean lf >,2lf \/——I<— 2 )lf <

There exists a generalization for Sgx of the well-known isoperimetric
inequality for the euclidean plane. It states that if a curve v in Sg of
perimeter £ bounds a region of area A then

(1) L? > 4n A — KA,

and that the equality holds if and and only if v is a (geodesic) circle
(see [O] for a proof). From (1) and the above theorem we obtain the following
corollary :

COROLLARY C. If K > 0 (respectively K < 0) then, of all the curves
in Sg with the same constant width W, the circle has the least (resp. the
greatest) perimeter. More precisely, we have

£2 (W) g £ 2 a( V)]

and equality holds if and only if v is a circle.

From Theorem B we see that, for fixed W and K < 0, curves of longer
perimeter enclose larger areas, whereas for K > 0 larger areas correspond
to shorter perimeters. Thus Corollary C can be expressed by saying that, in
all cases, the curve of a given width encloSing the largest area is the circle
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(for K = 0 this follows immediately from combining Barbier’s theorem with
the isoperimetric inequality).

If v is a curve of constant width W in Sk, we say that p, p € v are
antipodal points if the (intrinsic) distance between them is W, which 1s to
say that they realize the diameter of . We prove a result that was already
known in the case of the euclidean plane (see [HS]):

THEOREM D. If v is a curve of constant width VW in Sk such that every
pair of antipodal points divides ~ into two arcs of equal length (and, in the
case of the sphere, if VV < %) then ~v is a circle.

We must emphasize that, except for Lemma A, proofs are only given for
regular curves, which for us means that they have no corners and the natural
parametrization by arc-length is C* (or just C* for big enough k). By the
expedient of using parallel curves, as explained in the next section, we can
extend our results to curves consisting of regular pieces and a finite number
of corners (piecewise regular curves), but further extension does not seem
possible using our methods.

The remainder of this article is organized as follows. In the next section
we discuss curves of constant width in the familiar setting of the euclidean
plane, and prove Lemma A and Barbier’s theorem. Our proof of Barbier’s
theorem 1s similar to that in section 1.13 of [St], but we choose to present it
here since the proof we give for Sx (K # 0) is an elaboration of our proof
for Sy.

In §3 we consider general oriented surfaces and construct systems of
geodesic parallel coordinates suitable for dealing with our curves, proving
a number of technical results about these coordinates, and also proving
Theorem D. In the last section all pieces are put together to give the proofs
of Theorem B and Corollary C.

2. CURVES OF CONSTANT WIDTH IN THE EUCLIDEAN PLANE

We now review some background on convex curves; the basic reference
here is [E]. Given a closed curve v C R?, a straight line r is called a
supporting line of ~y if r touches v at some point and ~ is entirely contained
in one of the closed half-planes bounded by r. One possible characterization
of convex curves is the following: ~ is convex if and only if through every
point of ~y there passes a supporting line of ~. If some boundary line of an
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enveloping strip {2 of «y touches ~ at the point p then we say Q is supported
on p (of course € is supported on at least two points of ~).

Proof of Lemma A. The diameter of ~ is by definition

D =max{|p—q|:p,q € v} =max{D(p):p € v}.

Let po, p1 be any two points in  realizing its diameter (|py — p1| = D), and
let o, r; be the lines through py, pi which are orthogonal to the segment
pop1- Then the set bounded by ry, r; is an enveloping strip of € and has
width D.

Now assume ~ has constant width V. We have just shown that W = D.
Given p € vy, choose a supporting line ry through p, and let r; be the other
supporting line parallel to rp, touching  at the point g. Then [p —¢g| > W
(for the distance between ry and r; is W) and hence D(p) > W. But we
also have D > D(p), and from these inequalities we obtain D(p) = W .

Now we prove the “if part”. Given p € v, let p € v be such that
lp — p| = W. Then p, p realize the diameter of -y, and therefore the enveloping
strip Q orthogonal to pp has width W. If v has a well-defined tangent at p
(i.e., if 7y 1s smooth at p) then (2 is the only enveloping strip supported on p.
Otherwise p is a corner of v and the supporting lines at p vary between two
extreme positions, the “left” and “right” tangents r' and r", which are the
limiting positions of the tangents to « at p. and p’ as (pf,l)nzl and (p))n>1
approach p from the left and from the right, respectively (convexity ensures
that the points at which v is smooth are dense in 7).

FIGURE 1
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To each p' there corresponds a point pl €« such that |pfl — ﬁf,‘ =W
and which is situated along the normal to 7 at p,. Therefore p' =limp, is
a point of ~y such that \p — pl‘ — W and which is on the line through p
orthogonal to r'; and similarly for a point p” on the line orthogonal to r”. It
follows that the lines through p’ and p” parallel to r' and 7, respectively,

are supporting lines of . Now take an interior point g in the arc p'p” of
~ opposite p, and consider any supporting line r of v at g: this line r
is parallel to some supporting line through p. Hence every enveloping strip
supported on g must also be supported on p, and it followi that p is the

point of ~y at the maximum distance W from g. Therefore p'p” is an arc of
circle with centre p and radius V. Hence all enveloping strips supported on
p have width W.

We have thus shown that all enveloping strips of v have width W. [

The important point to retain from the proof of Lemma A is that, if we
choose a supporting line r at a point p of a curve ~ of constant width W,
then the perpendicular to r through p intersects v at a point p such that
lp —p| =W — ie., at an antipodal point of p.

For completeness, we observe that if « is a simple closed curve such that
D(p) = W for all p on y then -y is convex. For, given p € 7y, choose p € vy
such that |p — p| = W : v is entirely contained in the closed disk D with
center p and radius W, and the circumference C of D touches  at the point
p. Hence the tangent to C at p is a supporting line of v, and we conclude
that through every point of + there passes a supporting line. This means -y
is convex.

If v is twice differentiable at p then the preceding argument shows that

the absolute value |k(p)| of the curvature of v at p is not less than ﬁ (which
is the curvature of C).

For the rest of this section we consider a regular curve (s) of constant
width W and perimeter £, parametrized by the arc length s. We define ~(s)
for all s € R by letting v(s + £) = v(s), and assume that ~ is traversed in
the counterclockwise direction.

Let ¢(s), s € R, be a differentiable determination of the oriented angle
between the positive x-axis and the tangent vector «/(s). This simply means
that ~/'(s) = (cos »(s), sin cp(s)). The tangent vector ~'(s) completes one
counterclockwise revolution as the point y(s) travels once around -y, which
implies that ¢(s + £) = ¢(s) + 27. Since ~ is convex, ¢ is non-decreasing,
so that ¢'(s) > 0 for all s € R. The signed curvature of ~ at the point v(s)
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is given by k(s) = ¢/(s), and so we have

L
@) / k(s) ds = (L) — (0) = 2r.
0

Now define the normal vector n(s) = (— sin (s), COS (p(s)) , so that for each
s the pair ('y’ (s),n(s)) is a positively oriented orthonormal basis of R?. The
following formulas (special cases of Frenet’s formulas) are readily verified :

3) V'(s) =k(s)n(s),  n'(s) = —k(s)7'(s).

Let us indicate by H(v(s)) the antipodal point of ~(s). This map II is
an involution of the curve <, in the sense that ITo Il is the identity. By the
above discussion we have

“4) IToy(s) = v(s) + Wnls),

which shows that s — IT o y(s) is differentiable. Thus II is an orientation-
preserving diffeomorphism of the curve onto itself (if the orientation were
reversed then IT would have a fixed point, which it does not). As in the case
of circle diffeomorphisms, there exists a continuous function f: R — R that
“lifts” II — 1.e., that satisfies the equality [Toy =y of.

LEMMA E. There exists a diffeomorphism f: R — R such that

ITo~y(s) = v of(s),
fls+L)=f(s)+L
for all s € R. All other liftings of 11 are of the form f+nL for some n € Z.

In the case of circle diffeomorphisms, which is in essence no different from
the one above, this is a standard result, and so we omit the proof of Lemma E.
The uniqueness assertion has, however, some interesting consequences. For
instance, from the equality (Iloll)oy =Ilovyof =yo(fof) it follows that
fof(s) =s+nL, since both fof and the identity function are liftings of the
diffeomorphism Il o Il = id.

We now prove Barbier’s theorem. By Lemma E, we can rewrite (4) as
vyof(s) = v(s)+ W n(s). Taking the derivative of both sides and using Frenet’s
formulas (3) we get

F OV () = {1 = Wk(s)} ' (5).
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Since 7 (f(s)) and +'(s) are unit vectors pointing in opposite directions, this
implies f'(s) = Wk(s)—1. Integrating and using Lemma E and (2), we finally
have

L
L= (L) — F(0) = / £(s)ds
0

c
=L+ W/ k(s)ds = —L +27W,
0
which concludes the proof.

When we allow piecewise regular curves, the antipodal map is no longer
well-defined, let alone being a diffeomorphism — and the above approach fails
to work. Thus so far our proof of Barbier’s theorem does not even include
the simplest non-circular curve of constant width : the Reuleaux triangle.

FIGURE 2

The Reuleaux triangle with one of its parallel curves

One way to overcome this deficiency is to consider parallel curves. If ~ 1s
a convex curve then its parallel curve ~; surrounds ~y at a fixed distance d > 0
from it. Assuming ~ has constant width W, v, has constant width W 4 2d.
When v is piecewise differentiable then each of its corners is replaced by an
arc of circle with radius d in 7, ; and -, no longer has corners, possessing a
continuously turning tangent and a continuous, piecewise differentiable angular
determination @4(s). With minor adaptations, our proof of Barbier’s theorem
shows that the perimeter of v, is given by

,C,d == W(W+2d)

— and letting d — 0 we obtain £ = 7V} as we want.
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3. (GEODESIC PARALLEL COORDINATES

In this section we consider an oriented, connected, C*° surface S. For the
sake of simplicity, we assume S is embedded in R® whenever convenient (of
course the hyperbolic plane cannot be embedded in R?, but our arguments
have a local character, involving only the computation of derivatives; and
there are surfaces in R® which are locally isometric to the hyperbolic plane).

We consider a regular closed Jordan curve (s) in § of constant width
W.If L is the perimeter of the curve, we extend ~(s) periodically by setting
v(s + L) = y(s).

We would like to say that the antipodal point p of p is situated along the
geodesic that cuts « orthogonally at p. But some care is necessary, and we
make an extra assumption on -y :

STANDING ASSUMPTION (SA). There exists € > 0 such that, for every
p €, the restriction of the exponential map exp, to

{veT,S:|v| <W+e}

is a diffeomorphism onto its image.

Condition SA ensures that there is exactly one minimizing geodesic between
any two points of v, and that v is indeed the boundary of some Jordan region
in S. On the hyperbolic plane, SA represents no restriction whatever, whereas
on the sphere of radius —\/I—E it is equivalent to the requirement that W < %
— and this is no strong restriction either, for in any case we would have
W < JE since the maximum (intrinsic) distance between distinct points on
the sphere is % :

CLamM 1. If a curve ~ of constant width VW satisfies SA then the
minimizing geodesic between any pair of antipodal points p, p intersects -y
orthogonally at both p and p.

Proof. Take a system of geodesic polar coordinates ®(p, /) centered at
p. If v(sp) = p then there exists 0 > 0 such that, for s € Jsop — 9,50 + [,
we can write y(s) = CD(p(s),Q(s)) for some differentiable functions p(s),
0(s). Our assumption implies that p(so) = W and p(s) < W for all s, and
therefore p/(so) = 0. Hence +'(so) = #'(s0) Py, which implies that  and the
radial (minimizing) geodesic from p to p cut each other orthogonally at p.
Reversing the roles of p and p we show that the intersection at p is also
orthogonal. [
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We have just observed that if p, p are antipodal points of -y then v is
inside the geodesic circle C(p, W) of centre p and radius W, and touches it
at the point p. As in the euclidean case, the geodesic curvature of C(p, W) at
p 1s a lower bound for the geodesic curvature of v at p, as we now proceed
to show. We assume that both curves are traversed counterclockwise (i.e., the
Jordan region bounded by ~ is always to our left as we move around ), and
recall that the coeficients E, F, G of the first fundamental form of ®(p, #)
are such that £=1 and F =0 (see [dC], p.287).

CLAIM 2. Let the coordinates of p be p =W, 6 = 0y, and denote by
kqe(p) and /~<g(p) the geodesic curvatures at p of v and C(p, V), respectively.
Then we have

G,

ko(p) > ky(p) = 2

(W, 60)
Q ,

FIGURE 3

Proof.  'We can reparametrize v in a neighbourhood of p by setting
Y(&) = @(p(t), 00 +1) for 1 €]-6,8[. Thus p(0) = W and, as in the proof of
Claim 1, p(7) attains a maximum at ¢ = 0, so that p/(0) = 0 and p"(0) < 0.
The geodesic curvature of v at fy(z‘) is given by

ko(t

o) =

/!
('), n@®)
[R4¢ >n2 4
where n(f) is the unit vector such that (v/(s), n(f)) is a positively oriented
orthogonal basis of T,;S. We have 7/(0) = ®,, and therefore n(0) = -@,,
IV©)|* = G, and

1
kg(p) = kg(0) = <7”(0), D,)-

Since 7"(0) = p"(0) D, + Dyg, it follows that
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1

1 1
S) kq(p) = —5/9"(0) - E<(D997(I)p> > _E<(D007(Dp>'

Our calculations also show that the right-hand side of (5) is just lzg(p). By

taking the derivative with respect to 6 of the equality (®y, d,) = 0, we obtain

(@gg, D,) = —%—Gp — and this, together with (5), proves our claim. (]

At this point we recall ([dC], p.289) that in Sx the coefficient G 1is
given by

1. . . 1. .
e sin?(VKp) if K>0; p?if K=0; — sinh*(v/—Kp) if K <0

— and thus in Sy Claim 2 reduces to:

The geodesic curvature ky(s) of a curve of constant width VW in Sk is
such that

(6) kg(s) > F(K, W),
where F(K, VW) is given by

VK cos(vVKW)
sin(v/K W)

v/ —K cosh(r/—KW) .
sinh(~—K W) yE<0.

1
if K>0; 35 if K=0;

Notice that we do not necessarily have k4(s) > 0: for K > 0 and
w > 5—\7}—1?, the lower bound in (6) is negative. Related to this is the fact that
not all curves of constant width in the sphere are convex (see the remark at
the end of this section).

Now we let n(s) be the unit vector field along ~(s) which 1s orthogonal
to ~'(s) and points to the interior of the region bounded by +, so that
(7’ (s), n(s)) is positively oriented. If we travel a distance }V along the geodesic
t — exp.,(¢n(s)) we reach the antipodal point I1(~(s)) of ~(s). In other

words,

(7) IT o 7(s) = exp., (Wn(s)) .

It is only natural to consider the map ¥(z,5) = exp.,,(—¢n(s)), where the
minus sign ensures that (‘W;,'¥;) is positively oriented for small z. This 1s not
really a parametrization, since it is not injective and may have singularities.
We define the coefficients £, F, G by

E=Y,¥), F=M",Y¥), ¢6=W¥.¥)"
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CLAM 3. The following equalities hold: € =1; F =0; G(0,s) =1
for all s € R.

Proof. For fixed s, the curve ¢ — W¥(z,s) is a geodesic parametrized with
constant speed ||n(s)|| = 1, and therefore £ = 1. The third equality is obvious.
To prove the second one, we observe that F(0,s) = <—n(s),fy’ (s)> =0 and

that

oF DY, 1 0&
_— bm— _— _—— = O
al- <an’ \Ils> + <\I]f7 \}‘Sf> < 8t ’ ‘{Is> + 2 85 ?

D\P . . . (44 9 2
where —at—t denotes the covariant derivative of the “velocity” vector field

t — W(t,s) along the geodesic t+— ¥(z,s) (which is identically zero by the
definition of a geodesic). [

In the neighbourhood of any point (z,s) where G is non-zero, the map
Y is a true parametrization, and by Claim 3 its coefficients £, F, G are
analogous to the coefficients E, F', G of the geodesic polar coordinates. Thus
the proof of Claim 2 shows that, provided ¥(z,s) agrees with the orientation
of S, the geodesic curvature of the curves ¢ = constant is given by

g o

26 G
in particular, setting ¢t = 0 and using Claim 3, we obtain

(8) (VG)i(0,5) = ky(s).

There exists a very useful formula for the Gaussian curvature K in terms
of the coefficients of an orthogonal parametrization ([dC], p. 237), which in

this case simplifies to
(\/—G)tr + K\/@ =0.

This formula holds whenever G(z,5) # 0. Turning our attention to Sg,
t — /G(t,s) is then the solution of the differential equation

9) ')+ Kx(t) =0

which, by Claim 3 and (8), satisfies the initial conditions x(0) = 1 and
x'(0) = kg(s). Thus we find that \/G(z,s) is given by :

(10) cos(VK 1) + k\g/(li{) sin(VKr)  ifK>0,
(11) 1+ tky(s) fK=0,
(12) cosh(+v/"K 1) + ~o®) sinh(vV—K#) ifK<O0.

V=K
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We are running into trouble here: formulas (10)-(12) may assume negative
values for # # 0, and /G is necessarily non-negative. However, we must keep
in mind that in any case G is a differentiable (C°°) function, as its definition
ensures. The only way to reconcile this with the fact that ¢ — /G(t,s) is a
solution of (9) whenever G(z,s) # 0 is that G(z,s) be equal to the square of
formulas (10)-(12) for all (z,s).

Let f be a lifting of the antipodal map II as in Lemma E. We can rewrite
(7) as

yof(s) =¥(=W,s).

Taking the derivative of both sides we obtain f’(s)~’ ( f(s)) = ¥|(—w.5, and
from here we get

(13) [F9)]* = G(—W,s).

The reader should now check that inequality (6) yields that, for t = —W,
each of the formulas (10)-(12) is non-positive for all s € R. Since f’(s) > 0,
(13) and the above discussion imply that f’(s) is equal to

ZOp . .

(14) N sin(vVKW) — cos(WVKW)  if K>0,

(15) Wkg(s) — 1 if K=0,
kq(s) . B — _

(16) ﬁ sinh(v/—K W) — cosh(v/ —K W) if K <O0.

Formula (15) was already known from §2. In the next section we use formulas
(14) and (16) to prove Theorem B and Corollary C. As an appetizer we now
prove Theorem D.

Proof of Theorem D. This is a simple consequence of the uniqueness part
of Lemma E. Under our hypothesis, a possible lifting of I1 is f(s) = s+ %L,
and therefore f'(s) = 1 for all s € R. Each of the formulas (14)-(16) then
implies that the geodesic curvature k, of 7 is constant. Substituting the
value of k, in (10)-(12) we find that Q(—%W,S) = 0 for all s € R. Hence
S ‘P(—%W,s) is constant, say equal to p, and therefore v is the geodesic
circle C(p, %W). []
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REMARK. We have so far excluded from our discussion curves of constant
width = on the sphere x*+y?+72 =+ (K > 0). Although our methods do
not apply to these curves, they are easily dealt with, being characterized as
the Jordan curves ~ which remain invariant under the isometry ¢: Sx — Sk
given by g(x,y,z) = (—x,—y, —z). This map g exchanges the two regions
bounded by v in Sg (so these regions have the same area 2%), and also
exchanges the two arcs into which ~ is divided by any pair of antipodal
points (so these two arcs have the same length). Hence Theorem D is not
valid in this case. If we consider (for small d) a parallel curve v; to 7y
then v has constant width % — 2d. Since <y has arbitrarily long perimeter
and does not need to be convex, the same applies to ; (but the longer the
perimeter of -y, the smaller 4 must be in order to ensure that -, has no
self-intersections).

4. PROOF OF THE MAIN RESULTS

We have now gathered all the necessary tools, and the proofs of Theorem B
and Corollary C are a simple matter.

Proof of Theorem B. We assume K > 0, the case K < 0 being similar.
Using (14) we have

L . L
L =f(L) —£0) = /0 f(s)ds = ﬂ% / ky(s)ds — L cos(vVE W),
0

and therefore

sin(v K W) &
[ —
VK {1+ cos(vVKW)} Jo () _dS
1 vKW
—ﬁtan< ) ){ZW—KA}

by the Gauss-Bonnet theorem. [

Proof of Corollary C. First we treat the case K > 0. From Theorem B

2 . . . .
we see that A < <%, which means that the region we are interested in has
the smallest area of the two regions bounded by v in Sg. We also assume
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that £ < %, otherwise L is too large for v to be a circle and the desired
inequality holds trivially. Under these conditions inequality (1) is equivalent to

17) A< 71{- {27r— \/47r2—K£2}.

Combining Theorem B and (17) we obtain

1
L> \/Etan(\/[_?/v)\/émz — K L2,

which is equivalent to

(18) L > —=sin

— and this is the inequality we want. If equality holds in (18) then it also
holds in each of the equivalent inequalities (17) and (1) — and therefore -y
is a circle.

The case K < 0 has a similar (and easier) treatment. We begin by rewriting
(1) in the form '

Ag—%{ 47r2—K£2—27r},

and then proceed as before.  []
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