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372 J. LOTT

semidirect product of K and a connected simply-connected nilpotent Lie

group and T is a discrete cocompact subgroup of G [12, Theorem 6.4].
We may as well assume that X T\G/K. By passing to a finite cover,
we may assume that K is trivial. That is, X is a nilmanifold. From
[27, Corollary 7.28], HP(X;C) FP(g,C), the Lie algebra cohomology of g.
From [7], Hp(g,C) 7^ 0 for all p G [0, dim(A)]. Thus for all p G [0, dim(X)],
UP(X; C)^0.

Now let lu be a nonzero harmonic p-form on X. Let 7r*cj be its pullback
to X. The idea is to construct low-energy square-integrable p -forms on X
by multiplying 7r*u; by appropriate functions on X. We define the functions
as in [2, §2]. Take a smooth triangulation of X and choose a fundamental
domain F for the lifted triangulation of X. If E is a finite subset of ri(2Q,
let xh be the characteristic function of H \JgeEg - F. Given numbers

0 < c\ < 62 < 1, choose a nonincreasing function ip G C§° ([0, 00)) which is

identically one on [0, e\] and identically zero on [2, 00). Define a compactly-
supported function fE on X by fE(m) ip(d(m,H)). Then there is a constant

Ci > 0, independent of E, such that

Define pE G AP(X) by pE — fE • 7x*u. We have dpE dfE A 1Ecu and

d*pE —i(dfE)7r*üü. As fE is identically one on //, it follows that there is

a constant C > 0, independent of E, such that

As 7T1 (A) is amenable, by an appropriate choice of E this ratio can be made

arbitrarily small. Thus 0 G a(Ap).

Question. Does the conclusion of Proposition 20 hold if we only assume

that 7T1 (X) is amenable

Another class of manifolds for which one can hope to get some nontrivial
results about the zero-in-the-spectrum question is given by topologically tame

manifolds, meaning manifolds M which are diffeomorphic to the interior of a

compact manifold N with boundary. If M has finite volume then Ker(Ao) 7^ 0,

(5.12)

(5.13)
fx [l<foEl2 + \d*PE\2]

<
area(dff)

fx \Pe\2 ~ vol
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so we restrict our attention to the infinite volume case. A limited result is

given by Corollary 2.

An interesting class of topologically tame manifolds consists of those which

are radially symmetric. This means that M is diffeomorphic to R", with a

metric which is given on Rn — {0} (0, oo) x Sn~l by

(6.1) g dr2 + dr{r)dQr.

Here dQr is the standard metric on Sn~l, r G (0, oo), <f G C°°([0, oo)),

6(0) — 0, 0) - 1 and 6{f) >0 for r > 0.

PROPOSITION 21. Suppose that there is a constant c > 0 such that

Ricciyvf > — c2. Then 0 G cr(Ap) for some p.

Proof We may assume that vol(M) - oo. Suppose first that

lim inf 6(r) < oo
CO

Then there is a constant C > 0 and a sequence {q}^i such that lim^oo rj
oo and é(rj) < C. Let Dj be the domain in M defined by r < rj. Then

area(Dj) < Cn~l vol(Sn~l) and limj^oo vol(Dy) — oo. Thus M is not open at

infinity. By Proposition 6, 0 G cr(Ao)...

Now suppose that liminf7WOO è{r) — oo. We want to show that M is

hyperEuclidean and apply Proposition 7. Consider a map F : M —> R" given
in polar coordinates by

(6.2) F(r,6) {s(r),6),

for some s : [0, oo) —» [0, oo). The condition for F to be distance-

nonincreasing is

(6.3) \s'(r)\ < L s(r) < è(r).

If lim^oo ^(r) oo then F is a proper map of degree one. It remains to
construct s satisfying (6.3).

Put

(6.4) <f(r) inf f(v).
v£[r.oo)

Replacing è by <p, we may assume that <j> is monotonically nondecreasing.
Thinking of <p(r) as representing the trajectory of a car in front of us which
is blocking the road, with our car's velocity bounded above by one, it is
intuitively clear that we can find a trajectory for our car such that
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lmv^oo s(r) oo. More precisely, let p G C°°([0.2]) be a nondecreasing
function which is identically zero near 0, identically one near 2 and satisfies

p'(x) < 1 for all x G [0,2]. Put r0 0 and define and {rj}pL\
inductively by

(6.5)

Define s by

(6.6) s{r)

r'j — inf{r : r > rj + 2 and 0(r) > y + 1},

O+i o +

3 if r G [0, rj]

j + p(r- rj) if r G [rj,ri+i].

Then ^ satisfies (6.3) and lim^oo^r) oo.

Question. What can one say in the radially symmetric case without the

assumption of a lower bound on the Ricci curvature

Another interesting class of topologically tame manifolds consists of those

which are hyperbolic, that is, of constant sectional curvature —1. Complete
hyperbolic manifolds are divided into those which are geometrically finite and

those which are geometrically infinite. Roughly speaking, M is geometrically
finite if its set of ends consists of a finite number of standard cusps and flares.

PROPOSITION 22 (Mazzeo-Phillips [23, Theorem 1.11]). Let M be an

infinite-volume geometrically finite hyperbolic manifold. If dim(M) 2k then

dim(Ker(AQ) oo. If dim(M) 2k + 1 then a(Ak) — a(A^+i) - [0, oo).

The paper [23] also computes dimCKe^A^)) for such manifolds.

In general, geometrically infinite hyperbolic manifolds can have wild end

behavior. However, in three dimensions one can show that the ends have a

fairly nice structure. This is used to prove the next result.

PROPOSITION 23 (Canary [4, Theorem A]). If M is a geometrically infinite
topologically tame hyperbolic 3 -manifold then 0 G a(Aq).

Proof. The method of proof is to show that M is not open at infinity
and then apply Theorem 6. See [4] for details.



THE ZERO-IN-THE-SPECTRUM QUESTION 375

Thus zero lies in the spectrum of all topologically tame hyperbolic 3-

manifolds. From Proposition 2, the same statement is true for compactly-

supported modifications of such manifolds.
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