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0p~'q) = 6(C)
and  4((p~'g)"?) = 6((CTy ) = o((CtHy™) TE (1) = 1.
By Lemma 5.4, there is a homomorphism «: F — T;/N defined on generators
by a(A) =6(A) and a(B) = 0(B). If p~lqg # 1, then (p~'¢)"t? £ 1, and so

a(F) is a proper quotient group of F. Since every proper quotient group of
F is Abelian by Theorem 4.3, 6(AB) = O(BA). If p~l¢ = 1, then m,n > 0

and 1 = 6(C™) ~= g(C™) (X1 ) and hence (X7T) = ((Cr)y+3)
= 0((CiIy™*1) = 6(1) = 1. It follows as before that §(AB) = O(BA).

Hence 6(A~'BA) = 0(B), so 8(A~'C) = H(BA~2C) by relation 4). Hence
O(BA™!) = 1, and so 6(B) = 1 by relation 3). This implies that 6(A) = 1.
It now follows from relation 5) that 6(C) = 1. Thus N = T}, and so T is
simple. [

COROLLARY 5.9. Tj is isomorphic to T.

§6. THOMPSON’S GROUP V

As with the previous section, the material in this section is mainly from
unpublished notes of Thompson [T1]; [T1] contains the statements of the
lemmas (except for Lemma 6.2) and the statement and proof of Theorem 6.9,
but does not contain the proofs of the lemmas.

Let V be the group of right-continuous bijections of S' that map images
of dyadic rational numbers to images of dyadic rational numbers, that are
differentiable except at finitely many images of dyadic rational numbers, and
such that, on each maximal interval on which the function is differentiable,
the function is linear with derivative a power of 2. As before, it is easy to
prove that V is a group.

We can associate tree diagrams with elements of V as we did for F and
T, except that now we need to label the leaves of the domain and range trees
to indicate the correspondence between the leaves. For example, reduced tree
diagrams for A, B, and C are given in Figure 16.

Using the identification of S! as the quotient of [0, 1], define 7 : S' — S
by

X 1 1
2ty 0sx<j3
o) =14 2x—1, 1<x<?
X, %§x<l
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3 4 2 3

FIGURE 16
Reduced tree diagrams for A, B, and C

We define elements X, and C, of V as before. That is, Xo = A,
X, = A"+ BA"! for an integer n > 1, and C, = A~"T!CB"~! for an integer
n> 1. Define m,, n>1, by m = C;'mC, and m, = A" 'mA™"! for
n > 2. Reduced tree diagrams from mg, 7, m, and 73 are given in Figure 17.

Ty T,
1 2 ] ]
2 3 1 3 2 3
3 4 2 4

FIGURE 17
Reduced tree diagrams for m;, 0 <i <3

It is easy to see for every positive integer n that mg,...,m,_; generate a
subgroup of V isomorphic with the symmetric group of all permutations of
the n+ 1 intervals [0,1 —271], [1 =271, 1-272], [1 —272,1—-273],...,
[1—27"1—2"@+D] Furthermore m,...,m,_; and C, generate a subgroup
of V 1isomorphic with the symmetric group of all permutations of the
n+ 2 intervals [0,1 —271], [1 —271 1 —-272], [1 —=272,1—-2773],...,
[1—27"1—2"0tD] [1 —2=0+D 1] for every positive integer n.

LEMMA 6.1. The elements A, B, C, and my generate V and satisfy the
following relations :

1) [AB~1.X,]=1;
2) [AB71. X3]1=1;
3) C; =BGC,;

4) CoX, = BCs;
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5) ClA=C3;
6) Ci=1;

7) le =1;

8) mmy = MMy,
9) (mm)’ =1;

10) X3m = mX3;
11) m X, = Bmoymy ;
12) m™B

13) mC3z = C3my; and
14) (mCy)® = 1.

Proof. Let H be the subgroup of V generated by A, B, C, and 7. To
prove that H = V, it suffices to prove that if R and S are 7 -trees with n
leaves labeled by 1,... ,n, then there is an element of H with domain tree
R and range tree S which preserves labels. Since H is a group and A and
B generate the subgroup F of V, we can assume that R =S = 7,_;. So
assume that R = S = 7,_;. Each element of the subgroup of V generated by
7o and C,_, has a tree diagram with domain tree and range tree 7,_;, and
this subgroup is isomorphic to the symmetric group 2,, acting on the leaves
of 7,_1. Hence there is an element of V with domain tree R and range tree
S which preserves labels, and H = V.

It follows from Lemma 5.2 that relations 1)-6) are satisfied. Relations 7), 8),
9), 13), and 14) follow easily from the viewpoint of permutations. Relation 10)
is true because the supports of m; and X3 are disjoint. Relations 11) and 12)
can be established by verifying that the reduced tree diagrams for the two ele-
ments are the same; the tree diagrams are computed in Figures 18 and 19. [

The group V) will be defined via generators and relators. There will be four
generators, A, B, C, and my. We introduce words X,, C,, and 7, as before.
That is, Xo = A, X, = A~"T!BA""! for an integer n > 1, C, = A~""1CB"!
for an integer n > 1, m = C;'mC,, and 7, = A7 ImA"! for
n>?2.

Let

Vi=(A,B,C,m: [AB™', X1, [AB™!, X3], BC,(C)) ™', BC3(CrX2) ™!,
CHC1A) L, C L 7w mymy (myms) 7L ()}, T X (X)) 7
2 1 1

By (mX2) ™!, By (maB) ™!, Cama(m C3) ™, (1 C)?)
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FIGURE 18

Reduced tree diagrams for 7 X, and Bmpm

FIGURE 19

Reduced tree diagrams for mB and B3

We will prove that V; is simple. Since there is a surjection from V, to
V by Lemma 6.1, it will follow that V; 2V and V is simple.

Lemmas 6.3-6.8 contain the relations we need among the 7;’s, the X;’s,
and the C;’s. Lemma 6.2 1solates some parts of them that will be needed in
the proof of Lemma 6.3.

LEMMA 6.2. Let i be a positive integer and let j be a integer.
) If 0<j<i, then mX; = Xjmiq.

i) If j > i+2, then mX; = X;m;.

ii) If i >j >0, then Cimj = mj_;C;.
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Proof. We begin the proof of i) by proving that AB~! commutes with X,
and 7, for every integer n > 2. For this let H be the centralizer of AB~! in
V1. Theorem 3.4 easily implies that H contains X,, for every integer n > 2. We
prove that 7, € H for every integer n > 2 by induction on n. For n =2 we
have m3 = A~'mA, and the relator Bms(mB)~!' gives m3 = B~ !mB. Hence
my € H. Now let n be an integer with n > 2, and suppose that m, € H. Since
H contains m,, X,, and X,;, A" 'HA™"*! contains 7y, X;, and X,. Thus
the relator Bmym (mX,)~! easily gives m € A" 'HA="*!, and so m,. 1 € H.
This proves that AB~! commutes with X, and 7, for every integer n > 2.

We now prove i) by induction on j. If j = 0, then 1) is clear. Suppose
that j = 1 and that i is an integer with i > 1. We have A7'mA = mip1,
and the previous paragraph shows that AB~'m;BA~! = 7;. These identities
imply that B~!m;B = w41, which gives ii) when j = 1. Now suppose that
j > 1 and that i is an integer with i > j. We have m_; 1 Xy = Xymi_j12,
and so A7 ATIATTIXAT = ARG ATT AT oy, AT Hence
mX; = Xjmi41. This proves 1i).

Since mX3 = Xzmy, mXy = A_17T1X3A = A_1X37T1A = Xumy. BmymiXy
= ’/T1X2X4 = 7T1X3X2 = X37T1X2 = X3B7T27Tl = BX47T27T1 = B7T2X47T1, and so
miXy = Xymy. f n > 4 and mX, = X,m, then Xs3m X, = 1 X3Xn+1
= 7T1XnX3 = Xn7T1X3 = XnX37T1 = XgX,H_ﬂTl and so 7T1Xn_|_1 — Xn—i—l'ﬂ'l . Hence
it follows by induction that 7 X; = X;m; if j > 3. If i,j are positive integers
and j > i +2, mX; = AT ATIATIHIX AT = AT L X AT
= A~HX;_ 1 ym AT = Xjm;. This proves ii).

We prove iii) by induction on j and i. We have Ciymp, = mCs. If
2 < i and Cymy = mC;, then X;Ciyym = Cimp = mC = mXiCiyq
= X;mCiy1 and hence C;pjm = mCiry. It follows by induction on i
that Cim, = mC; if i > 2. If 1 < j < i and C[ﬂ'j = 7Tj_1C,', then
Cinmiy1 = CiB™'Bmjyy = CB™'mB = AT'CBB™'mB = A™'Cm;B
= A, B = A”'1;_1AATIC;B = m;Ciy1. It follows by induction on j
that Cl"]Tj = 7I'j_1Cj if 1 <j<i.

To finish the proof of iii), it remains to show that Cim; = moC; if 1 <.
Since m = C2—17T0C2, Cymy = mpCy. Suppose i > 2 and Cymp = mpC;. Since
CA = C% | and mA = Am, Cr m = CAm = CmA = mCA = mChy .
But 7T1C,'_|_1 = Cj_l._lﬂ'z , SO C,-+17r1Cl-+1 = Cl-2+17T2 = 7T0Cl-2+1 and hence
Ciyimy = moCiyyp. It follows by induction that C;m; = moC; if 1 < Q. L]

LEMMA 6.3. If i is a nonnegative integer, then

i) =1,
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i) (7ri+17ri)3 =1, and
lll) T — TG lfj Z i+ 2.

Proof w3 =1 from the definition of V|, and since the ;s are conjugate
to each other, 7r,-3 =1 for i > 0.

(mom)? = 1 is one of the defining relations. Lemma 6.2.111) shows
that 7,7 is conjugate to mym for every nonnegative integer . Hence
(mig17;)° = 1 for every nonnegative integer i. This proves ii).

We may likewise use Lemma 6.2.111) to reduce the proof of 1i1) to the case
in which i = 1. Since w73 = m3m). M7y = A*]ﬂ'ﬁn’_v\ = /) ]T.;T"]A T4

Since mm3 = mm., mmX> = mamXs., mXomy = mXimm . Xymmny
= X mymm = X mmy7m . and hence w7y = mymy . W > 4 and 77, - 7.
then X;TF]?T,,_H = W]X3T,,+] = ”T|T,,X3 = T,,’T]X_z = TT,,X_:TU = X;F,,.]TT]. It
follows by induction that w7, = 7w if j > 3. This proves ).

LEMMA 6.4. If i and j are nonnegative integers, then
) mX; = Xjmi if j>i+2,

i) miXip = Ximi 7,

iii) miX; = Xjy\mimwiey, and

v) miXj = Xmip 1if 0 <) <L

Proof. If i > 0. then 1) 1s Lemma 6.2.11). For i = 0 suppose that
n is an integer with j < n. Then 7 X;C,.; = 7C,X, ., - CimiX, .
= CXjr1m = X;Chp1m = X;m0Ch1 by Lemmas 5.5.1). 6.2.111), and 6.2.11).
Hence moX; = Xjmp 1f j > 2. This proves 1).

For 11), the case i = | is one of the defining relations. Since 7 X> = Bxaa) .
Lemmas 5.5.11) and 6.2.ii1) give that 7BC; = 7yC-X> = ComX> = CaBaam
= AC3mym) = AmmyCs. This implies that myB = Am 7. which gives ii) when
i =0.1If i > 1, then conjugating the relation 7 X> = X ;77 by A" ! gives
miXir1 = X;miy 7. This proves ii).

1i1) follows immediately from ii) since each #; has order 2.

iv) is Lemma 6.2.1). [

LEMMA 6.5. Let n and k be positive integers with n > k. Then
1) Cymp = mp—1 Gy,
i) Cymg =g~ Wrz—lc,?;,

o)

iii) Cymg = mp_y - m9C,, and
. 3 o

ZV) Cn’/To = /t,,_1C,37.
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Proof. 1) is Lemma 6.2.iii).

We prove ii) by induction. Since (m,C;)> =1, (Cym;)? = 1. This implies
that ComC, = mCy'my, and hence that CimC;' = ComCy'mC3 by
Lemma 5.6.v). Hence Comg = Co(ComiCy') = (Com Cy DmiC3 = momi C3,
which proves ii) when n = 2. Suppose that n > 2 and C,mp = 7o« - - Tp— IC%.
Then

2
XnCn_i._l?TO — Cnﬂ-o —_ 7TO st 7Tn_1Cn - 71—0 ttt Wn_ICanCn_i_l
_ 2 _ 2
— 7TO et Wn_an_l Cﬂ+1 — 7T0 ctt Wn_ZXn’ﬂ_n_lTrnCn_{_l

- 2
- Xnﬂ-O T 7Tn—27rn—17rncn+1 )

and hence C,y1m = 7o+ m,Cay ;. ii) now follows by induction.

n

ii1) follows from ii) :
Cp = (Cymo)mo = (79 - - - Mu_1CH)mg

2 — —] —
SO Cn7TO _(WO"'Wn_l) Cn _Wn_l"'WOCn_.

iv) follows from 1), 11), and iii):

C3my = Co(C3mg) = Co(Mu_1 - oCp) = Tp_z - - ToCr(moCh)

2 3
= Tp—o - mo(mo -+ M1C)Cp = m G, . [

LEMMA 6.6. Let k, m, and n be integers with 0 < m < n+ 2 and
0<k<n. Then

i) if m<k, Clmp=Tr—mCy,
ii) if m= k+1, CZan = 7" ‘7Tn—1CZZ+1,
i) if m=k+2, Cl'my = mp—1--- WQC,’?_I, and

v) lf m>k+2, CTWk = 7Tk_{_(n+2._m)CZl.

Proof. 1) follows from Lemma 6.5.1) by induction.

Now consider ii). If » > 2 and m = k + 1, then by Lemmas 6.6.1)
and 6.5.11) Cl'my = CnCﬁﬂk = anoCﬁ =70 - - -Wn_lC,%C,’ﬁ =g - -7rn_1C,T+1,
which proves ii) if » > 2. By Lemmas 5.6.i), 6.3.i), and 6.5.iv), C?’B = C%
= W%C% — 7T1C%7T0. Hence CZB’/TQ = chg = 7T07T()7T1C% - 7TOC27TOC2
= myC3m; by Lemmas 6.3.i), 6.5.ii), and 6.5.1). Hence C*Bmom; = mC3, and
so C2myA = myCA by Lemmas 6.4.iii) and 5.5.ii). This gives C*my = mC,
and hence Crmy = C(mpC)C~! = C(C?*mp)C~! = moC?. This completes the
proof of 1i).
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If n = 1, then the assumptions of iii) imply that k = 0 and m = 2,
and so iii) becomes C?mp = mC), hence C*my = moC. This was proved
in the above paragraph. If n > 2 and m = k + 2, then by Lemmas 6.6.1)
and 6.5.iii) C"my = C2Chmy = ClmpCl = Ty -+ moCuCh = ey - - - w0 Cy 1,
which proves ii1).

To prove iv), suppose that m > k + 2. Then by Lemmas 6.6.0)) and
6.5.iv) C'my = C"*3C3Chm, = O3 CRCh = O il G =

Tn—1—m—k—3)Ch, Which proves iv). [

n?

For each positive integer n, let TI(n) be the subgroup of V| generated by
{mo,...,mu—1}, and let IT = U,enIl(n).
Let ¥ be the group of permutations of N with finite support. Then

T = (s0,51,52,... :(s;)* for all i,
(s;5i11)° for all i,
(s;s;)* for all i and all j > i+2).

Furthermore, in every proper quotient group of X, the image of sy 1s the
image of s;. Since Il is a quotient group of ¥ and my # m in V, I is
isomorphic to X.

Following the terminology for F, an element of V| which is a product
of nonnegative powers of the X;’s will be called positive and an inverse of a
positive element will be called negative.

LEMMA 6.7. If p is a positive element of V| and w € I1, then np = p'=’
for some positive element p’' and some 7' € I1.

Proof. Lemma 6.7 follows from Lemma 6.4. []

LEMMA 6.8.

i) If m, n are positive integers with m < n+2 and if © € Il(n), then
Cym =7'Cy for some 7' € Il(n) and some positive integer m' with
m <n+2.

ii) For each n € N, the subgroup of Vi generated by TI(n) and C, is
finite.

Proof. 1) follows from Lemmas 6.6 and 5.6.v). ii) follows from 1) and
Lemma 5.6.v). [
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THEOREM 6.9. 'V is simple.

Proof. Suppose N is a nontrivial normal subgroup of Vi, and let
0: Vi — Vi/N be the quotient homomorphism. Then there is an element
g € Vi with g # 1 and 60(g) = 1. By Lemmas 5.6.ii), 5.6.iv), 6.7,
6.8.i) and Theorem 5.7 we have g = prC"g~! for some positive elements
p and ¢, some integers m,n with 0 < m < n + 2, and some element
7 € II(n). Then O(wC™) = O(p~'q). Lemma 6.8.ii) implies that mC has
finite order, say, k. Furthermore the subgroup of V; generated by A and B
is torsion-free because it maps injectively to F C V by Theorem 3.4. Hence
either (p7'g)* # 1 and 0((p~'g)*) =1 or 7C™ # 1 and O(xCT) = 1.
Suppose that 7C7" # 1 and O(nC?) = 1. If m = 0, then © # 1 and
0(m) = 1. This implies that 6(my) = 6(m;), and hence by Lemma 6.5 that
0(moCa) = O(Cymry) = O(Camop) = O(mom1C3). But then (w;Cy) = 1, so we may
assume that m > 0. Next suppose that m > 0. Then 7wCI' = TXnt1-mCriy 1
by Lemma 5.6.ii1). Lemma 6.4 implies that there exists a nonnegative integer
i and 7" € Il(n + 1) such that 7C;} = X;n'C}" ;. Thus we are in the above
case in which (p™'¢)* # 1 and 6((p~'g)*) = 1.

In each case there is an element £ € V| such that h £ 1, 8(h) = 1, and h
can be represented as a word in A*!, B!, and C*!. Let a: T; — V;/N be
the homomorphism defined by a(A) = 6(A), a(B) = 0(B), and «(C) = 6(C).
Then there is an element A € T; with A’ # 1 and «(h’) = 1. Since
T, is simple by Theorem 5.8, 0(A) = 6(B) = 6(C) = 1. Because 7; and
7; are conjugate via a power of A, 0(m;) = 0(m;) for all nonnegative
integers [ and j. By Lemma 6.6.11) with £k = 1, m = 2 and n = 2,
0(1) = 0(C3my) = O(mom C3) = O(momy), and hence O(mp) = 1. This implies
that the quotient group is trivial. [

§7. PIECEWISE INTEGRAL PROJECTIVE STRUCTURES

The definition of piecewise integral projective structures is due to
W. Thurston. These structures arise naturally on the boundaries of Teichmiiller
spaces of surfaces. The interpretations of F and T as groups of piecewise
integral projective homeomorphisms are also due to Thurston; we learned this
from him in 1975. Greenberg [Gr] used this interpretation in his study of
these groups.

Fix a positive integer n.
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