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20 A. NITAJ

Preuve. Soient k > 0 et kx > 0. Supposons que tous les
triplets (a, b, c) d'entiers positifs avec a + b c et (a,b) 1 vérifient
c ^ kr(abc) (logr(abc))kK Soit (a,b,c) un triplet vérifiant l'inégalité
du théorème (4.6). Alors:

r(abc)exp 1(4 - ô)
g ^ ] < c ^ kr(abc) (1ogr(abc))ki

\ loglogr(abc))

ce qui donne:

(4 - b)]/logr(abc) < (log k + k{ log log r(abc)) log log r(abc)

et donc r(abc) est borné, ce qui est impossible par le théorème (4.6) et

par le théorème de Mahler.

La proposition 4.7 nous donne maintenant le résultat suivant:

Proposition 4.8. Pour tout k > 0, il existe un réel s > 0 et un
triplet (a,b,c) d'entiers positifs, vérifiant a + b c et (a, b) 1,

tels que

c > — (r(abc))1 + s

ek

Preuve. Soit k > 0. Supposons que pour tout s > 0, et tout triplet
(a, b, c) d'entiers positifs vérifiant a + b c, (a, b) 1 on ait:

c ^ — (r(abc))1 + 8

Le minimum du second membre de cette inégalité est atteint pour
s — k /log r (abc). Alors, on doit avoir:

r (abc) (log r (abc)) k

ce qui contredit la proposition 4.7.

5. Généralisations

La conjecture abc est aussi simple par son énoncé que le théorème de

Fermât, mais certainement beaucoup plus difficile, et en tout cas sa résolution

aura beaucoup de conséquences en théorie des nombres. L'intérêt de cette
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conjecture nous ramène à envisager la possibilité d'une généralisation dans

différentes directions.

5.1. n - conjecture abc

La conjecture abc peut être étendue à un nombre de paramètres supérieur

à trois de la façon suivante.

Soit « ^ 3. Soient aXia2, • • - an des entiers vérifiant les conditions:

(5.1.1)
ü\ + a2 T ...+ an — 0,

(aua2i • • -,an) 1,

Aucune sous-somme n'est nulle.

Soit r(a{a2 • • • an) le radical du produit axa2 • • • an. La «-conjecture abc
s'énonce ainsi (voir [2]):

Conjecture 5.1.2. («-conjecture abc). Pour tout entier n ^ 3 et

tout s > 0, il existe une constante c(s, «) > 0 telle que pour tout n-uplet
(ax, a2, • • - an) d'entiers vérifiant les conditions (5.1.1) on ait:

max (I «i I, • • - I anI) < c(e, ri) (r(a,a2 ' • • ))2

5.2. L'anneau des polynômes

L'analogue de la conjecture abc dans l'anneau des polynômes K[X]
d'un corps K de caractéristique nulle est en fait un théorème. On peut trouver
sa démonstration dans [10], [17] ou [20].

Théorème 5.2.1. (Mason). Soient A,B et C trois polynômes non
tous constants de K[X], vérifiant A + B + C 0 et (A,B) 1. Soit
r(ABC) la somme des degrés des différents facteurs irréductibles de ABC.
Alors

max (deg(A), deg(£), deg(C)) ^ r(ABC) - 1

L'inégalité du théorème ci-dessus ne peut pas être améliorée (voir [12]).
D'autre part, ce théorème est très utile pour l'étude des équations
polynomials. En particulier il implique le théorème de Fermât dans K[X] et
explique pourquoi on ne peut pas espérer trouver des formules polynomiales
donnant un grand nombre de bons exemples pour la conjecture abc.

La «-conjecture abc dans K[X], où K est un corps de caractéristique
nulle, peut être formulée aussi de la façon suivante (voir [2]).
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Conjecture 5.2.2. Soient n ^ 3 un entier et ait 1 ^ ^ n des

polynômes non tous constants de K[X] vérifiant des conditions analogues

aux conditions (5.1.1). Alors

max deg(tf/) ^ (2n - 5) (r(ax • • • an) - 1)
i < / < «

où r(ax • • • an) désigne la somme des degrés des différents facteurs
irréductibles de ax • • • an.

5.3. Corps de nombres

La conjecture abc existe aussi dans les corps de nombres. Le lecteur
intéressé peut trouver sa formulation par exemple dans [4], [5] ou [35].
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