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20 A. NITAJ

Preuve. Soient k>0 et k;>0. Supposons que tous les tri-
plets (a, b,c) d’entiers positifs avec a+ b =c et (a,b) =1 vérifient
¢ < kr(abe) (logr(abc)) . Soit (a,b,c) un triplet vérifiant ’inégalité
du théoréme (4.6). Alors:

l/log r(abc)

log log r(abc)

r(abc)exp ((4 — 9) < ¢ < kr(abe) (logr(abe))rr,

ce qui donne:

(4 — 8))/logr(abc) < (logk + k;loglogr(abc))loglogr(abc) ,

et donc r(abc) est borné, ce qui est impossible par le théoréme (4.6) et
par le théoréme de Mahler. [

La proposition 4.7 nous donne maintenant le résultat suivant:

PROPOSITION 4.8. Pour tout k > 0, il existe un réel € >0 et un
triplet (a, b,c) d’entiers positifs, verifiant a + b=c et (a,b) =1,
tels que

1
c> — (r(abc))t+e .
Sk

Preuve. Soit k > 0. Supposons que pour tout & > 0, et tout triplet
(a, b, c) d’entiers positifs vérifiant ¢ + b = ¢, (a, b) = 1 on ait:

1
c < — (r(abc))t+e.
gk

Le minimum du second membre de cette inégalité est atteint pour
e = k/logr(abc). Alors, on doit avoir:

c < (%) ' r(abc) (logr(abe))*,

ce qui contredit la proposition 4.7. L[]

5. GENERALISATIONS

La conjecture abc est aussi simple par son énoncé que le théoréme de
Fermat, mais certainement beaucoup plus difficile, et en tout cas sa résolution
aura beaucoup de conséquences en théorie des nombres. L’intérét de cette
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conjecture nous raméne a envisager la possibilité d’une généralisation dans
différentes directions.

5.1. n-CONJECTURE abc

La conjecture abc peut &tre étendue & un nombre de parametres supérieur
a trois de la facon suivante.
Soit n > 3. Soient a,, a,, ***, a, des entiers vérifiant les conditions:

a+a, +...+a, =0,
(511) (alaaZs”'yan): 19
Aucune sous-somme n’est nulle.

Soit r(a,a, -+ a,) le radical du produit a,a, - - - a,. La n-conjecture abc
s’énonce ainsi (voir [2]):

CONJECTURE 5.1.2. (n-conjecture abc). Pour tout entier n>=3 et
tout € > 0, il existe une constante c(g,n) > 0 telle que pour tout n-uplet
(a\,a,, - *+,a,) d’entiers vérifiant les conditions (5.1.1) on ait:

max(lalla T |an|) < C(S, I’Z) (r(ala2 an))2n—5+g ]

5.2. L’ANNEAU DES POLYNOMES

L’analogue de la conjecture abc dans 1’anneau des polyndmes K[X]
d’un corps K de caractéristique nulle est en fait un théoréme. On peut trouver
sa démonstration dans [10], [17] ou [20].

THEOREME 5.2.1. (Mason). Soient A,B et C trois polynomes non
tous constants de K|[X], vérifiant A+ B+ C=0 et (A,B)=1. Soit
r(ABC) la somme des degrés des différents facteurs irréductibles de ABC.
Alors

max (deg (4), deg (B), deg(C)) < r(ABC) — 1 .

L’inégalit¢ du théoréme ci-dessus ne peut pas &tre améliorée (voir [12]).
D’autre part, ce théoreme est trés utile pour I’étude des équations poly-
nomiales. En particulier il implique le théoréme de Fermat dans K[X] et
explique pourquoi on ne peut pas espérer trouver des formules polynomiales
donnant un grand nombre de bons exemples pour la conjecture abc.

La n-conjecture abc dans K[X], ou K est un corps de caractéristique
nulle, peut étre formulée aussi de la fagon suivante (voir [2]).
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CONJECTURE 5.2.2. Soient n >3 un entier et a;,, 1<i<n des
polyndomes non tous constants de K[X] vérifiant des conditions analogues
aux conditions (5.1.1). Alors

max deg(a;) < 2n—35)(r(ai---a,)-1),

1<ign

ou r(a; - -a,) désigne la somme des degrés des différents facteurs
irréductibles de a, - a,.

5.3. CORPS DE NOMBRES

La conjecture abc existe aussi dans les corps de nombres. Le lecteur
intéressé peut trouver sa formulation par exemple dans [4], [5] ou [35].
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