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BARBIER’S THEOREM
FOR THE SPHERE AND THE HYPERBOLIC PLANE

by Paulo Ventura ARAUIO

1. INTRODUCTION

Curves of constant width are a class of plane curves with surprising
properties, not the least being the very existence of such curves which
are not circles (see ch. 25 of [RT] for an elementary introduction). Also
remarkable is the fact that all curves of the same constant width have
the same perimeter : this is the content of Barbier’s theorem (whose original
proof, using probabilistic methods, appears in [B] and is reproduced in [C],
pp. 161-163). Here we investigate how Barbier’s theorem generalizes to the
complete, simply connected surfaces of constant curvature K, which we denote
by Sk (thus Sk is the sphere of radius ﬁ if K > 0; the euclidean plane if
K = 0; and the hyperbolic plane with curvature K if K < 0). The formulas in
our main Theorem B are originally due to Blaschke (for K > 0) and Santal6
(for K < 0), but it seems worthwhile to bring them together using a unified
differential geometric approach. |

Curves of constant width are defined as follows. Let v be a convex closed
Jordan curve on the euclidean plane, and consider the strips £2 bounded by two
parallel lines ro, ri such that v C Q and both ry, r; touch ~ at some point.
We call such sets Q enveloping strips of . There is exactly one enveloping
strip of ~y which is parallel to any given direction. If all enveloping strips of
v have the same width W then we say +~ has constant width W .

The following lemma gives an alternative characterization of these curves.
For a curve ~ and a point p on it, we let D(p) = max {|p — q| : ¢ € 7}.
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LEMMA A. A simple closed curve v is of constant width VW if and only
if D(p) =W for all p €.

This lemma allows us to define curves of constant width in metric spaces
other than the euclidean plane, and in particular we consider them in regular
(differentiable) surfaces endowed with a riemannian metric and associated
intrinsic distance. We prove the following result extending Barbier’s theorem
to Sk.

THEOREM B ([Bl], [S]). If a curve of constant width VW in Sk has
perimeter L and bounds a region of area A then

L=HKW){2r — KA},

where H(K, W) is given by
1 (MEW) W 1 (\/—KW
3 tanh| ————

—1; f K>0;— if K=0; f K <O0.
\/Ean lf >,2lf \/——I<— 2 )lf <

There exists a generalization for Sgx of the well-known isoperimetric
inequality for the euclidean plane. It states that if a curve v in Sg of
perimeter £ bounds a region of area A then

(1) L? > 4n A — KA,

and that the equality holds if and and only if v is a (geodesic) circle
(see [O] for a proof). From (1) and the above theorem we obtain the following
corollary :

COROLLARY C. If K > 0 (respectively K < 0) then, of all the curves
in Sg with the same constant width W, the circle has the least (resp. the
greatest) perimeter. More precisely, we have

£2 (W) g £ 2 a( V)]

and equality holds if and only if v is a circle.

From Theorem B we see that, for fixed W and K < 0, curves of longer
perimeter enclose larger areas, whereas for K > 0 larger areas correspond
to shorter perimeters. Thus Corollary C can be expressed by saying that, in
all cases, the curve of a given width encloSing the largest area is the circle
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(for K = 0 this follows immediately from combining Barbier’s theorem with
the isoperimetric inequality).

If v is a curve of constant width W in Sk, we say that p, p € v are
antipodal points if the (intrinsic) distance between them is W, which 1s to
say that they realize the diameter of . We prove a result that was already
known in the case of the euclidean plane (see [HS]):

THEOREM D. If v is a curve of constant width VW in Sk such that every
pair of antipodal points divides ~ into two arcs of equal length (and, in the
case of the sphere, if VV < %) then ~v is a circle.

We must emphasize that, except for Lemma A, proofs are only given for
regular curves, which for us means that they have no corners and the natural
parametrization by arc-length is C* (or just C* for big enough k). By the
expedient of using parallel curves, as explained in the next section, we can
extend our results to curves consisting of regular pieces and a finite number
of corners (piecewise regular curves), but further extension does not seem
possible using our methods.

The remainder of this article is organized as follows. In the next section
we discuss curves of constant width in the familiar setting of the euclidean
plane, and prove Lemma A and Barbier’s theorem. Our proof of Barbier’s
theorem 1s similar to that in section 1.13 of [St], but we choose to present it
here since the proof we give for Sx (K # 0) is an elaboration of our proof
for Sy.

In §3 we consider general oriented surfaces and construct systems of
geodesic parallel coordinates suitable for dealing with our curves, proving
a number of technical results about these coordinates, and also proving
Theorem D. In the last section all pieces are put together to give the proofs
of Theorem B and Corollary C.

2. CURVES OF CONSTANT WIDTH IN THE EUCLIDEAN PLANE

We now review some background on convex curves; the basic reference
here is [E]. Given a closed curve v C R?, a straight line r is called a
supporting line of ~y if r touches v at some point and ~ is entirely contained
in one of the closed half-planes bounded by r. One possible characterization
of convex curves is the following: ~ is convex if and only if through every
point of ~y there passes a supporting line of ~. If some boundary line of an
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