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6 A. NITAJ

3. Applications de la conjecture abc

Dans cette partie, nous décrivons la plupart des conséquences de la

conjecture abc montrant ainsi son importance en théorie des nombres.

3.1. Les conjectures de Szpiro

Les conjectures de Szpiro sont antérieures (1983) à la conjecture abc qt

certaines d'entre elles ont les mêmes conséquences. Nous donnons deux de ces

conjectures. La conjecture suivante est une conséquence de la conjecture abc
et a été très étudiée ([13], [15], [17], [31]).

Conjecture 3.1.1. (Szpiro, forme forte). Pour tout s > 0, il existe

une constante c(s) > 0 telle que pour toute courbe elliptique semi-

stable E sur Q, de discriminant minimal AE et de conducteur NE

on ait:

|A*| ^c(z)N6e+>.
Le conducteur d'une courbe elliptique semi-stable est le radical de son
discriminant minimal. Pour une définition exacte du conducteur, on peut
consulter [27].

La conjecture suivante est connue aussi sous le nom de conjecture de

Lang-Szpiro.

Conjecture 3.1.2. Pour tout s>0 et pour tout couple (A,B)
d'entiers premiers entre eux, il existe une constante c(s, A, B) > 0 telle que

pour tous les entiers u, u, k vérifiant (Au, Bu) 1 et k Au3 + Bu2,

on ait:

| m | < c(z,A,B)r(k)2 + e et \ u | ^ c(s, A, B) r(k)3 + s

Proposition 3.1.3. La conjecture abc est équivalente à la conjecture

3.1.2.

Preuve. Admettons d'abord la conjecture abc. Soient A,B,u,u et k
des entiers tels que (Au, Bu) 1 et k Au3 + Bu2. La conjecture abc
donne :

I v I2 ^ T^T (r(ABuuk))l + e ^ c2(z,A,B) I uu 11 + s(r(£))1 + e

B
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Supposons que \Au3\ ^ \ Bu2\ (le cas inverse se fait de la même

manière), alors | u | ^ c3(A,B) \ u |2/3. En reportant cette majoration dans

l'inégalité ci-dessus, on obtient:

\u\2 ^ c4(z,A,B) |H5(1 + 8)/3(/W)1 + s
>

et par suite:

\v\v-5&ï/3 ^ c4(e,A, B)r(k)1 + 8

Prenons s tel que 1 - 5s > 0 et posons s' 18c/(1 - 5s), alors:

M < C5(S,A,B) (r(&))3(1 + s)/(1 ~5s) ^ c6(e',A,B) (r(k))3 +e'

On obtient alors pour \u\:
| u \ ^ c2/3 (z\ A, B) c3(A, B) r(k)2V + &')/3 ^ c7(e',A,B) (r(k))2 +e'

Ceci prouve la conjecture 3.1.2.

Inversement, admettons la conjecture 3.1.2. Soient a, b et c des entiers

positifs vérifiant a < b, a + b c et (a, b) 1. Alors :

(a2 + ab + b2)3 - ((b - a) (a + 2b) (2a + b)/2)2 33(ab(a + b)/2)2

Cette relation peut être éventuellement simplifiée par 33 si a b (mod 3).

En appliquant la conjecture 3.1.2, on obtient:

a2 ^ b2 ^ a2 + ab + b2 ^ cx (s) (r(abc))2 + z

et donc:

a ^ b ^ (ci(s))172(r(abc))l + E/1

et finalement:

c < c (s ') (r {abc))1 + 8'

Ceci prouve la conjecture abc.

3.2. Conséquences sur les triplets d'entiers

Les propositions suivantes montrent l'influence de la conjecture abc sur
l'architecture des triplets d'entiers.

Proposition 3.2.1. Si la conjecture abc est vraie, alors pour
tout s > 0, il existe une constante c(s) telle que pour tout triplet
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Oi ,x2ix3) d'entiers positifs, vérifiant xx + x2 x3 et (xi, x2) 1,

un des x,-, / e {1,2,3}, vérifie:

Xi < c(e) 0O/))3 + s
•

Cette proposition fait apparaître un lien entre la conjecture abc et le
théorème de Fermât. Nous avons aussi le résultat suivant:

Théorème 3.2.2. Si la conjecture abc est vraie, alors pour tout s>0
et tout entier a ^ 1, il existe une constante ci(e, a) > 0 telle que pour
tout entier n ^ 2 et tout entier x ^ 2 vérifiant (a, x) 1 on ait:

xn~l < Cj (s, a) (r(x" - a"))1 + e

Preuve. Soit 8 fixé tel que 0 < s < 1 / 2. Appliquons la conjecture abc à

la relation (x" - a") + a" xn avec (a,x) 1. On obtient:

xn ^ c (s, a) (r(x® - an))1 + £x1 + e

Alors :

Xn~l < (c(8, ö))("~ -e)(r(xÄ - a"))("- DU + e)/(/i- 1 -s)
^

Si s est assez petit et si n ^ 2, on a d'une part {n - l)/(n - 1 - s) < 2

et d'autre part:

O - 1) (1 + s) 1 + 8
^ 1+80n- 1-8 1-s

avec s' 2s/(I - s). On obtient finalement la conclusion du théorème.

3.3. Les nombres de Wieferich

Un nombre premier p vérifiant la congruence

ap~l 1 (mod p2)

avec a 2 est appelé nombre de Wieferich. En 1909, celui-ci a montré

que si un nombre premier p ne vérifie pas la congruence ci-dessus, alors il
n'existe pas d'entiers x > 0, y > 0 et z > 0, premiers entre eux, tels que

xyz # 0 (mod p) et xp + yp zp (premier cas du théorème de Fermât).
En 1910, Mirimanoff a prouvé la même chose avec a 3. Les nombres

premiers vérifiant cette congruence sont très rares. Par exemple, les seuls

nombres premiers p vérifiant cette congruence avec a 2 et p ^ 3 x 1010

sont 1093 et 3511. De même, les seuls vérifiant cette congruence avec a 3

et p ^ 230 sont 11 et 1006003 (voir [14] ou [22]). Un problème encore ouvert
est la conjecture suivante:
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Conjecture 3.3.1. Soit a ^ 2. Il existe une infinité de nombres

premiers p tels que ap~l # 1 (mod p2).

J.H.Silverman [28] a montré que cette conjecture est une conséquence

de la conjecture abc.

3.4. La conjecture de Mordell

Une des conséquences les plus étonnantes de la conjecture abc est le fait

que celle-ci implique tout simplement la conjecture de Mordell, devenue

théorème de Faltings:

Toute courbe de genre g ^ 2 définie sur Q n'admet qu'un nombre

fini de points rationnels.

Cette conjecture a été redémontrée par la suite par P. Vojta [34] et

E. Bombieri [1]. En 1991, N.D. Elkies a déterminé son lien avec la conjecture

abc (voir [4]).

Théorème 3.4.1. (Elkies). La conjecture abc implique la conjecture
de Mordell.

A la fin de son article, Elkies donne le corollaire suivant:

Corollaire 3.4.2. (Elkies). La conjecture abc implique que pour tout
s > 0 et tout polynôme P e Z[X, Y], homogène, de degré d et sans

facteurs carrés, il existe une constante c(s, P) telle que pour tout couple
(ia, b) d'entiers premiers entre eux, vérifiant P(a, b) ^ 0 on ait:

sup(| a\, \ b |)^-2 ^ c(s, P) r(P(a, b))l + e

3.5. La conjecture d'Erdös-Woods

La conjecture suivante a été formulée par P. Erdös, puis par Woods
en 1981.

Conjecture 3.5.1. (Erdös-Woods). Il existe une constante k > 0 telle

que pour tous les entiers positifs x et y, si r(x+ i) r{y + i) pour
tout i, i - 1, 2, k, alors x y.

Cette conjecture est fausse pour k 2 (x 2" - 3, y 22n - 2n + l - 1

conviennent). Par contre pour k ^ 3, aucun exemple d'entiers différents
vérifiant les égalités de la conjecture d'Erdös-Woods n'est connu. M. Langevin
a montré le résultat suivant (voir [11, 12]).
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Proposition 3.5.2. (Langevin). La conjecture abc implique que la
conjecture d'Erdös-Woods est vraie avec k 3, sauf peut-être pour un
nombre fini d'exceptions pour x et y.

3.6. La conjecture de Hall
En 1971, M. Hall Jr. a énoncé la conjecture suivante [7]:

Conjecture 3.6.1. (Hall). Il existe une constante c > 0 telle que pour
tous entiers x > 1 et y > 0 vérifiant x3 =£ y2 on ait:

I *3 - y21 ^ cmax(x3, y2)1/6

On sait par exemple depuis 1738 (Euler), que les seules solutions non
triviales de l'équation | x3 - y2\ 1 sont (x,y) (2, ±3). La relation
281873513 — 1496516106212 - 1090, montre que dans la conjecture de

Hall, la constante c vérifie c < 0,205305. La conjecture abc n'admet

pour conséquence que la forme faible suivante de la conjecture de Hall
(voir [17], [25]).

Conjecture 3.6.2. Pour tout s > 0, il existe une constante c(s) > 0

telle que pour tous les entiers x > 1 et y > 0 on ait:

I*3 ~ y21 ^ c(8)max(x3,^2)1/6_s

3.7. L'équation de Fermât généralisée

La conjecture abc s'applique particulièrement aux équations diophan-
tiennes à trois termes, dont l'équation de Fermât généralisée.

Théorème 3.7.1. Si la conjecture abc est vraie et si A,B,C sont
des entiers strictement positifs, alors l'équation:

Axl + Bym Czn

n'admet qu'un nombre fini de solutions en entiers positifs x, y, z, /, m, n

vérifiant l ~1 + m ~1 + n ~1 < 1 et (x, y, z) 1.

Preuve. Si z h alors le théorème est clair, même sans admettre

la conjecture abc. Supposons donc que z ^ 2 et que (x,y,z) 1. Soit

d (Axl,Bym, Czn). Alors d est borné. En appliquant la conjecture abc

au triplet (Axl/d, Bym/d, Czn/d), on obtient:

Czn/d ^ Cj(£) (r(ABCxlymzn/d3j)l + e
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d'où l'on tire:

(ABCxlymzn\\ î + E
7

z"^ c2(e,C) |e?r I -= Il <

Puisque Ax1 < Cz" et Bym < Czn, alors x < C)zn/l et y < cs(5, C)z"/m.

Ainsi

z" ^ c6(e, A,B,C)(Z")(i + e)('-1 + <^,+«-1>

ce qui donne:

(z")1"(1 + e)(/"1 + m_1 + n_1) ^ c6(E,A,B, C)

Si /_ 1
4- m ~1 + n ~1 < 1 et si s est assez petit, alors 1 - (1 + s) (/ ~1 + m ~1

+ n ~!) > 0 et donc zn est borné. Ainsi z, x, y, l, m, n sont bornés.

Remarque 3.7.2. On peut trouver d'autres démonstrations de cette

proposition dans [25] et [33]. Dans le cas A B « C - 1, seules 10

solutions sont connues avec l~l + m~l + n~l < l:
1 + 23 32, 132 + 73 29, 173 + 27 712,

25 + 72 34, 35 + 114 22.612,

ainsi que les solutions suivantes, découvertes par Beukers et Zagier (voir [3]):

177 + 762713 210639282, 14143 + 22134592 657,

92623 + 153122832 1137, 438 + 962223 300429072,

338 + 15490342 156133

3.8. Quelques conjectures sur les nombres puissants

Définition 3.8.1. Un entier n est un nombre puissant s'il possède
la propriété suivante: si p divise n et si p est premier, alors p2
divise n.

Si n est un nombre puissant, alors il s'écrit de façon unique sous la
forme n a2b3, où b est sans facteurs carrés et son radical r(n) vérifie
donc r(n) ^ nl/1.

Les conjectures citées dans cette partie proviennent de [22] et de [6] (B16).

Conjecture 3.8.2. (Erdös-Mollin-Walsh). Il n'y a aucun triplet de
nombres puissants consécutifs.

Cette conjecture est vérifiée pour tous les triplets d'entiers inférieurs
à 260 [18] et implique en particulier qu'il existe une infinité de nombres
premiers p tels que
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Ceci fait apparaître un lien avec le premier cas du théorème de Fermât
(voir [22]).

La conjecture ak ne permet pas de répondre totalement à la conjecture

3.8.2, mais permet d'avoir ceci (voir [17]):

Proposition 3.8.3. La conjecture abc implique qu'il n'y a qu'un
nombre fini de triplets de nombres puissants consécutifs.

Les conjectures suivantes concernent les nombres de Fermât et de Mersenne

et il est facile de montrer qu'elles sont des conséquences de la conjecture

abc ([17]).

Conjecture 3.8.4. Pour tout entier 2, soit nk le nombre puissant
le plus proche de 2k avec nk ^ 2k. Alors lim | 2k — nk \ + oo.

k->oo

Conjecture 3.8.5. Il existe une infinité de nombres de Fermât et de

Mersenne qui ne sont pas des nombres puissants.

Pour terminer cette partie, citons la conjecture suivante sur les nombres

4-puissants, qui sont des entiers n tels que r(n)4\n (voir problème B16

de [6], édition 1981). Cette conjecture est aussi une conséquence de la

conjecture abc.

Conjecture 3.8.6. (Erdös). L'équation x + y z n'admet qu'un
nombre fini de solutions en entiers positifs 4-puissants, premiers entre eux.

3.9. La conjecture de Richard

La conjecture suivante est tirée de [23] :

Conjecture 3.9.1. (Richard). Si deux entiers x et y vérifient pour
tout entier n ^ 0:

r(x2n- 1) - r(y2n - 1)

alors ils sont égaux.

A. Schinzel a montré de façon élégante que cette conjecture est une

conséquence de la conjecture abc (voir [17], [23]).

3.10. Le problème de Croft
Le problème de savoir dans quelle mesure la différence | ni - 2m\ peut

être petite par rapport à 2m s'appelle le problème de Croft (voir [6], F23).

Des résultats expérimentaux nous ont motivé pour proposer la conjecture
suivante (voir [17]).



LA CONJECTURE übe 13

Conjecture 3.10.1. Il existe une constante c > 0 telle que pour tous

les entiers m et n avec (m, n) -=k (0, 0), (1, 0), (2, 1) on ait:

n ^ c(r(| ni - 2m \))Un

La conjecture abc implique cependant une forme faible de cette conjecture

(voir [17]).

Proposition 3.10.2. La conjecture abc implique que pour tout

s > 0, il existe une constante c(e) > 0 telle que pour tous les entiers m

et n avec (m, n) (0, 0), (1, 0), (2, 1), on ait:

n < c (s) (r(\ni - 2m\j)<<l + ^/n

3.11. Autres conséquences

Nous regroupons dans cette partie plusieurs conséquences de la conjecture

abc. Cela concerne en particulier des équations diophantiennes liées à

des problèmes ouverts.

Proposition 3.11.1. Soient A>0,B>0 et k des entiers. La
conjecture abc implique que l'équation

n'a qu'un nombre fini de solutions en entiers x > 1, y > 1, m > 1, n > 1

avec mn > 4.

Cette proposition est liée à une conjecture de Pillai. Lorsque A 1, B 1

et k 1, cette conjecture porte le nom de conjecture de Catalan, qui
affirme en plus que (x,y, m, n) (3, 2, 2, 3) est Punique solution. En 1976,
R. Tijdeman [32] a montré que l'équation de Catalan n'admet qu'un nombre
fini de solutions.

Proposition 3.11.2. La conjecture abc implique que l'équation

n'admet qu'un nombre fini de solutions en entiers positifs u, w, x, y, m > 1

et n > 1 vérifiant (x, u) 1, (y, w) 1 et mn > 4.

Cette proposition est liée à une conjecture de Shorey et Tijdeman
(voir [26], p. 202). Cette conjecture est vraie en particulier si l'une des

variables u, w, x ou y est composée de nombres premiers fixés.

Axm - Byn k
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Proposition 3.11.3. La conjecture abc implique que l'équation

(x\)n + 1 ym

n'admet qu'un nombre fini de solutions en entiers x > 0, y > 0, n ^ 1

et m ^ 2.

Cette proposition est liée à un problème de Brocard (voir [6], D25) et sa

démonstration (voir [17] et [21]) est basée sur l'utilisation des inégalités
suivantes, déduites des formules de Stirling et de Chebyshev (voir [19], p. 374),
valables pour x^2\

| (x/e)x < xl,
(3.11.4) n p < 4X, p premier

[p^x

Proposition 3.11.5. La conjecture abc implique que l'équation

ni+ 1 pakpbk+i

n'admet qu'un nombre fini de solutions en entiers n > 1, a ^ 0, b ^ 0

et pk- \ ^ n < pk où (Pi), i ^ 1 est la suite des nombres premiers.

Cette proposition est liée à une conjecture d'Erdos-Stewart (voir [6], A2).
Sa démonstration est basée aussi sur les inégalités (3.11.4).

Proposition 3.11.6. La conjecture abc implique que l'équation

xn + yn — n \ zn

n'a qu'un nombre fini de solutions en entiers x > 0, y > 0, z > 0 et

n ^ 4.

Cette proposition est liée à un problème ouvert sur les équations diophan-
tiennes (voir [6], D2).

Proposition 3.11.7. La conjecture abc implique que pour tout
entier a ^ 1, l'équation

xn - yn
azm

x - y

n'a qu'un nombre fini de solutions en entiers x > y > 0, z > 0, n > 3,

m > 1 avec (x,y) 1,3n~l + m-1 < 1.

Cette proposition est une réponse générale à un problème de H. Edgar
([6], D10) et de Shorey-Tijdeman ([26], pp. 202, 203).
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Proposition 3.11.8. La conjecture abc implique que l'équation

xm - 1 yn - 1

x - 1 y - 1

n'a qu'un nombre fini de solutions en entiers x > y > 1 et m > n > 3.

La recherche de solutions pour l'équation ci-dessus est appelée problème

de Goormaghtigh (voir [6], B25). Avec n 3, (x,y, m, n) (2, 5, 5, 3),

(2, 90, 13, 3) sont les seules solutions connues.

Proposition 3.11.9. La conjecture abc implique que pour tout
entier d ^ 1, l'équation

x(x + d)... (x + kd) yn

n'a qu'un nombre fini de solutions en entiers x > 0, k ^ 2, y > 0 et

n^ 2.

Cette proposition montre le lien entre la conjecture abc et les progressions

arithmétiques. P. Erdös et J.L. Selfridge ont montré en 1975 que l'équation
ci-dessus n'a pas de solution dans le cas particulier d 1 (voir [33] pour plus
de détails).

4. A LA RECHERCHE DE FORMES EFFECTIVES

Soient a, b et c trois entiers positifs, premiers entre eux et vérifiant
a + b c. Soit r r(abc), le radical de abc. On définit le rapport de

Oesterlé-Masser pour le triplet (a, b, c) par:

loge
a a (a, b, c)

log/*

On définit de même le rapport de Szpiro pour le même triplet par:

logabc
p p (a,b,c) —

log r

Ce dernier rapport est lié à la conjecture de Szpiro (voir conjecture 3.1.1)
par les courbes elliptiques Ea,hjC que Y. Hellegouarch [9] a mis au point
en 1972 pour étudier le théorème de Fermât. C'est en utilisant ces mêmes
courbes que K. Ribet a établit le lien entre la conjecture de Shimura-Taniyama-
Weil et le théorème de Fermât. Pour un triplet (a, b, c) d'entiers positifs
vérifiant a + b c et (û, b) 1, la courbe EaibjC est définie par:

Ea,b,c'. y2 x(x - a) (x + b)
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