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6 A. NITAJ

3. APPLICATIONS DE LA CONJECTURE abc

Dans cette partie, nous décrivons la plupart des conséquences de la
conjecture abc montrant ainsi son importance en théorie des nombres.

3.1. LES CONJECTURES DE SZPIRO

Les conjectures de Szpiro sont antérieures (1983) a la conjecture abc et
certaines d’entre elles ont les mémes conséquences. Nous donnons deux de ces
conjectures. La conjecture suivante est une conséquence de la conjecture abc
et a été tres étudiée ([13], [15], [17], [31]).

CONJECTURE 3.1.1. (Szpiro, forme forte). Pour tout € > 0, il existe
une constante c(g) >0 telle que pour toute courbe elliptique semi-
stable E sur Q, de discriminant minimal Ag et de conducteur Ng
on ait:

|Ag| < c(e)N&Te.

Le conducteur d’une courbe elliptique semi-stable est le radical de son dis-
criminant minimal. Pour une définition exacte du conducteur, on peut
consulter [27].

La conjecture suivante est connue aussi sous le nom de conjecture de
Lang-Szpiro.

CONJECTURE 3.1.2. Pour tout ¢>0 et pour tout couple (A, B)
d’entiers premiers entre eux, il existe une constante c(g, A, B) > 0 telle que
pour tous les entiers u, v,k vérifiant (Au,Bv) =1 et k= Au’+ Bv?,
on ait:

lu|< (e, A, B)r(k)?+s et |v|<c(e, A, B)r(k)3+e.

PROPOSITION 3.1.3. La conjecture abc est équivalente a la conjec-
ture 3.1.2.

Preuve. Admettons d’abord la conjecture abc. Soient A, B,u,v et k
des entiers tels que (Au,Bv) =1 et k = Au?® + Bv?. La conjecture abc
donne:

ci(¢g)

| B|

o] <

(r(ABuvk))1+e < ca(g, A, B) |uv |1 *e(r(k))+=.
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Supposons que |Au®| < |Bv?| (le cas inverse se fait de la méme
maniére), alors | u | < ¢3(A4, B) |v|?/3. En reportant cette majoration dans
’inégalité ci-dessus, on obtient:

10]2 < cole, A, B) |0 ]50+973(r(k)) 1+,
et par suite:

|v](=5973 L cy(g, A, B)r(k)1+e.

Prenons ¢ tel que 1 — 5¢ > 0 et posons ¢” = 18¢/(1 — 5¢), alors:
|v] < es(e, A, B) (r(k))30+o/0=59  ce(e’, A, B) (r(k))*+*" .

On obtient alors pour | u |:

|u| < ci?(e', A, B)cs(A, B)r(k)2C+23 < c1(e", 4, B) (r(k))?*<".

Ceci prouve la conjecture 3.1.2.
Inversement, admettons la conjecture 3.1.2. Soient a, b et ¢ des entiers
positifs vérifiant a < b, a + b = c et (a, b) = 1. Alors:

(a2 +ab+ b)) - ((b—a)(a+2b) Qa+b)/2)2=33ab(a+ b)/2)2.
Cette relation peut étre éventuellement simplifiée par 33 si @ = b (mod 3).
En appliquant la conjecture 3.1.2, on obtient:

a? < b2 < a? + ab + b < ci(e)(r(abe))?+e,
et donc:

a<b< (c(e)2(r(abe))t+e?,
et finalement:
c<c(e’) (rabe))t+=".

Ceci prouve la conjecture abc. [

3.2. CONSEQUENCES SUR LES TRIPLETS D’ENTIERS

Les propositions suivantes montrent I’influence de la conjecture abc sur
I’architecture des triplets d’entiers.

PROPOSITION 3.2.1. Si la conjecture abc est vraie, alors pour
tout & >0, Il existe une constante c(g) telle que pour tout triplet
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(x1,X2,X3) d’entiers positifs, vérifiant x, + x,=x;3 et (x1,x) = 1,
un des x;,ie€{l,2,3}, vérifie:

x; < c(e) (r(x;))3+e.

Cette proposition fait apparaitre un lien entre la conjecture abc et le
théoreme de Fermat. Nous avons aussi le résultat suivant:

THEOREME 3.2.2. Sila conjecture abc est vraie, alors pour tout & > 0
et tout entier a =1, il existe une constante c¢,(g,a) > 0 telle que pour
tout entier n =2 et tout entier x =2 vérifiant (a,x) =1 on ait:

xt < e(e,a) (r(xn—amn))t+e.

Preuve. Soit ¢ fixé tel que 0 < € < 1/2. Appliquons la conjecture abc a
la relation (x" —a”") + a® = x" avec (a,x) = 1. On obtient:

xn < C(E, a) (r(xn _ an))l+axl+e ,
Alors:
xn—1 g (C(E, a))(n—l)/(n—l—s)(r(xn _ an))(n—l)(1+s)/(n—1—8) )

Si € est assez petit et si » > 2, on a d’une part (n—1)/(n—1—-¢) <2
et d’autre part:

(n=1)(1+e) 1+

n—1-¢ \1—8

=1+¢g",

avece’ = 2g/(1 — €). On obtient finalement la conclusion du théoréme. [ ]

3.3. LES NOMBRES DE WIEFERICH
Un nombre premier p vérifiant la congruence
a?~1=1 (mod p?)

avec a = 2 est appelé nombre de Wieferich. En 1909, celui-ci a montré
que si un nombre premier p ne vérifie pas la congruence ci-dessus, alors il
n’existe pas d’entiers x > 0, y > 0 et z > 0, premiers entre eux, tels que
xyz# 0 (mod p) et x# + y? = z? (premier cas du théoréme de Fermat).
En 1910, Mirimanoff a prouvé la méme chose avec a = 3. Les nombres
premiers vérifiant cette congruence sont tres rares. Par exemple, les seuls
nombres premiers p vérifiant cette congruence avec ¢ = 2 et p < 3 x 1010
sont 1093 et 3511. De méme, les seuls vérifiant cette congruence avec a = 3
et p < 23%sont 11 et 1006003 (voir [14] ou [22]). Un probléme encore ouvert
est la conjecture suivante:
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CONJECTURE 3.3.1. Soit a>2. Il existe une infinité de nombres
premiers p tels que a®~'# 1 (mod p?).

J.H.Silverman [28] a montré que cette conjecture est une conséquence
de la conjecture abc.

3.4. LA CONJECTURE DE MORDELL

Une des conséquences les plus étonnantes de la conjecture abc est le fait
que celle-ci implique tout simplement la conjecture de Mordell, devenue
théoréme de Faltings:

Toute courbe de genre g > 2 définie sur Q n’admet qu’un nombre
fini de points rationnels.

Cette conjecture a été redémontrée par la suite par P. Vojta [34] et
E. Bombieri [1]. En 1991, N.D. Elkies a déterminé son lien avec la conjec-
ture abc (voir [4]).

THEOREME 3.4.1. (Elkies). La conjecture abc implique la conjecture
de Mordell.

A la fin de son article, Elkies donne le corollaire suivant:

COROLLAIRE 3.4.2. (Elkies). La conjecture abc implique que pour tout
e >0 et tout polynéome P e Z[X,Y], homogene, de degré d et sans
facteurs carrés, il existe une constante c(g, P) telle que pour tout couple
(a, b) d’entiers premiers entre eux, vérifiant P(a,b) + 0 on ait:

sup(lal,|b])4-2< e(e, P)r(P(a,b))'+e.

3.5. LA CONJECTURE D’ERDOS-WO0OODS

La conjecture suivante a ¢té formulée par P. Erdds, puis par Woods
en 1981.

CONJECTURE 3.5.1. (Erd6s-Woods). 1/ existe une constante k > 0 telle

que pour tous les entiers positifs x et y, si r(x+1i)=r(y+1i) pour
tout i, i=1,2,....,k, alors x=y.

Cette conjecture est fausse pour kK =2 (x = 2" — 3, y = 22n — 2n+1 _ |
conviennent). Par contre pour k > 3, aucun exemple d’entiers différents

vérifiant les égalités de la conjecture d’Erdds-Woods n’est connu. M. Langevin
a montré le résultat suivant (voir [11, 12]).
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PROPOSITION 3.5.2. (Langevin). La conjecture abc implique que la
conjecture d’Erdds-Woods est vraie avec k =3, sauf peut-étre pour un
nombre fini d’exceptions pour x et y.

3.6. LA CONJECTURE DE HALL

En 1971, M. Hall Jr. a énoncé la conjecture suivante [7]:

CONJECTURE 3.6.1. (Hall). Il existe une constante ¢ > 0 telle que pour
tous entiers x> 1 et y >0 vérifiant x3 + y? on ait:

| x3 — y?| > cmax (x3, y?) /6.

On sait par exemple depuis 1738 (Euler), que les seules solutions non
triviales de I’équation |x® — y2| =1 sont (x,y) = (2, +3). La relation
281873513 — 1496516106212 = — 1090, montre que dans la conjecture de
Hall, la constante c¢ vérifie ¢ < 0,205305. La conjecture abc n’admet

pour conséquence que la forme faible suivante de la conjecture de Hall
(voir [17], [25]).

CONJECTURE 3.6.2. Pour tout € > 0, il existe une constante c(g) > 0
telle que pour tous les entiers x> 1 et y >0 on ait:

|x3 = »2| > c(e)max(x3, y2) 162

3.7. L’EQUATION DE FERMAT GENERALISEE

La conjecture abc s’applique particuliérement aux équations diophan-
tiennes a trois termes, dont 1I’équation de Fermat généralisée.

THEOREME 3.7.1. Si la conjecture abc est vraie et si A,B,C sont
des entiers strictement positifs, alors I’équation:

Ax! 4+ Bym = Cz"

n’admet qu’un nombre fini de solutions en entiers positifs x,¥y,z,l,m,n
vérifiant 1-'+m-1+n-1<1 et (x,5,2) = l.

Preuve. Si z =1, alors le théoreme est clair, méme sans admettre
la conjecture abc. Supposons donc que z > 2 et que (x,y,z) = 1. Soit
d = (Ax',By™,Cz"). Alors d est borné. En appliquant la conjecture abc
au triplet (Ax'/d,By™/d, Cz"/d), on obtient:

Cz"/d < ci(e) (r(ABCx!ymzn/d3))!+¢ |
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d’ou I’on tire:
ABCxlymzn
d3

anCz(g,C) (dr( ))1+8<c3(83A5B9C) ('xyz)1+8'

Puisque Ax' < Cz" et Bym < Cz", alors x < c4(A4,C)z"" et y < cs5(B, C)yzm/'m.
Ainsi

Zn < C6(8,A,B, C) (Zn)(1+8)([*l+m——l+n——1) ,
ce qui donne:
(zr)!-G+e0-tem=1en-) < ¢ (g, A, B, C) .

Si/-!'+m-'+ n-1<1etsie est assez petit, alors 1 — (1 +¢&) (/"' +m™!
+n-1)> 0 et donc z” est borné. Ainsi z, x, ¥, [, m, n sont bornés. [

REMARQUE 3.7.2. On peut trouver d’autres démonstrations de cette
proposition dans [25] et [33]. Dans le cas A = B = C = 1, seules 10 solu-
tions sont connues avec /"' 4+ m-1+ n-1 < 1:

1 +23=132, 1324 73=29, 173+ 27 =712,
25 4+ 72 =134 35+ 114=22.612,

ainsi que les solutions suivantes, découvertes par Beukers et Zagier (voir [3]):

177 + 762713 = 210639282, 14143 + 22134592 = 657,
92623 + 153122832 = 1137, 43% + 962223 = 300429072,
338 4+ 15490342 = 156133 .

3.8. (QUELQUES CONJECTURES SUR LES NOMBRES PUISSANTS

DEFINITION 3.8.1. Un entier n est un nombre puissant s’il possede
la propriété suivante: si p divise n et si p est premier, alors p?
divise n.

Si n est un nombre puissant, alors il s’écrit de facon unique sous la
forme n = a?b3, ou b est sans facteurs carrés et son radical r(n) vérifie
donc r(n) < n'/2.

Les conjectures citées dans cette partie proviennent de [22] et de [6] (B16).

CONJECTURE 3.8.2. (Erd8s-Mollin-Walsh). 1l n’y a aucun triplet de
nombres puissants consécutifs.

Cette conjecture est vérifiée pour tous les triplets d’entiers inférieurs

a 2% [18] et implique en particulier qu’il existe une infinité de nombres
premiers p tels que
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Ceci fait apparaitre un lien avec le premier cas du théoréme de Fermat
(voir [22]).

La conjecture abc ne permet pas de répondre totalement a la conjec-
ture 3.8.2, mais permet d’avoir ceci (voir [17]):

PROPOSITION 3.8.3. La conjecture abc implique qu’il n’y a qu’un
nombre fini de triplets de nombres puissants consécutifs.

Les conjectures suivantes concernent les nombres de Fermat et de Mersenne
et il est facile de montrer qu’elles sont des conséquences de la conjec-
ture abc ([17]).

CONIJECTURE 3.8.4. Pour tout entier k > 2, soit n, le nombre puissant
le plus proche de 2% avec n, #2%. Alors lim |2¥ — ng| = + oo.

k— oo

CONJECTURE 3.8.5. Il existe une infinité de nombres de Fermat et de
Mersenne qui ne sont pas des nombres puissants.

Pour terminer cette partie, citons la conjecture suivante sur les nombres
4-puissants, qui sont des entiers n tels que r(n)*|n (voir probléme B16
de [6], édition 1981). Cette conjecture est aussi une conséquence de la
conjecture abc.

CONJECTURE 3.8.6. (Erdé6s). L’équation x + y =z n’admet qu’un
nombre fini de solutions en entiers positifs 4-puissants, premiers entre eux.

3.9. LA CONJECTURE DE RICHARD
La conjecture suivante est tirée de [23]:

CONJECTURE 3.9.1. (Richard). Si deux entiers x et y vérifient pour
tout entier n > 0:

r(x* -1 =r(y*-1,
alors ils sont égaux.

A. Schinzel a montré de fagon élégante que cette conjecture est une consé-
quence de la conjecture abc (voir [17], [23]).

3.10. LE PROBLEME DE CROFT

Le probléme de savoir dans quelle mesure la différence |n! — 2m| peut
&tre petite par rapport a 2™ s’appelle le probleme de Croft (voir [6], F23).
Des résultats expérimentaux nous ont motivé pour proposer la conjecture
suivante (voir [17]).
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CONJECTURE 3.10.1. Il existe une constante ¢ > 0 telle que pour tous
les entiers m et n avec (m,n) # (0,0),(1,0),(2,1) on ait:

n<e(r([nt =2m))n.

La conjecture abc implique cependant une forme faible de cette conjecture
(voir [17]).

PROPOSITION 3.10.2. La conjecture abc implique que pour tout
g > 0, il existe une constante c(g) > 0 telle que pour fous les entiers m
et n avec (m,n)+(0,0),(1,0),(2,1), on ait:

n<ce) (r(|n! —2m|))a+ern,

3.11. AUTRES CONSEQUENCES

Nous regroupons dans cette partie plusieurs conséquences de la conjec-
ture abc. Cela concerne en particulier des équations diophantiennes liées a
des problémes ouverts.

ProroOSITION 3.11.1. Soient A >0,B>0 et k des entiers. La
conjecture abc implique que [’équation

Ax™ — By" =k

n’a qu’un nombre fini de solutions en entiers x> 1,y >1, m>1,n>1
avec mn > 4.

Cette proposition est liée a une conjecture de Pillai. Lorsque A = 1, B = 1
et kK =1, cette conjecture porte le nom de conjecture de Catalan, qui
affirme en plus que (x, y, m, n) = (3, 2, 2, 3) est I’'unique solution. En 1976,
R. Tijdeman [32] a montré que I’équation de Catalan n’admet qu’un nombre
fini de solutions.

PROPOSITION 3.11.2. La conjecture abc implique que [I’équation

R

n’admet qu’un nombre fini de solutions en entiers positifs v, w,x,y, m > 1
et n>1 vérifiant (x,v)=1,(y,w)=1 et mn > 4.

Cette proposition est liée a une conjecture de Shorey et Tijdeman
(voir [26], p. 202). Cette conjecture est vraie en particulier si ’une des
variables v, w, x ou y est composée de nombres premiers fixés.
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PROPOSITION 3.11.3. La conjecture abc implique que [’équation
(xHr+1=ym

n’admet qu’un nombre fini de solutions en entiers x>0, y>0, n>1
et m=2.

Cette proposition est liée & un probleme de Brocard (voir [6], D25) et sa
démonstration (voir [17] et [21]) est basée sur l'utilisation des inégalités sui-
vantes, déduites des formules de Stirling et de Chebyshev (voir [19], p. 374),
valables pour x > 2:

(x/e)* < x!,
(3.11.4) IT p < 4%, p premier .

pP<X

PROPOSITION 3.11.5. La conjecture abc implique que [’équation

b
n!' +1=pipi.,

n’admet qu’un nombre fini de solutions en entiers n>1, a>0, b >0
et pr 1 <n<p, ou (p;),i=1 estlasuite des nombres premiers.

Cette proposition est liée a une conjecture d’Erdds-Stewart (voir [6], A2).
Sa démonstration est basée aussi sur les inégalités (3.11.4).

PROPOSITION 3.11.6. La conjecture abc implique que [’équation
X"+ y*=nlz"

n’a qu’un nombre fini de solutions en entiers x>0, y>0, z>0 et
n>4.
Cette proposition est liée & un probléme ouvert sur les équations diophan-
tiennes (voir [6], D2).
ProOPOSITION 3.11.7. La conjecture abc implique que pour tout
entier a > 1, [’équation
xn _ yn

X =)

= @grm

n’a qu’un nombre fini de solutions en entiers x>y >0, z>0, n> 3,
m>1 avec (x,y)=1,3n"1+m-1<1.

Cette proposition est une réponse générale a un probleme de H. Edgar
([6], D10) et de Shorey-Tijdeman ([26], pp. 202, 203).
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PROPOSITION 3.11.8. La conjecture abc implique que I’équation

xm—1 yr—1

x—1 y—1
n’a qu’un nombre fini de solutions en entiers x>y >1 et m>n>3.

La recherche de solutions pour ’équation ci-dessus est appelée probleme
de Goormaghtigh (voir [6], B25). Avec n =3,(x,y,m,n) = (2,5,5,3),
(2, 90, 13, 3) sont les seules solutions connues.

PROPOSITION 3.11.9. La conjecture abc implique que pour tout
entier d > 1, [’équation

x(x+d)...(x+kd) =y"

n’a qu’un nombre fini de solutions en entiers x>0, k=22, y>0 et
n>=2.

Cette proposition montre le lien entre la conjecture abc et les progressions
arithmétiques. P. Erdés et J. L. Selfridge ont montré en 1975 que I’équation
ci-dessus n’a pas de solution dans le cas particulier d = 1 (voir [33] pour plus
de détails).

4. A LA RECHERCHE DE FORMES EFFECTIVES

Soient a, b et c¢ trois entiers positifs, premiers entre eux et vérifiant
a+ b =c. Soit r=r(abc), le radical de abc. On définit le rapport de
Oesterlé-Masser pour le triplet (a, b, ¢) par:

logc
o=oa(a b,c)=——.
logr

On définit de méme le rapport de Szpiro pour le méme triplet par:

logabc

p=p(abc)=
logr

Ce dernier rapport est lié & la conjecture de Szpiro (voir conjecture 3.1.1)
par les courbes elliptiques E, , . que Y. Hellegouarch [9] a mis au point
en 1972 pour étudier le théoréeme de Fermat. C’est en utilisant ces mémes
courbes que K. Ribet a établit le lien entre la conjecture de Shimura-Taniyama-
Weil et le théoréme de Fermat. Pour un triplet (e, b, ¢) d’entiers positifs

vérifiant @ + b = c et (a, b) = 1, la courbe E, , . est définie par:

Eope: y2=x(x—a)(x+b).
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