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Exemple. Si f(n) logx(rt) et m 1, alors

- log 2 log 2
Yé f(n) log logx + - C

n 2 2

+ E E -+ o(i/iog*).
r»i p r(r +l)pr\r\

— A ~
4. Mesure de l'écart entre / et les moyennes /, / et /

Nous allons étudier le moment d'ordre deux (selon le sens des définitions
- A ~ — A —

des moyennes /, / et /) de l'écart entre f(n), f(n) et f(n) et les valeurs
de / sur les diviseurs de n.

Etant donné une fonction arithmétique /, on lui associe les trois
opérateurs

À/(«):= ~£ (fi
T (n) d\n

Af(n):=-i_ £ y id
2œ("> d\n

Ä/(n):=^ ^ (fid)~ fin))2.
2œ("' d\n

(d, n/d) 1

Ainsi on remarque que

Afin)-/- £ { fid)2+ - 2f(h)f(d)
T(n) d | n

~
1

1 fid)2 + fin)2-2^ ^ f{d)
d | n T (n) d\n

1

I fid)2-fin)ï(n) d | n

et donc que

(4.1) Â/(az) —— Yé f(d)2 ~ f(n)2 - /2(n) - f(n)2,
X (/?) d | n

(4.2) Â/(n) £ Yid)fid)2 - /(«)2 /2(n) - /(„)2>^ | n

(4.3) Ä/(n) £ f(d)2-hny=f\ri)-f{ny.^ d\n
(d, n/d) 1
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Le prochain résultat montre que tout comme f, T et T, les opérateurs
Ä, A et À préservent l'additivité. Alors qu'il est facile de vérifier qu'aucun
de ces trois opérateurs ne préserve la multiplicativité, on a le résultat suivant.

Théorème 4.1. Si f e sé alors A/, À/ et Af appartiennent
aussi à //, et en particulier on a

(4.4) À/(n) £ fj f(pm)2I „
1

È /(/>"'))
pa||fll+(Xm=l /7a||rt(l+Ct) \m 1 j

(4.5) Â/(») 1 E f(p Ye ,.?>/,
4 p\n

(4.6) Ä/(«) 1 I f(pa)2.
4 po.||„

Démonstration. Nous allons faire la preuve uniquement pour A, les

autres relations se démontrant de manière analogue. Soient m et n deux
entiers naturels relativement premiers et / une fonction quelconque choisie
dans sd, alors

Af(nm) =—-— E f(d)2 - f(nm)2
T(nm) d | nm

-
1 I {/(</.) + ~ (fin) + f(m)Y

x(n)x{m) dx\n
d 2 I m

Â/(w) + À/(w) - 2f(n)f(m)+
2

E

d2\m

C'est pourquoi le résultat suit de l'égalité

I f(ddf(di)= f-1- I /«/,)) f-T- D /(d2))
T(/|)T(A«) \t(» rfiln / \T(W) rf2|m /

f(n)f(m)
Et le théorème est démontré.

Corollaire 4.2. Si f e Wsé, alors Af(n) — E a(a + 2)f(p)2
12 pa I] n

1 ^> - E f(P)2 À fin) et Af ^ A/. Par ailleurs, s/ /e ^ a/ors
4 pi«

~ A

Af Af et de plus

\I -/(/>)* <Ä/(«) I a
/0?)2 < Â/(K)

4 I „ a (a + l)2
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Remarques

1) Il découle du corollaire 4.2 que si / est totalement additive, l'écart

entre f(n) et f{n) est plus petit qu'entre f(n) et f(n), alors que si / est

fortement additive, c'est le contraire qui se produit.

2) A partir des définitions de À/, Â/, Ä/ et des égalités (4.1), (4.2)

et (4.3), il est intéressant de souligner que, pour toute fonction

arithmétique /, on a les inégalités f2 ^ f2, f2 ^ f2 et f2 ^ /2, et qu'en
— A ~

particulier sur les entiers libres de carrés, on a À f(n) A/(«) À/(«).

5. Généralisations et exemples

Les fonctions /, f et f définies par les égalités (1.3), représentent
essentiellement trois moyennes de / évaluées respectivement sur les diviseurs,
les diviseurs libres de carrés et les diviseurs unitaires d'un entier. Nous

allons maintenant montrer comment certaines propriétés satisfaites par ces

trois fonctions demeurent valables lorsque les moyennes sont évaluées sur
d'autres classes de diviseurs d'un entier.

Etant donné un entier naturel n, on désigne par Dn l'ensemble des

diviseurs (positifs) de n. Soit alors A une famille d'ensembles An tels

que An C Dn pour chaque ne N. Par exemple, en désignant par In
l'ensemble des diviseurs impairs de l'entier positif n, la famille A constituée
de tous les ensembles In est un exemple typique.

Etant donné une famille A : {An : n e N}, alors à chaque ensemble An,
on associe son cardinal soit la fonction iA(n) définie par

M«):= E 1

d | n

d g A n

qu'on peut aussi écrire (1 *4 1) (n), avec *,4 pour signifier que seuls les

diviseurs d de n qui appartiennent à An sont pris en considération. Nous nous
intéressons ici aux familles pour lesquelles les ensembles A„ possèdent une
fonction ta multiplicative et jamais nulle.

Exemples. Soit k e N et 2^yeR. Définissons de plus P(1) 1

et P{n) max{p \p\n]. Alors les ensembles

An(k) {d:
{d

B„(y) {d

d\n et d p\xp\2 • • • pa/, 0 ^ 0q < k)
d I n et d est £-libre}, k ^ 2,

d I n et P{d) ^ y},

En(k) K)-d : dk\n et dk, —1=1
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