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142 F. MATHEUS

Considérons maintenant une isométrie hyperbolique j telle que j(K’) ne
contienne pas 0. Notons %, ’homothétie euclidienne de centre 0 de rapport
1 + A. On définit "emplacement 2] (A) comme étant ’image de 57! par
I’application j~! o A, o J.

Avec les notations du lemme 2, on pose

_dug (1)

t
S .
¢, (s) a0 -

@ vérifie i) d’aprés ce lemme. De plus, comme j est une isométrie, on a
d’aprés le lemme 3,
cosh d. (s)

t
S) =
0:(5) cosh r; (7)

ol d!(s) est la distance a I’origine du centre du cercle de j(#°.) corres-
pondant au sommet s. Déja, lim,_ o coshr;(¢) = 1 d’apres le point iii) de
la proposition du IV.

Notons & la distance de 0 a j(K’), et o,c" les centres des cercles de
j(&#°!) images par j de deux cercles tangents de 27, correspondants aux
sommets s et s de S¥.

Alors les longueurs c?é (s) et c?é (s") des cOtés 0o et 0o’ du triangle (0cc”’)
sont minorées par 8§ > 0 tandis que la longueur r;(¢) + rj'(z‘) du c6té oo’
tend vers 0 avec € uniformément en 7. On en déduit

cosh d’ (s)

t
S
im = =1, dou lim (pf( ) =1
e—0 COShdS(S’) e—0 (DS(S,)

4

la limite étant uniforme en ¢, ce qui prouve le point ii). [

VI. INEGALITE DE HARNACK

Le but de cette section est de terminer la preuve du théoréme de Rodin-
Sullivan en démontrant la

PROPOSITION (Inégalité de Harnack). Soit K wun compact d’intérieur
non vide contenu dans % et A,B deux réels vérifiant 0 < A < B.

Pour tout compact K d’intérieur non vide contenu dans K, il existe
une constante C = C(K) possédant la propriété suivante:
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Soit A, wun laplacien discret sur Sf de la forme A;@(s) = c.o(s)
+ Y ci..o(s’) et dont les coefficients vérifient: Vs,s’ € Sf, ve > 0,

s’ ~s
coel[A,B] et —ci.€elA,B].

Soit . une fonction définie sur Sf , @ valeurs positives non nulles et
telle que A,y = 0.

Alors pour tous sommets voisins s,s’ € Sf , ona:

' i) I __C®
P, (s) " )/—Loge

Nous différons provisoirement la preuve de cette proposition, et mon-
trons maintenant pourquoi celle-ci implique le lemme-clé de la section II. Soit
donc K un compact d’intérieur non vide de %. Il s’agit de voir que, grace a
la proposition, si s,s” € SX sont voisins, alors

T
11m~—s—,=1
e—~0 I,

et ce uniformément sur S¥. On part de

0
~s ~s’ _ s s’ °s . s’
Uy — U, =u, —u, + | (uy—u;)dt
Jo
N1 Lolsl
=u, —ul + uﬁ(l——,%)dt.
Jo us
On a
S,
, tanh =
u; — ul = Log =2
>
tanh

avec r§~~ ri’ =0 quand &— 0 uniformément par rapport a s et s ~ s
dans Sy, de sorte que uf — u® — 0.

Soit ¢, la fonction définie dans le lemme 4 de la section V avec un
compact K contenu dans % et dont lintérieur contient K.

Soit y; la fonction définie par u(¢) = ¢’ (s) - y!(s). D’aprés le lemme 1
de V, y, est solution d’une équation du type As,twf; = 0. Comme u,(¢) < 0
et que ¢. < 0, on a que w. > 0. De plus, les coefficients de AE,, sont de
la forme ¢G5, = @L(s) 0. (s") ¢ . Il résulte du point ii) de la proposition du
IV, qu’il existe deux constantes A et B > A > 0 telles que 4 < — Cor < B

et A <c;<B. La proposition de la présente section assure alors que
!
Ye(s)

We(s”)

tend vers 1 uniformément sur Sf ¢t par rapport a ¢ € [0, 1]. D’apres
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t

le point ii) du lemme 4 de V, le quotient possede la méme propriété
ua ( )

Uz (1)

0g(s”)
tend vers O lorsque € — 0 uniformément sur

de sorte que sup \ 1 -
tel0,1]

SX. Comme # < 0 on a donc:

1 Z,.{S, ® o7 1
€ € *s
| ( —‘—S)dt < sup ST X 5 (“‘ug)dt
0 ua [0, 1] us 0
et
1 rs c3€
. - tanh —- tanh ==
— | uldt=u’ - u’=Log > < Log——=
€ € € rs X
0 tanh > tanh 2—63

ou c; est la constante fournie par le point iii) de la proposition de IV.
D’apres les propriétés de la fonction tanh au voisinage de 0, cette derniére
quantité est maJoree par une constante ne dependant pas de €. On en déduit

que lim | fo(u —u Ydt | = 0 uniformément sur K. On en déduit donc que
e—0
Log (tanh —/ tanh 5 u’ — u® tend vers 0 avec g, et ce uniformément

sur K, de sorte que le rapport (tanh / tanh 5 ) tend vers 1. Comme les
rayons r; et r: " tendent vers O lorsque e~ 0 (résulte des points i) et iii)

~S

de la proposition du IV), le rapport ; tend lui aussi vers 1 avec € et

uniformément sur k, ce qui est bien I’énoncé du lemme-clé. La version quan-
titative de ce lemme provient de I’estimation donnée dans la proposition.

Le théoréme de Rodin-Sullivan est donc démontré modulo I’inégalité de
Harnack. Nous terminons donc par la

Preuve de la proposition. Comme annoncé dans l’introduction, nous
obtenons 1’inégalité de Harnack par voie probabiliste. Le début de la preuve
que voici s’inspire de [St2], §9.3 et de [Sp], §13-P1.

Introduisons la matrice de transition P, = [p]s s sk associée au
laplacien A et définie par:

€
ss’

Py = — sis~s'etp;,=0sinon .

N

On a p°,. €]0, 1] et Vs € IX (les sommets intérieurs de S¥), ¥ pi. = 1.

s'~s
De plus, il existe deux constantes o et f ne dépendant que de A4 et B
telles que 0 < o < p. <P < 1, Vg, ¥s e IX, Vs’ € ST tel que 5" ~ s.
Sur 'univers Q, = {® = (0o, ®;, ®;3, ...) € (Sf)N} on consideére la tribu
cylindrique X, engendrée par les événements {w; = si,..., ®;, = s,} ou
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peN* i, .,i,eN, 1 << < ip, € S, ...s8p € Sf. On note X, la
variable aléatoire sur (Q., X.) a valeurs dans Sf et définie par Vo € Q.,
X, (o) = w,.

Fixons un sommet s € Sf . On définit la probabilité Ps sur (Q., X;)
associée a la marche aléatoire partant de s, de la facon suivante:

. K
p,, Stuel;

P.(Xo=s)=1let Ps(X,:1=0|X,=u) = ,
(Xo =) © X ( ) {SM muer

(BX sont les sommets fronti¢res de S¢). En particulier, on décide que les
sommets de BY sont absorbants.

Soit Tpx le premier temps d’atteinte du bord Bf . C’est le temps d’arrét
défini par: T5¢() = inf{n € N tel que X,(w) € Bf}. On a le

LEMME 1. Le temps d’arrét 7tk est fini Ps-presque stirement.

Preuve du lemme 1. Soit h la fonction définie sur Sf par h(s) = Py{tg¥
< +o}. La fonction # est harmonique pour A, et vérifie h(s) =1,
Vs € BX de sorte que, par unicité de la solution du probleme de Dirichlet,
h(s)=1,VseIf. [

Notons maintenant E; I’espérance pour la probabilit¢ P,. Pour toute
fonction harmonique ¥, on a E;¥Y(X,) = ¥Y(s), puis (récurrence):
E,¥Y(X,) = Y(s). Plus généralement, on a le

LEMME 2. Pour toute fonction harmonique Y et pour tout temps
d’arrét 1 vérifiant T <1k, ona: E;¥P(X;)=Y(s).

Preuve du lemme 2. Nous nous contentons ici de résumer la preuve de
J.L. Doob de ce résultat classique (voir [Do], théoreme 2.1, p. 437).

Soit .%#, la tribu sur Q, engendrée par X,,...,X,. On observe que
(P(X:.n); Z,) est une martingale, de sorte que la suite des espérances
E,¥Y(X.,.,) est constante, donc:

EY(X:0n) = EsY(Xonn-1) = -0 = E;W(Xo00) = E; Y (X)) = ¥(s) .

D’autre part, comme Sf est fini, la suite de fonctions W(X.,.,) est bornée,
de sorte que le théoréme de convergence dominée assure que

n— +o

lim E;W(X:.,) = 5 Y (X.)dP;.
{T< + =}

Comme T < Tk qui est presque slrement fini, on en déduit

Y(s)=E¥Y(X,). U
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Terminons la preuve de la proposition. Soit v € Sf un sommet voisin
de s, et 1, le temps d’arrét défini par:

T,(®) = inf{n € N tel que X,(w) = v}.

On applique le lemme 2 au temps d’arrét T = 7,A 1% et a la fonction y, de
I’énoncé de la proposition. Il vient:
Ve (s) = § Ve (X.)dP; = S WE(XTU)dPS+ WS(XTB{;()dPS'

Q {t=1,} {r=15K}

€

Comme . est positive et que X;, = v, on en déduit:

we(S) P WS(U) X PS{T = Tu} ,

Il reste donc a mesurer 1’écart a 1 de P,{t = 1,} lorsque € — 0.

Fixons le sommet v e/ f , et considérons la fonction ® donnée par
®(s) = P;{1 = 1,}: c’est la probabilité qu’une marche aléatoire partant de s
atteigne v avant le bord. On observe que ®(@) =1, que ®(s) =0 si
s € s e B et que ® est harmonique sur S sauf en v et sur B,

Nous allons donner une interprétation électrique de ®. Considérons un
circuit électrique de combinatoire 7 f (i.e. la trace de 7, sur K) tel que la
conductance de I’aréte ss’ soit — c®,,. Si on branche tous les sommets de B
au potentiel 0 et le sommet v au potentiel 1 alors le potentiel au sommet s n’est
autre que @ (s) (voir [D-S], p. 47). En égalant la puissance dissipée par le circuit

et la puissance fournie par le générateur (voir [D-S], p. 61), on a:

1 ;
= L Te[o@s) - ()2 = CUl [00) ~ OB =—
2 5-s R ot

ou C%” (resp. RY%’) désigne la conductance effective (resp. résistance
effective) du circuit entre v et le bord B = BY.

Il reste & évaluer RY;”. C’est I’objet du

LEMME 3. [/ existe une constante c; (K) ne dépendant que de K telle
a —Loge
que VYveS¥ R > TR
Ce lemme termine la preuve de la proposition. En effet, pour tous sommets

ve SXetseSKvoisin de v, on a:

Cl(]?)
R%E = —Loge

C — . .
avec ¢ =1 /2¢,(K), ce qui est bien
[/~ Loge A

1
5 A0 @) - @(5)]2 <

de sorte que 1 — P{t =1,} <

I’estimation annoncée.
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Preuve du lemme 3. On compare le circuit électrique étudié au circuit

standard de combinatoire % X pour lequel les résistances de toutes les arétes

sont égales & 1. On note R’Z la résistance effective du circuit standard

entre v et B = Bf. D’aprés le principe de Dirichlet (voir [D-S], p. 63-64)

on a:
1

v, B
Reff

= min {% Y - o) —o@s)]2 o eRS, 0 =0 sur BX, o(v) = 1}

s~s’

et

~ . B
RU 25~s'

eff

— = min {-1- ) [@(S)—w(S’)]ZimeRS§,®=OsurBf,<P(U)=1}-

Compte tenu des estimations 0 < 4 < — Ci,, < B, on a:

N

Iéu,B
K eff
Vvel,, A< 5 <B.
Reff
La fin de la preuve du lemme 3 repose sur les deux lemmes suivants. On

commence par évaluer R’ dans un cas particulier.

LEMME 4. Si © f est isomorphe a la triangulation d’un hexagone
régulier de c6té N par des triangles équilatéraux unités et si v est le
centre de Z X, alors on a:

DU, B 1
Ry > E LogN .

FIGURE 3

La triangulation % f avec N =3
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Preuve du lemme 4. D’aprés la loi de monotonie de Rayleigh ([D-S],
p. 67),~si I’une des résistances du circuit standard diminue, alors la résis-
tance RY; diminue. Remplagons toute résistance joignant deux sommets
a méme distance combinatoire de v par la résistance nulle, de sorte que, pour
tout k € {1, 2, ..., N}, les sommets a distance combinatoire ¥ de v sont au

méme potentiel. Le circuit standard ainsi diminué est équivalent au circuit
suivant (cf. fig. 4):

2N -6

résistances résistances

résistances

FiGURE 4
Le circuit standard diminué

Comme n résistances de 1 Ohm en paralléle sont €quivalentes a une

résistance de ~ Ohm, la résistance du circuit ci-dessus entre ses deux extré-
N
. 4 4 Y 1 - r »
mités est égale & ) pr—¢ carily a 12k — 6 résistances entre la k& — 1¢ et
k=1

la k¢ génération.
La résistance effective du circuit non modifié vérifie donc:
N 1 1

RuE > ——— > —LogN.
fr ,El 12k -6 12

LEMME 5. Soit d(v) le rayon de la plus grande boule combinatoire
de centre v et contenu dans SX.

Alors on a R%F > - Logd ().

Preuve du lemme 5. @ X contient une sous-triangulation, isomorphe a
la triangulation d’un hexagone régulier de coté d(v) par des triangles équi-
latéraux unités, dont le centre est v, et dont le bord est noté B’. En remplacant
toutes les résistances en dehors de ce sous-circuit par des résistances nulles,
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on améne le bord B’ au potentiel 0. Toujours d’aprés la loi de monotonie
de Rayleigh, on a alors:

1
R4 > R4F > — Logd(v) ,
12
la derniére inégalité résultant du lemme 4. [
Fin de la preuve du lemme 3. Soit K le compact de I’énoncé de la propo-
sition. Rappelons qu ’il est contenu dans I’intérieur de K. Notons 6 la dlstance

hyperbohque de K a D2\K. Pour tout sommet v € S on a d(v) =
donc Reff Z — i Log Se, ce qui est bien le résultat cherche. L]

VII. COMMENTAIRES

1. SUR L’INEGALITE DE HARNACK

L’estimation obtenue ici en n’est ni optimale, ni propre aux

|/~ Loge
réseaux récurrents, comme la preuve peut le laisser penser. Les résultats les

plus significatifs ont été obtenu par Gregory Lawler (voir [Lal] et [La2]).
Soit # une fonction de Z<¢ dans R. On pose

1
Aou(x) = u(x) — > Y u(s)

S~ X

(Ia somme est étendue a tous les voisins de x dans le réseau Z9).

THEOREME 1. [l existe une constante C telle que si u est une fonction

harmonique (pour Ay) positive sur la boule combinatoire de 79 de
centre 0 de rayon N, alors

u(0)
u(l)
Dans le cas de la dimension 3, ce théoréme avait déja été démontré par

R.J. Duffin ([Du]) dans les années cinquante. Dans [L1], G.Lawler étudie
également les opérateurs a coefficients variables:

|C
& —

N

THEOREME 2. Soit A,B deux réels vérifiant 0 < A < B. 1l existe

alors deux réels C et a,a €]0, 1], qui ne dépendent quede A,B et d,
et possédant la propriété suivante:
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