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142 F. MATHÉUS

Considérons maintenant une isométrie hyperbolique j telle que j(K') ne
contienne pas 0. Notons hx l'homothétie euclidienne de centre 0 de rapport
1 + X. On définit l'emplacement ^A[{X) comme étant l'image de par
l'application j~l o hx ° y.

Avec les notations du lemme 2, on pose

<pUs)
duseJ(t)

dX x o

(Pg vérifie i) d'après ce lemme. De plus, comme j est une isométrie, on a

d'après le lemme 3,

cosh(s)
(p, O)

cosh rl(t)
où d[(s) est la distance à l'origine du centre du cercle de {)
correspondant au sommet s. Déjà, lim8^0 cosh rse (t) 1 d'après le point iii) de

la proposition du IV.
Notons 6 la distance de 0 à j(K'), et o,o' les centres des cercles de

g) images par j de deux cercles tangents de correspondants aux

sommets s et s' de Sf.
Alors les longueurs d[(s) et d[(s') des côtés Oo et Oo' du triangle (Ooo')

sont minorées par 8 > 0 tandis que la longueur rse(t) + rse'(t) du côté gg'
tend vers 0 avec 8 uniformément en t. On en déduit

coshers) (p
lim — s= 1 d ou lim — 1

s^o coshtfeCO 8->o (p8(s')

la limite étant uniforme en t, ce qui prouve le point ii).

VI. Inégalité de Harnack

Le but de cette section est de terminer la preuve du théorème de Rodin-
Sullivan en démontrant la

Proposition (Inégalité de Harnack). Soit K un compact d'intérieur
non vide contenu dans % et A,B deux réels vérifiant 0 < A < B.

~ o
Pour tout compact K d'intérieur non vide contenu dans K, il existe

une constante C C{K) possédant la propriété suivante:
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Soit Ae un laplacien discret sur Sf de la forme AgipOs1) c®(p(5')

+ S et dont les coefficients vérifient: Vs, s'e Sf, Vs > 0,
s' ~ s

c)e[A,B] et - c]s, e[A,B].
Soit \j/E une fonction définie sur Sf, à valeurs positives non nulles et

telle que ÀE vj/e 0.

Alors pour tous sommets voisins s, s' e S?, on a:

^(s)
_ 1

(Sf
C(K)

]/- Loge

Nous différons provisoirement la preuve de cette proposition, et montrons

maintenant pourquoi celle-ci implique le lemme-clé de la section II. Soit
donc K un compact d'intérieur non vide de %. Il s'agit de voir que, grâce à

la proposition, si s, s' e Sf sont voisins, alors

r glim ^ 1

s -* o r p

et ce uniformément sur Sf. On part de

K- ùl' u\wf + | (ùl -

ûl (l
0 \

Ù*'
ui- ut + \ ut 1 —?~\dt

On a

tanh —
Log^v^tanh y

avec rf~ rse - 0 quand s -> 0 uniformément par rapport à s et s' ~ s
dans Sf, de sorte que us& - use' -> 0.

Soit <pg la fonction définie dans le lemme 4 de la section V avec un
compact K contenu dans % et dont l'intérieur contient K.

Soit y* la fonction définie par ùsB(i) cp{e(s) • D'après le lemme 1

de V, \j/g est solution d'une équation du type AE>,i|/g 0. Comme ùe(t) < 0
et que (p^ < 0, on a que > 0. De plus, les coefficients de Äe>, sont de
la forme css, cpe (s) (p le (s )cSS'. Il résulte du point ii) de la proposition du
IV, qu'il existe deux constantes A et B > A > 0 telles que A ^ - c]s, ^ B
et A ^ c s ^ B. La proposition de la présente section assure alors que
v£(j) ~

fff) tend vers 1 uniformément sur Sf et par rapport à e[0, 1], D'après



144 F. MATHÉUS

le point ii) du lemme 4 de V, le quotient yy- possède la même propriété
9 e (s

tend vers 0 lorsque sde sorte que sup
t e [0, 1]

1 - "e (0
*1(0

0 uniformément sur

Sc Comme ut < 0 on a donc:

/ w g'\ iif'
^ sup 1 - — x

V uj [0,1] J

et

ù\dt u\ - use Log
tanh y
tanh 7

< Log

(- ù9}dt

tanh y
tanh2f;

où c3 est la constante fournie par le point iii) de la proposition de IV.
D'après les propriétés de la fonction tanh au voisinage de 0, cette dernière

quantité est majorée par une constante ne dépendant pas de s. On en déduit

que lim | j0(zis& - ùse')dt \ =0 uniformément sur K. On en déduit donc que
£ -> 0

Log (tanh y/tanh y) üse — wf tend vers 0 avec s, et ce uniformément

sur K, de sorte que le rapport (tanh y /tanh y) tend vers 1. Comme les

rayons rse et rf tendent vers 0 lorsque s -> 0 (résulte des points i) et iii)
rïde la proposition du IV), le rapport — tend lui aussi vers 1 avec s et

__
r £

uniformément sur K, ce qui est bien l'énoncé du lemme-clé. La version
quantitative de ce lemme provient de l'estimation donnée dans la proposition.

Le théorème de Rodin-Sullivan est donc démontré modulo l'inégalité de

Harnack. Nous terminons donc par la

Preuve de la proposition. Comme annoncé dans l'introduction, nous

obtenons l'inégalité de Harnack par voie probabiliste. Le début de la preuve

que voici s'inspire de [St2], §9.3 et de [Sp], § 13-P1.

Introduisons la matrice de transition P& [pBss,]SiS> e associée au

laplacien Às et définie par:

p]s. - -y si s ~ s' et p]s, 0 sinon
C

S

On a p]s,e]0,1[ et V,s e /f (les sommets intérieurs de Sf), £ 1.
s' ~ S

De plus, il existe deux constantes a et ß ne dépendant que de et

telles que 0 < a < p%,<ß < 1, Vs, Vs e/f, Vs' e Sf tel que 5' ~ 5.

Sur l'univers Qs {co (<n0. co2, •••) e (Sf)N} on considère la tribu

cylindrique £s engendrée par les événements {«,,= Si 5P} où
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p e N*, h*C e N, i\ < ii < * * * < h, et Si, Sp e Sf. On note Xn la

variable aléatoire sur (Qe,Ee) à valeurs dans Sf et définie par Vco e Qe,

X„{(o) co„.

Fixons un sommet s e Sf. On définit la probabilité Ps sur (C2E,£E)

associée à la marche aléatoire partant de s, de la façon suivante:

[ si n e /f
Ps(X0— s)1 et Ps(Xn +1 o|X„ j K

[ oW) d SI U G Bg

(i?f sont les sommets frontières de Sf). En particulier, on décide que les

sommets de Bf sont absorbants.

Soit tbk le premier temps d'atteinte du bord C'est le temps d'arrêt

défini par: x5f(co) inf{w e N tel que Xn((ù) e B*}. On a le

Lemme 1. Le temps d'arrêt tb* est fini Ps-presque sûrement.

Preuve du lemme 1. Soit h la fonction définie sur S* par h (s) Ps{tb*

< +oo}. La fonction h est harmonique pour À£ et vérifie h (s) 1,

Vs e B* de sorte que, par unicité de la solution du problème de Dirichlet,
h (s) 1, ys e Iç.

Notons maintenant E5 l'espérance pour la probabilité Ps. Pour toute
fonction harmonique ¥, on a Es ^(A^) ¥(s), puis (récurrence):

E, ¥ (Xn ^(s). Plus généralement, on a le

Lemme 2. Pour toute fonction harmonique ¥ et pour tout temps
d'arrêt t vérifiant i < %B*, on a: Es(XT) ¥(£).

Preuve du lemme 2. Nous nous contentons ici de résumer la preuve de

J.L. Doob de ce résultat classique (voir [Do], théorème 2.1, p. 437).

Soit la tribu sur Qg engendrée par X0, Xn. On observe que

(¥ (XT A „ ; yn est une martingale, de sorte que la suite des espérances

E5A„) est constante, donc:

Es^(XTAn) - E^(Xta(/7_1}) « ••• Esy(XTA0) Esy(X0) V(s)

D'autre part, comme Sf est fini, la suite de fonctions xE(XTAn) est bornée,
de sorte que le théorème de convergence dominée assure que

lim EsV(XXAn) ¥(Xr)dPs.
n^+°° J { T < + 00 }

Comme x ^ iB« qui est presque sûrement fini, on en déduit

¥(*) F./l'(A't)
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Terminons la preuve de la proposition. Soit v e Sf un sommet voisin
de s, et le temps d'arrêt défini par:

Tj,(cd) inf{n e N tel que Xn(où) - u}

On applique le lemme 2 au temps d'arrêt t a ibk et à la fonction \j/8 de

l'énoncé de la proposition. Il vient:

Ve(s)« \|Js(XT)dPs= \|je(XTu)dPs+ \|fe(XTBK)dPs.
J Qe J {i TU}

J {t TBK}

Comme \j/e est positive et que XTu u, on en déduit:

VsOO ^ \j/e(ü) x Ps{ t t,}
Il reste donc à mesurer l'écart à 1 de P5{t xu) lorsque s -> 0.

Fixons le sommet v e /f, et considérons la fonction <I> donnée par
0(5) P5{t Ty} : c'est la probabilité qu'une marche aléatoire partant de s

atteigne v avant le bord. On observe que ®(T) 1, que 0(s) 0 si

s e s e B* et que O est harmonique sur Sf sauf en v et sur jBf.
Nous allons donner une interprétation électrique de O. Considérons un

circuit électrique de combinatoire (i.e. la trace de sur K) tel que la
conductance de l'arête ss' soit - c\s,. Si on branche tous les sommets de B*
au potentiel 0 et le sommet v au potentiel 1 alors le potentiel au sommet s n'est
autre que O (5) (voir [D-S], p. 47). En égalant la puissance dissipée par le circuit
et la puissance fournie par le générateur (voir [D-S], p. 61), on a:

2 S~ s' R eff

où Clif (resp. Rdésigne la conductance effective (resp. résistance

effective) du circuit entre u et le bord B B*.
Il reste à évaluer Rue'fîB. C'est l'objet du

Lemme 3. Il existe une constante cx (K) ne dépendant que de K telle

que VueS*9Riï>^.
Ce lemme termine la preuve de la proposition. En effet, pour tous sommets

u e S* et s e Sf voisin de u, on a:

1
r

1 Ci(K)

de sorte que 1 - Ps{i tJ ^ c
avec c i /ic^K), ce qui est bien

h-Logs y A

l'estimation annoncée.
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Preuve du lemme 3. On compare le circuit électrique étudié au circuit
standard de combinatoire W f pour lequel les résistances de toutes les arêtes

sont égales à 1. On note R^f la résistance effective du circuit standard
entre u et B D'après le principe de Dirichlet (voir [D-S], p. 63-64)

on a:

u, B

(1
un < -U

^eff

min { - -<4'[<P(s) - <P(-s' )]2 |<P e Rsscp 0 sur 5f, <p(u) 1

et
1

——- minnv,ß
eff

- ü [<p(s) - cp(s')]21 (P 6 RSS cp 0 sur 5f, <p(u) 1

2 s ~ s'

Compte tenu des estimations 0 < A ^ - CESS, ^ B, on a:

R u, B

Vu e /f, A ^ ~ ^ Bs nii,5
eff

La fin de la preuve du lemme 3 repose sur les deux lemmes suivants. On
commence par évaluer Rujf dans un cas particulier.

Lemme 4. Si est isomorphe à la triangulation d'un hexagone
régulier de côté N par des triangles équilatéraux unités et si u est le
centre de alors on a:

R%B^ Log

Figure 3

La triangulation ^ f avec N 3
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Preuve du lemme 4. D'après la loi de monotonie de Rayleigh ([D-S],
p. 67), si l'une des résistances du circuit standard diminue, alors la
résistance R^f diminue. Remplaçons toute résistance joignant deux sommets
à même distance combinatoire de u par la résistance nulle, de sorte que, pour
tout k e {1,2, ...,7V}, les sommets à distance combinatoire k de u sont au
même potentiel. Le circuit standard ainsi diminué est équivalent au circuit
suivant (cf. fig. 4):

2N - 6

résistances

Figure 4

Le circuit standard diminué

6

résistances

18

résistances

Comme n résistances de 1 Ohm en parallèle sont équivalentes à une

résistance de ~n Ohm, la résistance du circuit ci-dessus entre ses deux extré-
N

î
mités est égale à £ 12^_6 car il y a 12k - 6 résistances entre la k - Ie et

k 1

la ke génération.
La résistance effective du circuit non modifié vérifie donc:

N 1 1

Kif >E îï—Logk-112 k- 6 12

Lemme 5. Soit d(u) le rayon de la plus grande boule combinatoire
de centre u et contenu dans S*.

Alors on a Rve'{fB ^ ^ Logd(u).

Preuve du lemme 5. ffî* contient une sous-triangulation, isomorphe à

la triangulation d'un hexagone régulier de côté d(u) par des triangles équi-
latéraux unités, dont le centre est u, et dont le bord est noté B'. En remplaçant
toutes les résistances en dehors de ce sous-circuit par des résistances nulles,
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on amène le bord B' au potentiel 0. Toujours d'après la loi de monotonie

de Rayleigh, on a alors:

^eff5 ^ ^eff ^ ^2
^Og £/(*>) '

la dernière inégalité résultant du lemme 4. D

Fin de la preuve du lemme 3. Soit K le compact de l'énoncé de la proposition.

Rappelons qu'il est contenu dans l'intérieur de K. Notons ô la distance

hyperbolique de K à D2\^. Pour tout sommet v e Sf on a d(u) ^ -

donc Rlif ^ - j^Logôs, ce qui est bien le résultat cherché.

VII. Commentaires

1. Sur l'inégalité de Harnack

L'estimation obtenue ici en
1

n'est ni optimale, ni propre aux
]/ - Log s

réseaux récurrents, comme la preuve peut le laisser penser. Les résultats les

plus significatifs ont été obtenu par Gregory Lawler (voir [Lal] et [La2]).
Soit u une fonction de Zd dans R. On pose

1 _Aqu(x) u{x) 2, u(s)
2d s~x

(la somme est étendue à tous les voisins de x dans le réseau Zd).

Théorème 1. Il existe une constante C telle que si u est une fonction
harmonique (pour À0) positive sur la boule combinatoire de Zd de

centre 0 de rayon TV, alors

m _ 1

wo)
c

^ —.
TV

Dans le cas de la dimension 3, ce théorème avait déjà été démontré par
R.J. Duffin ([Du]) dans les années cinquante. Dans [Ll], G.Lawler étudie
également les opérateurs à coefficients variables:

Théorème 2. Soit A,B deux réels vérifiant 0 < A < B. Il existe
alors deux réels C et a, a e]0, 1[, qui ne dépendent que de A, B et d,
et possédant la propriété suivante:
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