All volumes

L'Enseignement Mathématique

L'Enseignement Mathématique Band 23 (1977)
Heading Page
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Titelseiten
Inhaltsverzeichnis
Titelseiten
Register
Titelseiten
Artikel: KRITISCHE PUNKTE UND KRÜMMUNG FÜR DIE MENGEN DES KONVEXRINGES 1
Bibliographie 6
Artikel: QUADRATIC FORMS IN AN ADELIC SETTING 7
Kapitel: 1. Introduction 7
Kapitel: 2. The Mean Value Formula 7
Kapitel: 3. Formulation of Siegel's Theorem 8
Kapitel: 4. Derivation of Siegel's Theorem 9
Bibliographie 12
Artikel: ON THE EVALUATION OF GAUSSIAN SUMS FOR NON-PRIMITIVE DIRICHLET CHARACTERS 13
Kapitel: 1. Introduction 13
Kapitel: 2. Proof of theorem B 14
Kapitel: 4. Special cases 17
Bibliographie 18
Artikel: ON THE NUMBER OF ZEROS OF FUNCTIONS 19
Kapitel: 0. Introduction 19
Kapitel: 1. A BASIC LEMMA 20
Kapitel: 2. A USEFUL IDENTITY 21
Kapitel: 3. An estimation by interpolation 23
Kapitel: 4. EXPONENTIAL POLYNOMIALS 26
Kapitel: 5. Further results 35
Bibliographie 37
Artikel: STABILITY OF PROJECTIVE VARIETIES 39
Kurzfassung: Contents 39
Kapitel: Introduction 39
Kapitel: §1. Stable points of représentation, examples and Chow forms 41
Kapitel: §2. A CRITERION FOR $X^r \subset P^n$ TO BE STABLE 54
Kapitel: §3. Effect of Singular Points on Stability 68
Kapitel: §4. Asymptotic Stability of Canonically Polarized Curves 82
Kapitel: §5. The Moduli Space of Stable Curves 92
Kapitel: LINE BUNDLES ON THE MODULI SPACE 99
Anhang: APPENDIX 108
Bibliographie 110
Artikel: GÉNÉRALISATION DES SUITES SPECTRALES 111
Bibliographie 116
Artikel: PROFILS ET RÉDUITE TRANSJORDANIENNE D'UNE MATRICE CARRÉE 117
Kapitel: I. Itération d'un endomorphisme (singulier) 117
Kapitel: II. Analyse d'un endomorphisme f. Théorèmes préliminaires 119
Kapitel: III. RÉDUITE TRANSJORDANIENNE DE f 121
Kapitel: IV. Condition nécessaire et suffisante de similitude DE DEUX MATRICES 124
Kapitel: V. Applications 125
Artikel: EXTENSION AND LIFTING OF $C^\infty$ WHITNEY FIELDS 129
Bibliographie 137
Artikel: SISTEMI NORMALI DI GENERATORI PER GLI IDEALI DI Z [x] 139
Vorwort: Premessa 139
Kapitel: 1. Sistemi normali 139
Kapitel: 2. Segnature 141
Kapitel: 3. Teorema Fondamentale 145
Kapitel: Nota 147
Bibliographie 148
Rubrik: COMMISSION INTERNATIONALE DE L'ENSEIGNEMENT MATHÉMATIQUE 151
Kapitel: ANNOUNCEMENT FROM THE INTERNATIONAL COMMISSION ON MATHEMATICAL INSTRUCTION ABOUT AN ICMI-SYMPOSIUM TO BE HELD AT THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, HELSINKI, AUGUST 1978, ON THE FOLLOWING THEME: 151
Artikel: THE GELFAND-NAIMARK THEOREMS FOR C*-ALGEBRAS 153
Kapitel: 1. Introduction 153
Kapitel: 2. Definitions and motivation 154
Kapitel: 3. Historical Development 155
Kapitel: 4. The Gelfand-Naimark representation theorem for commutative b*-algebras 157
Kapitel: 5. The Gelfand-Naimark theorem for arbitrary B*-algebras 160
Kapitel: 6. Geometrical characterizations of B*-algebras 172
Kapitel: 7. Further weakening of the B*-axioms 175
Kapitel: 8. Applications 177
Bibliographie 178
Artikel: REPRESENTATION OF COMPLETELY CONVEX FUNCTIONS BY THE EXTREME-POINT METHOD 181
Kapitel: 0. Introduction 181
Kapitel: 1. Completely convex functions 182
Kapitel: 2. Determination of the extreme rays of W 184
Kapitel: 3. Determination of a base for W 187
Bibliographie 190
Artikel: SOME CONTRIBUTIONS OF BENO ECKMANN TO THE DEVELOPMENT OF TOPOLOGY AND RELATED FIELDS 191
Kapitel: Introduction 191
Kapitel: 1. Continuous solutions of Systems of linear equations 193
Kapitel: 2. A group theoretical proof of the Hurwitz-Radon Theorem 195
Kapitel: 3. Complexes with operators 197
Kapitel: 5. Simple homotopy type 202
Bibliographie 204
Artikel: ON THE CHARACTERISTIC CLASSES OF GROUPS OF DIFFEOMORPHISMS 209
Bibliographie 219
Artikel: ALTERNATIVE HOMOTOPY THEORIES 221
Kapitel: 1. Introduction 221
Kapitel: 2. EQUIVARIANT HOMOTOPY THEORY 223
Kapitel: 3. Some examples 225
Kapitel: 4. Ex-HOMOTOPY THEORY 227
Kapitel: 5. The register theorem 229
Kapitel: 6. The exact sequence 230
Kapitel: 7. The adjoint G-bundle 232
Kapitel: 8. Examples 235
Bibliographie 237
Artikel: LA (2p+1)-ÈME DÉVIATION D'UN ANNEAU LOCAL 239
Kapitel: Introduction 240
Kapitel: 2p premières déviations 241
Kapitel: 2p + 1-ème déviation 243
Kapitel: Situation générique 245
Kapitel: Conclusion 246
Bibliographie 247
Artikel: CHARACTERISTIC NUMBERS OF 3-MANIFOLDS 249
Bibliographie 254
Artikel: ON REPRESENTATION OF FUNCTIONS BY MEANS OF SUPERPOSITIONS AND RELATED TOPICS 255
Kurzfassung: CONTENTS 255
Kapitel: Preface 256
Kapitel: Chapter 1. — Survey of results 257
Kapitel: §1. Superpositions of analytic functions 258
Kapitel: §2. The problem of resolvents 259
Kapitel: §3. Superpositions of smooth functions and the theory of approximation 261
Kapitel: §4. Superpositions of continuons functions 263
Kapitel: §5. Linear superpositions 265
Kapitel: Chapter 2. — Superpositions of smooth functions 267
Kapitel: §1. The notion of entropy 267
Kapitel: §2. The entropy of the space of smooth functions 269
Kapitel: §3. Theorem on superpositions of smooth functions 276
Kapitel: Chapter 3. — Superpositions of continuous functions 277
Kapitel: §1. Certain improvements of Kolmogorov 's theorem 277
Kapitel: §2. The theorem of Kahane 279
Kapitel: §3. The main lemma 280
Kapitel: §4. The proof of the theorem 282
Kapitel: Chapter 4. — Linear superpositions 283
Kapitel: §1. Notation 283
Kapitel: §2. Estimate of the difference of the integrais of one term of a superposition along nearby level curves 284
Kapitel: §3. Deletion of dependent terms 288
Chapter: §4. Reduction of linear superpositions to a form with independent terms 292
Chapter: §5. The set of linear superpositions in the space of continuous functions is closed 296
Chapter: §6. The set of linear superpositions in the space of continuous functions is nowhere dense 299
Chapter: Chapter 5. — Dimension of the space of linear superpositions 302
Chapter: §1. (ε,δ)-entropy and the "dimension" of function spaces 302
Chapter: §2. (ε,δ)-entropy of the set of linear superpositions 306
Chapter: §3. Functional "dimension" of the space of linear superpositions 311
Chapter: §4. Variation of superpositions of smooth functions 312
Chapter: §5. Instability of the representation of functions as superpositions of smooth functions 316
Bibliography 317
Rubric: BULLETIN BIBLIOGRAPHIQUE 1
Rubric: BULLETIN BIBLIOGRAPHIQUE 49
Back matter
Back matter