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b,,, or even the b,,/(s—1)! rational integers; thus as soon as Ibkp(k) ] < 1
one has b,,qy, = 0 and then a fortiori one has sequentially by 1 = -
= b,, = 0 which eventually shows that F vanishes identically. Thus in
this circumstance it suffices to have an estimate only for the leading coef-
ficients of the polynomial coefficients.

In applications it is of course necessary to have good lower bounds for
the D, and the 4,. For some such estimates see Cijsouw and Tijdeman [5],
lemmas 5 and 6.

One case is of sufficient interest to mention specifically:

COROLLARY. If oy = 1,0, = 2,..,0, = R(son=R) and t(h)
= T(h=1,..,n), so N = RT, then
F @1 (h)
’ (t—1)!

and
N =RT>2(c—1) + 5QR,

implies that for k =1, ..., m

R T

| bepy | < D P(NJeRY ™Y Y 2 NTESRV((h—=DHR=B))T
h=1t=1

< DY (N/eR)” 1 30" 4

Proof. Note only that (h—1) ! (R—h)! > 27 R=D (R—1) | > (R/6)F;
(by sharpening lemma 7 for this case one can improve the 30 to about 15).

5. FURTHER RESULTS

We consider some further applications of the method of this note.
It is instructive to observe that the success of these applications depends,
in effect, on forcing an analogy with the simplest case, that of exponential
polynomials. The methods of Hayman [8] applies to a different class of
functions, which does however intersect with the class considered here.
For an example of this different method at work, see Voorhoeve, van der
Poorten and Tijdeman [33]. In this context see also Voorhoeve and van der
Poorten [32]; the ideas here however relate to the new method of Voor-
hoeve [31].

Continuing to use the notation of the previous sections, we observe
that if in lemma 2 we take f;, = A — 1, z; = 0 and g, (2) = g (w;z) where
g is given by (14) then the ratio 4,, ,/4 of lemma 2 is given by




A/l,k/A = D/l,k/DC/l—l .

where D is the Vandermonde determinant of lemma 3. Then lemma 4
and lemma 5 allow us to estimate the number of zeros of functions F of
the shape

(44) F(z) = ZI’?:I 2 ap 271 g (w,2)
in discs with centre the origin. Indeed, the analogue of (21) becomes

S\ A1 QSxy—4
'Fls*/lFls<Zi=1<—S‘> leam 78 D0 1(h )/1)' ]g|("*1)(QS*),

and the only important new addition is that one requires, if g (2)

cn
= > — 2" thatcoey o cq—y # 0.
n:

An easy example is given by the class of functions

(45) 9(2) = fu(2) = Qa=o 2'/(u+1) ... (u+n)
for u in C, u not a negative integer. Here it is amusing to observe that one
has
zf, (2) = u + (z—w f, (z) and hence 2 7'£,* 7V (2)
G ERACANIACY

for t = 1,2 ..., where the Apolynomials r., ¢, have degree respectively at
most #-2 and #-1 in z. It follows that, with a slight change of notation, the
function (44) can be taken to be of the shape

F(z) = ZIT=0 Ph(z)fu(whz) )

where the P, are polynomials of degrees respectively at most p (0),
p(1)—1,..,p(m) — 1 and p(0) > max, p (k), w, =0 (so fﬂ(cooz) = 1),
and we take Y oo p (h) = o + 1.

However one need not be as explicit as regards the Taylor coefficients
of the given function g. For example consider a Weierstrass elliptic function
p with given fixed algebraic invariants. Then one easily shows that there
is a point v such that

Ip(@) | <cand |[p* V@) |>07“, 1 =1,..,0

for some ¢ depending only on p. It is then easy to conclude by the method
we have described that if max,|w,| = @ <1 then a function F 3£ 0

of the shape
F(z) = ZIT=1 A, aht “Tp® Y (w,z +v)
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cannot have more than ¢’ o log o zeros in a disc [z ’ < ¢”, where ¢, ¢’
depend only on p. We are indebted for the above details to D. W. Masser
(for a problem involving zeros of polynomials in several variables see his

[13]).
To extend our method to a class of functions wider than that given
by (44) is practical provided only that one can usefully estimate the deter-

minants arising in lemma 2. This can certainly be done in the case

F(z) = Zh Zp(h) a, (log Z)t z*

for details see van der Poorten [22]. A similar argument should allow one
to deal with functions

Z;IT=1 bh f“h (Z) ’

where f, is given by (45); now lemma 5 allows one to consider rather sur-
prising functions. There are further, rather isolated cases where one can
deal with the determinants; for some examples, and further references see
[21].
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