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PROFILS ET REDUITE TRANSJORDANIENNE
D’UNE MATRICE CARREE

par André FONTAINE

I. ITERATION D’UN ENDOMORPHISME (SINGULIER)

Rappel. Propriétés classiques des noyaux itérés

E, étant un espace vectoriel de dimension finie # sur C, soit g un endomor-
phisme de E, dans E,; nous le supposons singulier, c’est-a-dire dim Ker (g)
> 1; Ker (g) est le sous-espace propre afférent a la valeur propre 4 = 0
de g.

A) On considére la suite des « noyaux itérés de g »:
(1) Ker (9) = K, Ker (¢*) = K,, ..., Ker (99) = K, ...

On sait que ces noyaux sont emboités, K, = K, ;. La suite des dimensions
de ces noyaux est croissante:

(2) dl = dlm(Kl) < dz - dim(Kz) < T < dt] == dim(Kq) < e \< n.
B) Il existe un unique entier p tel que
dl < d2 < "’dp—l < dp = dp+1 == dp+2 = aee C’CSt-E‘l—dlre
Kl C K2 C a0 & Kp_1 (= Kp == Kp+1 = Kp+2 = ...
(inclusion au sens strict).
d, = d est la « dimension maximum des noyaux itérés » et ’on démontre
que d = r, r étant 'ordre de multiplicité de la valeur propre 1 = 0, c’est-
a-dire 'ordre de multiplicité de la racine 1 = 0 de 1’équation caractéris-
tique de g [cf. par exemple: R. Godement, Cours d’Algébre, Hermann,
Paris, 1965].
C) On a ainsi les inéquations 0 < p<<d=r<n.

p se nommera /’indice de g pour la valeur propre . = 0; c’est le nombre
minimum d’itérations a faire sur g pour que la dimension du noyau de
I’itéré atteigne son maximum d = r,
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D) Le profil d’un endomorphisme singulier g est formé des p nombres
{dy,dy,...,d,_{,d, = r}. Cette suite, extraite de (2), est strictement
croissante. Concrétement, on prendra dans un repére orthonormé les points
M, My, ..., M,, M, ..; le point M, ayant pour coordonnées X, = q
eN, y, = d,. On y adjoindra le point M, (0, 0) qui correspond a g° = e,
endomorphisme identique, d, = 0. La ligne brisée de sommets successifs
M, =0,M,M,,..,M,, M,,,.. prendra également le nom de profil
de I’endomorphisme singulier g. A partir du profil de g, on construira la
suite de ses sauts '

(3) {51,52,...,5(1,...} Ol‘l 511 = dq ""‘dq_l
(en particulier 6; = d; —d, = d,).

Nous allons établir que cette suite des sauts est décroissante; c’est le

THEOREME DE LA CONVEXITE. § . <C0,.
Soit S,;; un sous-espace supplémentaire de K, sur K, ;. Considérons
'image g (S,+,) de S,+, par g.

1°) Soit x un vecteur non nul de S, ;. Ona g?™' (x) = Oet g?(x) # 0
donc g (x)e K, et g (x) ¢K,_,
d’otr

(4) g(Sq+1) CKq; g(Sq+1)qu—1 = {0}
On déduit de (4)
(5) dim g (Sq+1) < dq — dq—l .

2°) Montrons que la restriction de g a S, | est injective.

Soit {vy, vy, .V} OU @ =0,y = d,yy — d, une base de S, .
Une partie génératrice de g (S,+¢) est 2 = {g (v1), 9 (v2), ..., g (v,) }. Si
I’on montre que X est une partie libre, le résultat proposé sera établi.

Soient « scalaires p, p,, ..., p, tels que

P1g(v) +p29(v2) + ..o + g () =0,

On a donc W = pvy + pyv, + .. + pv, €Ky et aussi WekK; n S, ;.
Mais K, nS,.1 <K, 0S4y ={0}, dou W =0 et p; = p,
= ... = p, = 0, ce qui établit que X est libre.
Il en résulte

(6) dlm g(Sq-i-l) = dq+1 - d

q
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Rapprochons (5) et (6): d,4y — d, <d;, — d;—q OU 0y1 1 < 0,, d’ou
pour la suite des sauts
51 = dl > 52> cee > 5}7"‘1 >5P > O = 5p+1 — 5p+1 =

30) La ligne brisée profil de g pour A = 0 est convexe car S

d —d
> —"ill 1 s°écrit pente (M, M,) > pente (M, M, ).

II. ANALYSE D’UN ENDOMORPHISME f. THEOREMES PRELIMINAIRES

A) Notations. Soit le polynome caractéristique de f
PR = Q=DM Ay=D2 . (A=A [ri+r,+...+r;=n].
Le spectre de [ $’€ctit: Ay, ooy Ay s Aoy oy Aoy veny Agy veey Ag

rq Fx r

liste obtenue en répétant chacune des s valeurs propres distinctes & son ordre
de multiplicité.
Considérons les endomorphismes singuliers g, = f — e (v=1,2, ..., 5),

e étant ’endomorphisme identique; g, admet la valeur propre 0, a ’ordre r,.
Pour chaque v, on détermine le profil de g, pour la valeur propre 0, soit
{di,d;, ..., dp,} ou d, = dim Ker (g7). Le noyau maximum de g, sera
désigné par K* [K®=Ker (¢5")]. On a:

{KfCKgc...cK;v =K' = Kp,1q = ...

di <djy..<dp, =d" =d,,.{ = ...

Inclusions et inéquations au sens strict. On sait que d* = r,.
Par définitions;

J 19 {d{, d;, ..., dy,} = profil de g, pour A = 0

] = profil de f pour 1 = 4,

| 2°) py, = indice de f pour la valeur propre 4,.

B) THEOREME DE LA DISJONCTION. Ce théoréme classique, dont la démons-
tration ne sera pas reproduite, s’exprime par

o #f=KnK = {0}

(voir, par exemple, la référence antérieure).
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