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PROFILS ET RÉDUITE TRANSJORDANIENNE
D'UNE MATRICE CARRÉE

par André Fontaine

I. Itération d'un endomorphisme (singulier)

Rappel. Propriétés classiques des noyaux itérés

En étant un espace vectoriel de dimension finie n sur C, soit g un endomorphisme

de En dans En ; nous le supposons singulier, c'est-à-dire dim Ker (g)

> 1 ; Ker (g) est le sous-espace propre afférent à la valeur propre 2 0

de g.

A) On considère la suite des « noyaux itérés de g » :

(1) Ker (g) Kx Ker (g2) - K2, Ker (,gq) Kq9

On sait que ces noyaux sont emboîtés, Kq a Kq+1. La suite des dimensions
de ces noyaux est croissante:

(2) dx dim(K1) < d2 dim(K2) < < dq dim(Kq) < < n

B) Il existe un unique entier p tel que

di < d2 < < dp dp+1 — dp+2 c'est-à-dire

K,czK2^ c Kp^ a Kp Kp+1 Kp+2

(inclusion au sens strict).

dp d est la « dimension maximum des noyaux itérés » et l'on démontre
que d r, r étant l'ordre de multiplicité de la valeur propre 2 0, c'est-
à-dire l'ordre de multiplicité de la racine X 0 de l'équation caractéristique

de g [cf. par exemple: R. Godement, Cours d'Algèbre, Hermann,
Paris, 1965].

C) On a ainsi les inéquations 0 < p d r n.

p se nommera l'indice de g pour la valeur propre 2 0; c'est le nombre
minimum d'itérations à faire sur g pour que la dimension du noyau de
l'itéré atteigne son maximum d — r.



D) Le profil d'un endomorphisme singulier g est formé des p nombres
{ du d2, dp„ i, dp r }. Cette suite, extraite de (2), est strictement
croissante. Concrètement, on prendra dans un repère orthonormé les points
Mu M2, Mp, Mp+i, ...; le point Mq ayant pour coordonnées xq q
g N, yq dq. On y adjoindra le point MQ (0, 0) qui correspond à g0 e,

endomorphisme identique, d0 0. La ligne brisée de sommets successifs

M0 0, Mu M..., Mp, Mp+1 prendra également le nom de profil
de l'endomorphisme singulier g. A partir du profil de g, on construira la
suite de ses sauts

(3) {<5l5 ô2, ôq, ...} où ôq dq -
(en particulier ôl d1 — d0 dx).

Nous allons établir que cette suite des sauts est décroissante; c'est le

Théorème de la convexité. ôq+1 < ôq.

Soit Sq+1 un sous-espace supplémentaire de Kq sur Kq+V Considérons

l'image g (Sq+1) de Sq+1 par g.

1°) Soit x un vecteur non nul de Sq+ On a gq+l (x) 0 et g" (x) # 0

donc g (x) e Kg et g (x) $ Kq_ u
d'où

(4) flf(S8 + 1) c Kq;î(Sl+ 1)nVi-{ 0}

On déduit de (4)

(5) dimgf(S4+1) < dq - dq_t

2°) Montrons que la restriction de g à Sq+l est injective.

Soit { vl5 v2, va } où a Sq+l dq+1 - dq une base de Sq+1.
Une partie génératrice de g (Sq+1) est L { g (v^, g (v2), g (va) }. Si

l'on montre que L est une partie libre, le résultat proposé sera établi.
Soient oc scalaires pu p2, pa tels que

Pi9(vi) + p2 g (v2) + + (va) 0

On a donc W p1v1 + p2v2 + + p(XvaeK1 et aussi WeKx n Sq+1.
Mais n Sq+% cz Kq n Sq+1 { 0 }, d'où W 0 et p1 p2

pa 0, ce qui établit que I est libre.

Il en résulte

(6) dim g(Sq + 1) dq+
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Rapprochons (5) et (6): dq+1 - dq < dq — dq-1 ou ôq+1 <,ôq, d'où

pour la suite des sauts

5t d± > ô2 > > <5p_i > ôp > 0 8P+1 ôp+l

3°) La ligne brisée profil de g pour A 0 est convexe car ——

> s'écrit pente (M3_ 1 Mq) > pente (Mq, Mq+ J.

II. Analyse d'un endomorphisme /. Théorèmes préliminaires

A) Notations. Soit le polynôme caractéristique de /
P (A) (A, - A)'1 (A2 - A)r2 (A, - A)" [rl+ r2 +... + rs n~\

Le spectre def s'écrit: Al5 Ai A2, A2 As, As

O ^2 ^
liste obtenue en répétant chacune des s valeurs propres distinctes à son ordre
de multiplicité.

Considérons les endomorphismes singuliers gv — f ~ Ave (v 1, 2, .y),

e étant l'endomorphisme identique; gv admet la valeur propre 0, à l'ordre rv.
Pour chaque v, on détermine le profil de gv pour la valeur propre 0, soit
{ dl, d2,..., dpv } où dq dim Ker (gl). Le noyau maximum de gv sera

désigné par Kv [TC^Ker (g^v)]. On a:

C Kl cz Kl cz c= K;v Kv IÇV + 1

di d2 <c dPv dv dPv + 1 —

Inclusions et inéquations au sens strict. On sait que dv rv.
Par définitions;

1°) { dxv, d2, ûÇv } profil de gv pour A 0

profil de/ pour A Av

2°) pv indice de / pour la valeur propre Av.

B) Théorème de la disjonction. Ce théorème classique, dont la démonstration

ne sera pas reproduite, s'exprime par

a^ß=>KanKß { 0}
(voir, par exemple, la référence antérieure).
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