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complex conjugation. By the Stone-Weierstrass theorem [29, p. 151] we
A A

conclude that B C0 (A) and hence that x -> x is onto. Thus the proof
of the representation theorem for commutative B*-algebras is complete.

The reader who is interested in an unconventional proof of the preceding
theorem may consult Edward Nelson [38, p. 78]. Quite simple proofs of the

Gelfand-Naimark theorem in the special case of function algebras have

been given by Nelson Dunford and Jacob T. Schwartz [14, pp. 274-275]
and Karl E. Aubert [5].

5. The Gelfand-Naimark theorem for arbitrary B*-algebras

The proof of the representation theorem for an arbitrary B*-algebra is

much more involved than the commutative case and it will be divided into
several steps. After having established that the involution is continuous we

will introduce a new equivalent B*-norm with isometric involution. An
investigation of the unitary elements will show that the original norm on the

algebra coincides with this new norm. The representation of B*-algebras will
then easily be effected by the well known Gelfand-Naimark-Segal construction.

General references for material in this section are [13], [37] and [43].

Step. 1. The involution in a B*-algebra A is continuous.

Proof [39, Lemma 1.3]. First we show that the set H (A) {he A : A*

h } of hermitian elements in A is closed. Let { hn } be a convergent sequence
in H {A) whose limit is A + ik, with A, k e H {A). Since hn - h -> ik we

may assume (by putting hn for hn — h) that hn converges to ik. The spectral

mapping theorem for polynomials [43, p. 32] gives aA {hi — h4) { X2

— A4 : Ae aA (A„) }; since | h || — | h\a and oA (A) is real (see the first part
of the proof of Theorem I, the Aren's-Fukamiya arguments and recall

A A

ga (A) A {A) u { 0 }) we have

I! hl - hlI sup { A2 - A4 : A e }

< sup { X2 :XeaA()} j fl

Letting n -> oo we obtain || — k2 — k4 || < || k2 ||. Hence

sup {A2 + A4 : A g <7A(k)} < sup [A2 : A e aA (k) }

Choose lie oA {k) such that fi2 sup [A2 : A e aA (A) }. Then jli2 + ju4

< ju2, so j! 0. It follows that || k || | A 0 and hence k 0.

This shows that H (A) is closed.
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Now it is easy to prove that the graph of the map x -> x* of A onto A

is closed. For suppose xn x and x* -> y. Then xn + x* -> x + y and

(x„-x*)/i -> (x- y)fi. Since #04) is closed, x + y and (x — y)/i are her-

mitian and so x + y x* + y* and x — y y* — x*, whence jy x*.
Thus by the closed graph theorem, valid for conjugate linear maps, the

involution in A is continuous.

Step 2. Let A be a B*-algebra. Then || x ||0 — || x*x ||1/2 is an equivalent

B*-norm on A such that || x* ||0 || x ||0 for all x e A, and || h ||0

I h I for all hermitian he A.

Proof. [2], [53]. By Step 1 there exists M > 1 such that || x* ||

< M I x || for all x e A. Then

M ~1/2 || x || < || x* |P2 || x ||1/2 J] x ||0 < M1/2 J] x ||

so that || • || 0 and || • || are equivalent. Clearly || • ||0 is homogeneous and

submultiplicative. To prove the triangle inequality, let x, ye A. Then

1 * + y||o 1 (x + y)* (x + y) || < I x*x || + || y*y || + || + y*x |j

so it is enough to prove that || x*y + y*x || < 2 [| x ||0 || y ||0. For any
positive integer n

I (x*y)2"
1

+
1

||2

|| (x'*y)2"+ (y*x)2" + {x*y)2"
1 1

+ (y*x)2"
1

(x*y)2"_1 ||

< || (x*y~)2" +(y*x)2"I+2(||x*xJ-|^j;||)2"-1.

For every s > 0 there is an integer n such that

1 (x*y)2"I< (|x*y|2 + s)2"~1 and ||(y*x)2"|| < (|y*x|2+e)2"_1

Then

I (**y)2"|| < (|x*yMy*x|,+e)2"-1 < (||x*y||-||y*;c| ^-e)2""1

< (||***||+£)2"-1
and similarly

Il (y*x)2"I<(||**x||-||>'V| + c)2""1
so that

(x*y)2"+ (y*x)2"||2 < 2(||x*x||-|| y*y||+e)2"~1

Combining these results we recursively obtain
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II 0c*y)lk
1

+ (y*x)2k
1

II2 < 4(||x*x|j-||y*y\\ Fe)2*
1

for any k, 1 </:<«. Thus

I x*y + y*x ||2 ^ 4(||x*x||-||y*y|| +e)

for arbitrary s > 0. Hence || x*y + y*x || < 2 j| x ||0 || y ||0. So we have

seen that || • ||0 is an equivalent algebra norm on A. Further, || h ||0

|| h*h ||1/2 I A I for all hermitian he A and so || x |io — || x*x ||

x*x !0; i.e., || • ||0 is a B*-norm on A with || x* ||0 || x ||0 for all

x e A.

Step 3. Positive elements and symmetry. Let A be a B*-algebra with
identity e. Then every hermitian he A lies in a maximal commutative B*-
algebra B with identity e. Observe that aB (x) aA (x) for all x e B [43,

p. 35]. By the characterization of commutative B*-algebras B is isometri-
A

cally ^'-isomorphic to C (B). Hence every hermitian element he A has real

spectrum.
A hermitian element xe A is called positive, and we write x > 0, if the

spectrum of x in A is a subset of the nonnegative reals.

Clearly x — h2 is positive for every hermitian he A. The set P =* {x e A:
x > 0 } of all positive elements in A is called the positive cone. Indeed, P is

a cone. For X > 0 and x > 0 then Xx > 0 since aA (2x) XoA (x). That
x > 0 and y > 0 implies x + y > 0 may be seen by the following Kelley-
Vaught argument [31]:

Set a || x I, ß || y ||, z x + y, and y oc + ß. Since | x |ff

|| x I the assumption x > 0 implies oA (x) c= [0, a], so that aA (ae — x)
a [0, a] and therefore || ae - x || | ae — x \a < a. For the same reason
|| ße — y [I < ß. Hence

II ye - z I » II (ae -x) -f (ße - y) | < a + ß y

Since z* z, aA (ye~z) is real so that aA(ye-z) a [ — y,y] which implies
that oA (z) e [0, 2y]. Thus x + y z > 0.

The symmetry of the involution in A now follows readily by Kaplansky 's

argument [45]:
We intend to show x*x >0 for all xeA. By observing that a real-

valued continuous function is the difference of two nonnegative real-
valued continuous functions whose product is zero, we can write the
hermitian element x*x in the form

x*x u — v u > 0 v > 0, uv 0 vu



— 163 —

Now (xv)* (xv) v*x*xv vx*xv v (u — v)v — — v3 so that (xu)* (xv)

< 0. Since (xv)* (xv) and (xv) (xv)* have the same nonzero spectrum, also

(xv) (xv)* < 0. Write xv h + & with h and k hermitian. Then

0 > (xï/)* (xv) + (xv) (xv)* 2 (h2 +k2) > 0

Thus h 0 k or xv 0. But then 0 (xv)* (xt>) —1>3 and so

v 0. Hence x*x u >0; in particular, e + x*x is invertible for all

x e A.

Step 4. Let A be a B*-algebra with isometric involution. Then there

exists a net { ea } of hermitian elements in A, bounded by one, such that

lim eax x lim xea for all x e A. The net {ea} is called an approximate
identity.

Proof. The following construction is due to Irving E. Segal [50].

If A has no identity, we may embed A in a B*-algebra Ae with identity e

(see the proof of Theorem I). Thus in any case we can use the preceding
results about positive elements.

For any a { x%, xn} in the class of all finite subsets of A, ordered by
inclusion, set h x*x1 + + x*xn. Then h >0and so ea nh (e + nh)_1
is a well defined element in A. Viewing h as a non-negative function on the

structure space of some maximal commutative B*-subalgebra we see that
I ea || I ea < 1. It remains to show that lim eax x lim xea.
Observe that

n

O; (e -O] * [Xi(e-ej] < ^ (e -O] * I>y (e - c«)]
7 1

< (e

< h (e+nh)" 2 < e/4n

where the last inequality follows from the fact that the real function
t -> t (1 +nt)^2 (£>0) has maximum value 1/4«. Thus

II X« 0 -OII2 =11 Oi (e -ej] * [X; (e - ea)~] | <1/4
Now for arbitrary xe A and s > 0 choose a finite set a0 of n elements
in A such that xea0 and n > s~~2. Then for all a > a0 we have | x - xea ||

I x(e-ea) || < e. Hence lim xea x for every xe A; and by the
continuity of the involution also lim eax (lim x*ej* (x*)* x.

Step 5. Every B*-algebra without identity can be isometrically embedded
in a B*-algebra with identity.
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Proof. Let A be a B*-algebra without identity. By Step 2, A is a B*-
algebra with isometric involution with respect to the equivalent norm
II X || o || X*X 11,2. Hence, by Step 4, A has an approximate identity { ea }

consisting of hermitian elements such that || ea || ||ea||0<l. Now
observe that for every x e A,

II X 1 sup {\\xy\\: y e A || y||< 1} sup {|| || : | || < 1}

and extend the norm on A to Ae by

j x + Ae || sup { I (x +Ae)y || : y e A,|||| < 1}

sup { I y (x + Ae) || : ye A|| || < 1 }

Then Ae is a Banach ^-algebra with identity in which A is isometrically
embedded as a closed ideal of codimension one. To see that the B*-condition
holds in A e we first prove that

|j x + Ae || lima || (x + Ae) ea || lima || ea (x + Ae) |j

Given any & > 0 there exists y e A with || y || <1 such that

I (x + Ae) y I > || x -{- Ae || — s

Since lima (x + Ae) eay (x + Ae) y, there exists a0 such that for all a > a0,
I (x + Ae) eay || > || x + Ae || - 8. Since J (x + Ae) eay || < || (x + Ae) ea ||

<||x + 2e||, it follows that lima || (x + Ae) ea || exists and is equal to
|| x + Ae I. Similarly lima || ea (x + Ae) || || x + Ae ||. Thus

|| (x + Ae)* || • || (x + Ae) || lima || ea (x + Ae)* || • lima || (x + Ae) ea ||

lima || (x + Ae)* (x + Ae) ea ||

IJ (x T Ae)* (x + Ae) ||

Therefore || (x + Ae)* (x + Ae) || || (x + Ae)* || • || x + Ae ||, and so Ae
is a B*-algebra.

Step 6. Let A be a B*-algebra with identity e and isometric involution.

Denote by U {u e A : u*u e uu* } the group of unitary elements

in A. Then every element x in A is a linear combination of unitary elements

and || x || || x ||u, where

N N

II x||.. =* inf{ Z I A„ I : x Z Xnu„, Xne C une U }
n — 1 n 1

Proof. To prove that every xeA is a linear combination of unitary
elements it clearly suffices to show that every hermitian he A with || h || < 1
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can be written as a linear combination of unitary elements. If |[ A || < 1,

then I h2 || < || h ||2 < 1 and so
00

k z ci2){-h2r
n 0

is a well-defined element in A. Clearly, k is a hermitian element commuting

with h such that k2 — e — h2. Thus u— h + ik is unitary and

1 1

- ii + - u* •

2 2

It now follows that || x ||M (as given in Step 6) is well-defined for each

x e A; further, it is clear from the definition that || • ||u is a seminorm on A.

We shall call it the unitary seminorm. Since the unitary elements form a

group under multiplication || • \\u is submultiplicative.
Let us compare the unitary seminorm with the B*-norm on A. Observe

that || h ||M < || h 1 for every hermitian he A. Indeed, if || h || < 1, then

h ^ u -h - u* for some unitary ueA and so || h ||„ < 1. Thus || h ||t<

< I h || for every hermitian he A. Further || x |ft < 2 || x j for every xe A.

For if x h + ik with hermitian h and k, then || x ||M < || h ||M + || k ||M

< 2 || x ||. On the other hand || x || < || x j|w for all xe A. Indeed, if x
Z"=lXttu„, ke C, un e U, then

NN N

II * II II Z kunI< Z I I • II II Z I I

n 1 /i=l n 1

since || u ||2 || u*u || 1 for every unitary ueA. Thus || x || < || x ||M.

Hence the unitary seminorm and the B*-norm on A are equivalent norms
with I x || < I] x ||

M < 2 || x || for all xe A. To see that these two norms are

actually equal we need the following result of Russo and Dye [44] about the
closure of the convex hull of the unitary elements in A.

Russo-Dye Theorem. Let A be a B*-algebra with identity e and
isometric involution. Then then open unit ball of A is contained in the closed

convex hull of the unitary elements of A ; that is, for each x in A with
|| x || < 1 and each s > 0 there exists a positive integer m and unitary

1

elements uk such that Z/c
m

< s.

The equality of the unitary seminorm and the B*-norm on A is an
immediate consequence of this result. Indeed, let x e A with || x || < 1.
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Then for every e > 0 there is a positive integer m and unitary elements uk

such that
1

V — YmX 1

m

!*».<
m

< Z kkk i m

< £ and so

m j
Z 2«, +

k=i m u

Z -uki m

+ 2 - Z
* i m

< 1 + 2 e ;

and sosince e > 0 was arbitrary, |j x ||M < 1. This proves || x ||M < ||

|| x I I x ||M for all x e A.
For completeness we will now prove the Russo-Dye Theorem The

following elementary proof, valid for arbitrary Banach *-algebras with
isometric involution, is based on ideas of Harris [28].

Proof of the Russo-Dye Theorem : Let x e A with < 1. Then
XX'" < 1. Hence the hermitian element e xx*

is invertible and has the invertible hermitian square root (e — xx*)1/2
In=o Ci2) (~~xx*)71. Similarly e — x*x has invertible hermitian square

root (a —x*x)1/2 Z=0 Ci2) (-x*x)n. For complex 2 with |2| 1 define

ux — (a — xx*) ~1 /2 (x — Xe) (a — Xx*)~1 (a — x*x)1 /2

We intend to show that ux is unitary. Since XX 1,

u\ (fi— X*x)1/2(a — Ix)"1 (x* — 2a)(a — xx*)~1/2

(a — x*x)1/2 (2a — x)-1 (2x* — a) (a — xx*)~1/2
Observe that

(2a — x)"1 (Ax* — a) (2a — x)_1 [(2a — x) x* — (a—xx*)]
x* — (2a — x)-1 (a —xx*),

(a —2x*)(x —2a)_1 [x*(2a— x) — (a — x*x)] (2a — x)"1

x* — (a — x*x) (2a — x)_1

and

Z (Zk (-***)" Z Cn)(-XX*)nX
w 0 ti — 0

x (a —x*x)1/2

(a —xx*)1/2x

which may be conjugated to give the related equality

(a— x*x)1/2x* x* (a — xx*)1/2

Utilizing these relations it follows easily that zy* u]} so ux is unitary.



Let uk/m denote the unitary element ux with X exp 2 ni — where
V mJ

k, m are positive integers. We will show that x lim I=i 0/m) uk/m-

With X as above, let xkjm denote the element

X; (x — Xe)(e — Ax*)-1
Then

m I i m

X - Z — "k/m * Z (e-xx*y1/
k=i « mk=l

(e-xx*)~1/2
1

z
/c =1

*k/m (£ —X*X)1/2

and so

(1) * - z — »
1 m

1

k/w 1

^ II (e —XX*)1/21 • II X X **/rn|| -|(e-x*x)1/2 II

m k 1

Observe that

and so

Xa Z (x-AeXAx*)" £ <*"*<x*)" - E ^"+I (**)"

-x;. X An+1(x*)" - £ A"x(x*)"

X ^[(x*)""1 — x (x*)"]
n 1

oo

(e—xx*) A"(x*)"_1.

Summing over k, 1 < k<m,anddividing by m we have

I m j m

^ *fc/m ~~ X! (* ~ Xk/ni)
!k 1 k=l

oo <t m

m

(e-xx*) E — E
n 1 m 1

exp 271/

oo 1 m

(e — xx*)
n 1 m fc=1

exp 27i/

*Y1- 1(x *)'

(x*)" 1

Now, if 1 < « < m, then exp 2ni — j #1 and so by the sum formula for
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a finite geometric sum

exp 2niZ
k =1

hence we have

m

ft \ ft (m +1)
k exp [ 2 71/ — J — exp [ 2ni

m m

1 — exp 2ni
n

m

0 ;

j m oo j m

x Z xk/m (e-xx*) Z ~ Z
m k =1 ri- m ft^ /c — 1

exp 27i/
m

(x*)'*\n- 1

Then

- — Z X*/« !J < J e - XX* I Z II (x*)" II

m k l

< || C — XX* I X
n m — 1

< £ — XX*
1

Since the right hand side converges to 0 as m -> oo, the theorem now follows
immediately from relation (1) above.

Step 7. The involution in a B*-algebra A is isometric.

Proof. Since every B*-algebra without identity can be isometrically
embedded in a B*-algebra with identity we may assume A has an identity.
By Step 2 || x ||0 || •x** ||1/2 is an equivalent B*-norm on A such that
II x* IIo II x ||o f°r xe A. Hence, by Step 6, || x ||0 — J x ||M where
|| • ||M is the unitary seminorm on A.

Observe that || u || 1 for every unitary he A. Indeed, since u and w*

commute, by the argument given in the first step of the proof of Theorem I,
we have || u* || || u || and so || u || 1.

Now, if x %n=i Kuw K e ^ un e U, then

I x I || Z Ku„I< Z I I • I «„ j) Z IK I
•

n 1 n 1 7i l
Thus || x || < || x ||„ I x ||o || x*x ||1/2 and so | x* || || x ||.

Step 8. The Gelfand-Naimark-Segal Construction. We have seen that
the involution in a B*-algebra A is isometric. Further, if A has no identity
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we can embed A isometrically as a closed ideal of codimension one in the

B*-algebra Ae with identity e. Thus we can and will assume without loss of
generality that A has an identity e.

The representation of such an algebra A as a norm-closed *-subalgebra
of bounded linear operators on a Hilbert space is effected by means of
positive functionals on A and a construction due to Gelfand-Naimark [23]

and Segal [49].

A positive functional on A is a linear functional p such that p (x*x)
>0 for all x e A. For x, y e A set (x, y) p(y*x). This scalar product
on A is linear in x, conjugate linear in y and (x, x) is nonnegative for all x.
Thus in particular p (y*x) p (x*y) and | p {y*x) \2 </? (x*x)(y*y)
(Schwarz inequality). Setting y e we get p (x*) p (x) and | p (x) \2

<P (e)p{x*x).
In general the scalar product on A is degenerate so that a reduction is

necessary to obtain nondegeracy. To this end we define the associated null
ideal 1 { x e A : p (x*x) 0 }. Since by the above properties of positive
functionals

I {x g A: p(y*x) 0 for all y e A)
the null ideal is clearly a left ideal in A. Then the quotient space X A\I
is a pre-Hilbert space with respect to the induced scalar product

(x+I,y+I) p(y*x)

and, further, for each a e A we can define a linear operator Ta on X by
Ta (x + 7) ax + /. The map a -> Ta has the following easily verified
properties: Ta+b Ta + Tb, Tka - XTa, Tab TaTb. and Tc is the identity
operator; also

(Ta(x+I), y +1)

so that a Ta is a *-representation of A on the pre-Hilbert space X.
Let H be the Hilbert space completion of X. We want to show that

every operator Ta on X can be extended to a bounded operator on H. We
claim that |ra|<|a||. Note that ||

p(x*a*ax). For any a > | a*a|||| there exists a hermitian
he A such that h2 ae - a*a. Hence

ap(x*x) -p(x*a*ax)p(x*(ae-a*a)p((hx)* > 0

and so p (x*a*ax)<|| a \2 p(x*x). Thus || Ta || < || ||. Denote the ex-
tended operator on H also by Ta.

L'Enseignement mathém., t. XXIII, fasc. 3-4. 12
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The preceding discussion has shown that for every positive functional
on A there is associated a ^-representation of A as a *-subalgebra of bounded
linear operators on a Hilbert space H such that || Ta || < || a ||. In general
this representation is neither injective nor norm-preserving. By constructing
appropriate positive functional in the next step we will, however, be able to
build a representation with these properties.

Step 9. Construction of positive functionals. We will construct for
every fixed z e A a positive functional p on A such that p (e) 1 and

p (z*z) || z ||2. Clearly the associated ^-representation has the property
1 Tz|| | zj|. Indeed,

||z||2 p(z*z) (Tz(e +1),(e +/)) || Tz(e+/)||2

<|| 7; ||2 || e +7 I2 I ||

which together with || Tz || < || z || gives || Tz || || z ||.

The following construction of the desired positive functional is a special
case of an extension theorem for positive functionals due to M. Krein
[32].

Construction : Let H (A) be the real vector space of hermitian elements

in A and P the positive cone of all positive elements in A. On the subspace
Re + Rz*z of H (A) generated by e and z*z define p by

p(ae+ßz*z) a + ß || z*z j

Note that p is well-defined on Re + Rz*z even if e and z*z are linearly
dependent. Since || z*z || | z*z \a e oA (z*z) we have that a + ß || z*z ||

lies in oA(oce + ßz*z). In other words, p(x)eoA(x) if xeRe + Rz*z

so that p (x) > 0 for all xe P n (Re+ Rz*z).
Assume p has been extended to a real-linear functional on a subspace W

of H (A) such that p (x) > 0 for all xeP n W and assume that there is a

y e H (A) with y $ W. Set

a inf { p ('v): y < v e W} and b sup { p (u): y > u e W}

Since y < || y || e and y > - || y || e the infimum and supremum are taken

over nonempty sets, and are therefore finite numbers, clearly satisfying

a > b. Define p on the subspace of H (A) generated by W and y by

p(x+ay) p(x) + ac (xeW, oceR),

where c is any fixed number such that a > c > b.
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Suppose that x + ay 0 (xeW, aeR). We shall show that p(x + y)

> 0. If a 0, then p (x + ay) p (x) > 0 by assumption.
x / x\

If a > 0, then x + ay > 0 implies > > - - e IF, so that ^ — - 1 < c,
a V °V

or p (x + oty) > 0.

If a < 0, then x + a y > 0 implies 7 < - - e W, so that
a \ aj

or p (x + ay) > 0.

By Zorn's Lemma we conclude that p can be extended to a real linear
functional p on H (A) such that p (x) > 0 for all x e P.

Finally set p (x) p (h) + ip (k) if x h + ik with h, k e H (A).
Then p is a positive functional on A such that p (e) 1 and /? (z*z) || z*z ||

I! z II2. This completes the construction.

Step 10. 77ze isometric *-representation. In the preceding step we
constructed for every ze Asl positive functional on A such that the associated

*-representation T(z) of A on the Hilbert space i/(z) is norm-decreasing and
1 T*z) II lb II-

Let H be the direct sum of the Hilbert spaces H^z\ The direct sum of the
family H(z), z e A, is defined as the set of all mappings / on A with/(z)
e H(z) such that £ (/(z),/(z)) < 00. The algebraic operations in FT

zeA

are pointwise and the scalar product is given by (/, g) ^ (/(z), f (z)).
zeA

The reader may easily verify that all Hilbert space axioms are satisfied by H
(see [14]).

Define the '^-representation T of A on H by

rX'C/Cz)).
Note that the inequality

E ((Ta/)(z) (Tfl/)(z)) < 1 a ||2 £ (/(z) /(z))
zeA zeA

shows that with / also Tafbelongsto H. Then Ta is a bounded operator
on H such that

II 7; 1 sup I TqZ)II 1 a i
zeA

Hence the map a-»•Taisa norm-preserving ^representation of ^4 on //.
This completes the proof of Theorem II as stated in the introduction.
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