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complex conjugation. By the Stone-Weierstrass theorem [29, p. 151] we

conclude that B = C, (A) and hence that x — x is onto. Thus the proof
of the representation theorem for commutative B*-algebras is complete.

The reader who is interested in an unconventional proof of the preceding
theorem may consult Edward Nelson [38, p. 78]. Quite simple proofs of the
Gelfand-Naimark theorem in the special case of function algebras have
been given by Nelson Dunford and Jacob T. Schwartz [14, pp. 274-275]
and Karl E. Aubert [5].

5. THE GELFAND-NAIMARK THEOREM FOR ARBITRARY B*-ALGEBRAS

The proof of the representation theorem for an arbitrary B*-algebra is
much more involved than the commutative case and it will be divided into
several steps. After having established that the involution is continuous we
will introduce a new equivalent B*-norm with isometric involution. An
investigation of the unitary elements will show that the original norm on the
algebra coincides with this new norm. The representation of B*-algebras will
then easily be effected by the well known Gelfand-Naimark-Segal construc-
tion. General references for material in this section are [13], [37] and [43].

Step. 1. The involution in a B*-algebra A is continuous.

Proof [39, Lemma 1.3]. First we show that the set H(4) = {he A : h*
= h } of hermitian elements in A is closed. Let { , } be a convergent sequence
in H (A) whose limit is # + ik, with h, ke H (A). Since h, — h — ik we
may assume (by putting A4, for i, —h) that s, converges to ik. The spectral
mapping theorem for polynomials [43, p. 32] gives o, (b —Hy) = { )
—)*:Aeay(h,)};since | h| = | h|, and o, (h) is real (see the first part
of the proof of Theorem I, the Aren’s-Fukamiya arguments and recall

o, () = h(A) U{0}) we have

| hy — =sup {A* —1*:lea,(h,))}
<sup {A*:deay(h,)
Letting n — oo we obtain | — k* — k*|| < | k*|. Hence

sup {22 + 2% tdeo, (b)) <sup{A*:deo, (k)]

Choose peo, (k) such that pu®> = sup { 2> : Aeo, (k) }. Then p*> + u*
< u? so u = 0. It follows that | k| =|k|, = 0 and hence k& = 0.
This shows that H (A) is closed.
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. so that | ||, and | - || are equivalent. Clearly | -
- submultiplicative. To prove the triangle inequality, let x, y € A. Then
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Now it is easy to prove that the graph of the map x — x* of 4 onto 4
is closed. For suppose x, » x and x* — y. Then x, + x) —» x + y and
(x,—x¥))i = (x— p)/i. Since H(A) is closed, x + y and (x— y)/i are her-
mitian and so x + y = x* + y* and x — y = y* — x¥, whence y = x™.
Thus by the closed graph theorem, valid for conjugate linear maps, the
involution in A4 is continuous.

Step 2. Let A be a B*-algebra. Then | x |, = || x*x |'/? is an equiv-
alent B*-norm on A such that || x* |, = || x||o for all xe A, and || |,
= “ h H for all hermitian he A.

Proof. [2], [53]. By Step | there exists M >1 such that | x* |
< M || x| for all xe A. Then

M ] < 22 = [y < M0 x|

| is homogeneous and

[x + 2[5 =[G+ <] +[y*y] +]x*y +y*x]

so it is enough to prove that | x*y + y*x| <2 x|, | »lo. For any
positive integer n

| 2™+ (e 2
= “ (x*y)?" + ()’*X)zn + (x*y)‘zn_1 (y*x)z"—1 + (y*x)zn_l (x*y)z"‘l ”
<JGF + 20|+ 2 y* ™

For every ¢ > 0 there is an integer n such that

|G| < (Ix*p]s+ 9" and | (re0?" | < (|y*x2+ 0"
Then
| 0™ | < x*plalyoxl, + 22" < (k) x| +6)2"

<

x*x” ” y*yl + 8)2’1_1

and similarly
| (rx)*

= (5] 407"
so that

[ + 0™ 2 < 2 (sl o] 407"

Combining these results we recursively obtain
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O S €= i ey P B Y
for any k, 1 <<k <n. Thus
x4y + yox [P < 4(xsx vy +9

for arbitrary & > 0. Hence | x*y + y*x|| <2 | x]o] ¥lo So we have

seen that || - |, is an equivalent algebra norm on A. Further, |4,
|| h h H”z = | k|| for all hermitian he A and so | x|[i = | x*x]||
ie., | “|lo is a B*-norm on A with | x* |, = || x [, for all

x € A.

Step 3. Positive elements and symmetry. Let A be a B*-algebra with
identity e. Then every hermitian /4 € A lies in a maximal commutative B*-
algebra B with identity e. Observe that o5z (x) = o, (x) for all x e B [43,
p. 35]. By the characterization of commutative B*-algebras B is isometri-

A

cally *-isomorphic to C (B). Hence every hermitian element 4 € 4 has real
spectrum.

A hermitian element x € A4 is called positive, and we write x > 0, if the
spectrum of x in A4 is a subset of the nonnegative reals.

Clearly x = h” is positive for every hermitianh e 4. Theset P = { xe€ 4:
x >0} of all positive elements in A4 is called the positive cone. Indeed, P is
a cone. For 4 >0 and x >0 then Ax > 0 since o, (Ax) = Ao, (x). That
x >0 and y >0 implies x + y >> 0 may be seen by the following Kelley-
Vaught argument [31]:

Set o = , z=x+y, and y =a+ B. Since |x]|,
= | x| the assumpt1on X > O implies ¢4 (x) < [0, «], so that o, (e —Xx)
< [0, o] and therefore | e — x || = | e — x|, <« For the same reason
| Be — y| < B. Hence

lve —z|| = [[(ze=x) + Be—y)| <a+p =7y.

Since z* = z, o, (ye—2z) is real so that g, (ye—z) < [—7, y] which implies
that o, (z) < [0, 2y]. Thus x + y = z > 0.

The symmetry of the involution in 4 now follows readily by Kaplansky ’s
argument [45]:

We intend to show x*x >0 for all x e A. By observing that a real-
valued continuous function is the difference of two nonnegative real-
valued continuous functions whose product is zero, we can write the her-
mitian element x*x in the form

x*x =u—0,u>0,v>0, u =0 =ou.
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Now (xv)* (xv) = v¥x*xv = vx*xv = v (u—v)v = —v> so that (xv)* (xv)
< 0. Since (xv)* (xv) and (xv) (xv)* have the same nonzero spectrum, also
(xv) (xv)* < 0. Write xv = h + ik with / and k£ hermitian. Then

0 > (x0)* (xv) + (xv) (xv)* = 2(h* +k*) = 0.

Thus A =0 =k or xv = 0. But then 0 = (xv)* (xv) = —v> and so
v = 0. Hence x*x = u >0; in particular, ¢ + x*x is invertible for all
x € A.

Step 4. Let A be a B*-algebra with isometric involution. Then there
exists a net { e, } of hermitian elements in A, bounded by one, such that
lime,x = x = lim xe, forall xe A. Thenet { e,} is called an approximate
identity.

Proof. The following construction is due to Irving E. Segal [50].
If A has no identity, we may embed 4 in a B*-algebra 4, with identity e
(see the proof of Theorem I). Thus in any case we can use the preceding
results about positive elements.

Forany « = { xy, ..., X, } in the class of all finite subsets of A4, ordered by
inclusion, set 4 = x{x; + ... + x5x,. Then & >0and so e, = nh (e +nh)~*
is a well defined element in 4. Viewing A as a non-negative function on the
structure space of some maximal commutative B*-subalgebra we see that
le.| =]e |, <1. It remains to show that lime,x = x = lim xe,.
Observe that

[Xi (&= eoz)]* [xi (e “‘ea)] < 5_‘,1 [xj (e~ ea)]* [xj (e “'ea)]

< (e—e)h(e—e,)
< h(e4+nh)"% < eldn

where the last inequality follows from the fact that the real function
t —» ¢t (1+nt)”% (t>>0) has maximum value 1/4n. Thus

| xiCe—e) |* = || [xi(e —e)]* [xi (e —e)] || < 1/4n .

Now for arbitrary x € 4 and ¢ > 0 choose a finite set «, of n elements
in A such that x € oy and # > ¢” 7. Then for all @ > a, we have | x — xe, ||

= | x(e—e,) | < e Hence lim xe, = x for every x € 4; and by the con-
tinuity of the involution also lim e,x = (lim x*e,)* = (x*)* = x.

Step 5. Every B*-algebra without identity can be isometrically embedded
in a B*-algebra with identity.
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Proof.. Let A be a B*-algebra without identity. By Step 2, 4 is a B*-
algebra with isometric involution with respect to the equivalent norm
| x |0 = || x*x [*/2. Hence, by Step 4, 4 has an approximate identity { e, }
consisting of hermitian elements such that e, | = | e,|lo <1. Now
observe that for every x € 4, !

| x| = sup {[xy|:yed, |y] <1} = sup {|yx[:yed, [y]<1}

and extend the norm on 4 to A, by

[x + Ae| =sup {|(x+de)y|:ye4d,
=sup {|y(x+1e)|:yed, |

v <1}
vl <1},
Then A4, is a Banach *-algebra with identity in which A is isometrically

embedded as a closed ideal of codimension one. To see that the B*-condition
holds in 4, we first prove that

Ix + Ze H = lim, | (x + Ze) e, H = lim, ]] e, (x+2e)] .
Given any ¢ > 0 there exists y € 4 with | y | <1 such that
”(x—l—/le)y” > Hx + /leH —¢.

Since lim, (x+Ae) e,y = (x+ Ae) y, there exists «, such that for all & > «,
]| (x+Ae) e,y | > |] x + Ae H — ¢. Since H (x+Ae)e,y l = ]| (x+ Ae) ea]
< | x + 2e||, it follows that lim,| (x+7e)e, | exists and is equal to
| x + Je|. Similarly lim, | e, (x+4e) | = | x + Ze|. Thus

| (x+2e)* || - || (x +Ae) | = lim, || e, (x +Ae)* || -Tim, | (x + Ae) e, |
= lim, || e, (x + 1e)* (x -+ Ae) e, ||
= | (x+1e)* (x+1e) | .

Therefore H (x+le)* (x+ le) “ == “ (x+Ae)* ” . ” x + le
is a B*-algebra. ‘

, and so A

e

Step 6. Let A be a B*-algebra with identity e and isometric involution.
Denote by U = {ue A:u*u = e = uu*} the group of unitary elements
in A. Then every element x in A is a linear combination of unitary elements
and H X “ = H x|, where

N
. = inf{ Zl | A,

| x X = Iy, 2€C, u,eU}.

1

M=

Proof. To prove that every x € 4 is a linear combination of unitary
elements it clearly suffices to show that every hermitian 4 e A with || /|| < 1
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can be written as a linear combination of unitary elements. If || 2| < I,
then || A*| < | #|? < I and so

k= i (13 (= k)

is a well-defined element in 4. Clearly, k& is a hermitian element commu-
ting with /4 such that k* = e — h*. Thus v = h + ik is unitary and
R T
= ~2— u + 5 ur.
It now follows that || x ||, (as given in Step 6) is well-defined for each
x € A; further, it is clear from the definition that | - |, is a seminorm on 4.
We shall call it the unitary seminorm. Since the unitary elements form a
group under multiplication | - |, is submultiplicative.

Let us compare the unitary seminorm with the B*-norm on A. Observe

that |4, <[ | for every hermitian ke A. Indeed, if || /| < 1, then
h o= ;u + %u* for some unitary ue A4 and so | A, <1. Thus || ||,

< H h H for every hermitian 4 € A. Further H X Hu <2 H X ]| for every x € A.
For if x = h + ik with hermitian 4 and k, then || x|, <[4 [, + | & |.
< 2] x|. On the other hand | x| <| x|, for all xe 4. Indeed, if x
=z Au, ), eC, u,e U, then

N N N
[xl =1 X Aw]< 2 [4A]]u]= X |4
n=1 n=1 n=1
since || u > = | w*u| = 1 for every unitary ue 4. Thus | x| <[ x |..

Hence the unitary seminorm and the B*-norm on A4 are equivalent norms
with < | x|, <2| x| for all xe 4. To see that these two norms are
actually equal we need the following result of Russo and Dye [44] about the
closure of the convex hull of the unitary elements in A.

X

Russo-Dye Theorem. Let A be a B*-algebra with identity e and
isometric involution. Then then open unit ball of A is contained in the closed
convex hull of the unitary elements of A; that is, for each x in A with

” X H < 1 and each & > 0 there exists a positive integer m and unitary

1
X — Z]r(n:] —_uk
m

The equality of the unitary seminorm and the B*-norm on A4 is an
immediate consequence of this result. Indeed, let x e A with < 1.

elements u, such that < e.

X
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Then for every ¢ > 0 there is a positive integer m and unitary elements u,

such that | x — 2=, — 1, || < ¢ and so
m

=1 G|
]|x||u< Z — U |l + || x - Z — Uy,

k=1 m |, k=1L m ||,
o1 o 1

< 2 —Juf+2x = X —u <14 26;

k=1 m k=1 m

since ¢ > 0 was arbitrary, | x |, << 1. This proves || x|, <| x| and so
| x|l =] x|, for all xe A.
For completeness we will now prove the Russo-Dye Theorem The

following elementary proof, valid for arbitrary Banach *-algebras with
isometric involution, is based on ideas of Harris [28].

Proof of the Russo-Dye Theorem: Let xe A with ” x]l < 1. Then
| xx*|| <| x| -] x*| = | x|* < 1. Hence the hermitian element e — xx*
is invertible and has the invertible hermitian square root (e—xx*)!/?
= 3* o (/%) (—xx®)". Similarly e — x*x has invertible hermitian square
root (e—x*x)'/? = 22 (/%) (= x*x)". For complex A with | 1| = 1 define

u, = (e—xx®)"12(x—=2le) (e —Ix*) (e —x*x)'%.

We intend to show that u, is unitary. Since A1 = 1,
uy, = (e—x*x)1"% (e —Ix)" ' (x* — 2e) (e —xx*)~"1/?
= (e —x*x)!/2 (e —x) "1 (Ix* —e) (e —xx*) /2,
Observe that .
(le —x)"1(Ix* —e) = (le—x)" 1 [(le —x) x* — (e —xx%)]
= x* — (le—x)"" (e —xx%*),
(e —Ax*)(x —2e)~! = [x*(le —x) — (e —x*x)] (e —x) 1
| = x* —(e—x*x)(le —x)" 1,
and
x(e—x*x)'? = 3 (HHx(—x*x)"=
n=0 ‘
= (e —xx*)/%x
which may be conjugated to give the related equality
(e —x*x)12x* = x* (e —xx*)1/2,

1

Utilizing these relations it follows easily that #% = u7' so u; is unitary.
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: k
Let uy, denote the unitary element u; with 4 = exp (2 i v> where
m

k, m are positive integers. We will show that x = lim 2;'-; (1/m) u,.
With 4 as above, let x;,, denote the element

x, = (x—JAe)(e—Ax*)" 1,

Then
m 1 1 m O 1
* Z Uk = X Z (e xx*) t Xk /m (@—.X X) &
k=1 M m'=
1 7 ,
m =1
and so .
(1 [x= % iy
- X 2 m uk/m
1 m
<Jle—wet) 2 x = % x| e=x0 |
m .=
Observe that
X; = Z (x_ie)(/'{x*)n — Z /{nx(x*)n_ Z )Ln+1 (X*)n
n=0 n=0 n=0

and so

X —Xx, = Z AT — % 2 ()"
n=1

n=0

S AT (o]

n=1

— (e_xx*) z /1"()('*)'1_1 .
n=1
Summing over k, 1 <<k <m, and dividing by m we have
1 % 1z
X — — Xejm = — - m
m - Kl m kgl (x Xk/ )
‘ o0 1 m [~ k n
= (e—xx*) ) — > |exp|2mi—)| (x*) 1
n=1 Myg=1| mj |
) 0 1 m n 1k
= (e—xx*) ) — Y |exp|2mi—])| (x*) 1.
n=1 711k:1 B m ] '

Now, if 1 <<n < m, then exp (2m !

;;;) # 1 and so by the sum formula for
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a finite geometric sum

. h n(m+1)
m n \ Tk exp | 27i “n; — exp (271! —Inﬁm»*)
Y [exp (Zni )] = ’

. L =0:;
m

n
1 — exp <2ni ﬁ>
m
hence we have

Ioe) m k
X — — Z Xpm = (€ —xx%) Z % Z [exp <27zi L};)] (x*y" ™t

Then

k=1

1 - ”
’X ‘W—l kgl xlc/m [E e — xx* “ “ ()C ) “
<fe—xxr X x|
X m-—1
“le—wl iy

Since the right hand side converges to 0 as m — o0, the theorem now follows
immediately from relation (1) above.

Step 7. The involution in a B*-algebra A is isometric.

Proof. Since every B*-algebra without identity can be isometrically
embedded in a B*-algebra with identity we may assume 4 has an identity.

By Step 2 || x | = | x*x||'/? is an equivalent B*-norm on 4 such that
| x* o = [ x]o = || x |, where
| is the unitary seminorm on A.
Observe that Hu | = 1 for every unitary u e 4. Indeed, since u and u*

commute, by the argument given in the first step of the proof of Theorem I,

Now, if x = XN_, Au, A, €C, u, e U, then

Il =1 2 A< 3 14l Tul = 3 |4l

Thus || x || <] xfu =] x]o = | x*x

172

and so [ x| = | x].

Step 8. The Gelfand-Naimark-Segal Construction. We have seen that
the involution in a B*-algebra A is isometric. Further, if 4 has no identity
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we can embed A isometrically as a closed ideal of codimension one in the
B*-algebra 4, with identity e. Thus we can and will assume without loss of
generality that 4 has an identity e.

The representation of such an algebra 4 as a norm-closed *-subalgebra
of bounded linear operators on a Hilbert space is effected by means of
positive functionals on 4 and a construction due to Gelfand-Naimark [23]
and Segal [49].

A positive functional on A is a linear functional p such that p (x*x)
>0 for all xe 4. For x, ye 4 set (x,y) = p (y*x). This scalar product
on A is linear in x, conjugate linear in y and (x, x) is nonnegative for all x.
Thus in particular p (y*x) = p (x*y) and |p (y*x)|*> <p (x*x) p (¥*)
(Schwarz inequality). Setting y = ¢ we get p (x*) = p(x) and l p (x) |2
< p (e) p (x*x).

In general the scalar product on 4 is degenerate so that a reduction is
necessary to obtain nondegeracy. To this end we define the associated nul/
ideal 1 = { xe€ A:p (x*x) = 0}. Since by the above properties of positive
functionals

I ={xeA:p(y*x) =0 for all yed},

the null ideal is clearly a left ideal in A. Then the quotient space X = A4/J
is a pre-Hilbert space with respect to the induced scalar product

(x+1,y+I) = p(y*x)

and, further, for each ae A we can define a linear operator 7, on X by
T,(x+1I) = ax + 1. The map a — T, has the following easily verified
properties: 17,,, = T, + T, T,, = AT, T,, = T,T, and T, is the identity
operator; also

(L&+D), y+I) = (x+1, T,*(y +1))

so that a — T, is a *-representation of A on the pre-Hilbert space X.

Let H be the Hilbert space completion of X. We want to show that
every operator 7, on X can be extended to a bounded operator on H. We
claim that | 7,| <|a«|. Note that |7, (x+1) I? = (ax+1, ax+1)
= p (x*a*ax). For any « > |a*a| = | a|* there exists a hermitian
h e A such that A* = ae — a*a. Hence

ap (x*x) — p(x*a*ax) = p(x* (xe —a*a) x) = p((hx)* (hx)) >0

and so p (x*a*ax) < | a|?p (x*x). Thus || 7, | < | a||. Denote the ex-
tended operator on H also by T..

L’Enseignement mathém., t. XXIII, fasc. 3-4. 12




~ which together with | T, || < | z|| gives | T,
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The preceding discussion has shown that for every positive functional
on A there is associated a *-representation of 4 as a *-subalgebra of bounded
linear operators on a Hilbert space H such that || 7, | <[ a|. In general
this representation is neither injective nor norm-preserving. By constructing
appropriate positive functionals in the next step we will, however, be able to
build a representation with these properties.

Step 9. Construction of positive functionals. We will construct for
every fixed ze 4 a positive functional p on 4 such that p(e) = 1 and

p (z*z) = | z|>. Clearly the associated *-representation has the property
| T.]| = || z|. Indeed,
|z = p(z*2) = (T, (e+I), T, (e+D)) = || T,(e+D)|?
<[T[Ple+1]* =|T|*p(e = | T.|?

=l z|.

The following construction of the desired positinve l1lunctional is a special
case of an extension theorem for positive functionals due to M. Krein
[32].

Construction: Let H (A4) be the real vector space of hermitian elements
in A and P the positive cone of all positive elements in 4. On the subspace
Re + Rz*z of H (A) generated by e and z*z define p by

p(ae+fz¥z) = a + ﬁ“ z*z” .

Note that p is well-defined on Re + Rz*z even if e and z*z are linearly
dependent. Since || z%z | = | z*z |, € 0, (z*z) we have that « + f | z¥z |
lies in o, (xe+ fz*z). In other words, p(x)eo,(x) if xe Re + Rz*z
so that p (x) >0 for all xe P n (Re+ Rz*z).

Assume p has been extended to a real-linear functional on a subspace W
of H (A) such that p (x) >0 for all xe P n W and assume that there is a
ye H(A) with y ¢ W. Set

a =inf {p@):y<veW} and b =sup{pu):y >ueWj}. |

Since y < || y| eand y > — | y| e the infimum and supremum are taken

over nonempty sets, and are therefore finite numbers, clearly satisfying
a > b. Define p on the subspace of H (A4) generated by W and y by

p(x+ay) = p(x) + ac (xeW, aeR),

where c¢ is any fixed number such that a > ¢ > b.




— 171 —

Suppose that x + ay >0 (xeW, acR). We shall show that p (x+ y)
> 0. If o = 0, then p (x+ay) = p(x) > 0 by assumption.

X X
If « > 0, then x + oy >0 implies'y > — —e W, so thatp(- —(;) < ¢,
o

or p(x+ay) > 0.
X X
If « < 0, then x + ay > 0 implies y <C — — € W, so that p (-— —) > ¢,
o
or p(x+tay)>0.
By Zorn’s Lemma we conclude that p can be extended to a real linear
functional p on H (A) such that p (x) > 0 for all x € P.
Finally set p(x) = p(h) + ip(k) if x = h + ik with h, ke H(A).
Then p is a positive functional on 4 such that p (¢) = 1 and p (z*z) = | z*z |
= | z||*. This completes the construction.

Step 10. The isometric *-representation. In the preceding step we
constructed for every z € 4 a positive functional on 4 such that the associated
*.representation 7% of 4 on the Hilbert space H® is norm-decreasing and
[T = |z,

Let H be the direct sum of the Hilbert spaces H®. The direct sum of the
family H®, z e A4, is defined as the set of all mappings f on 4 with f(2)

e H® such that ) (f(2),f(2)) < oo. The algebraic operations in H
zed

are pointwise and the scalar product is given by (£,9) = > (/(2), g (2)).

zed
The reader may easily verify that all Hilbert space axioms are satisfied by H

(see [14]).
Define the *-representation 7 of 4 on H by

(T.)(2) = T,D(f(2).
Note that the inequality

2 (T.)(2), (Tf)(2) <|al? ZA(f(Z), f(2)

ze A

shows that with f also T, f belongs to H. Then 7, is a bounded operator
on H such that

| Tl = sup || T2
zeAd

= [T = el

Hence the map a — T, is a norm-preserving *-representation of 4 on H.
This completes the proof of Theorem II as stated in the introduction.
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