5. The Gelfand-Naimark theorem for arbitrary B*-algebras

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 23 (1977)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
29.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
complex conjugation. By the Stone-Weierstrass theorem [29, p. 151] we conclude that $B=C_{0}(\hat{A})$ and hence that $x \rightarrow \hat{x}$ is onto. Thus the proof of the representation theorem for commutative B^{*}-algebras is complete.

The reader who is interested in an unconventional proof of the preceding theorem may consult Edward Nelson [38, p. 78]. Quite simple proofs of the Gelfand-Naimark theorem in the special case of function algebras have been given by Nelson Dunford and Jacob T. Schwartz [14, pp. 274-275] and Karl E. Aubert [5].

5. The Gelfand-Naimark theorem for arbitrary B^{*}-algebras

The proof of the representation theorem for an arbitrary B^{*}-algebra is much more involved than the commutative case and it will be divided into several steps. After having established that the involution is continuous we will introduce a new equivalent B^{*}-norm with isometric involution. An investigation of the unitary elements will show that the original norm on the algebra coincides with this new norm. The representation of B^{*}-algebras will then easily be effected by the well known Gelfand-Naimark-Segal construction. General references for material in this section are [13], [37] and [43].

Step. 1. The involution in a B^{*}-algebra A is continuous.
Proof [39, Lemma 1.3]. First we show that the set $H(A)=\left\{h \in A: h^{*}\right.$ $=h\}$ of hermitian elements in A is closed. Let $\left\{h_{n}\right\}$ be a convergent sequence in $H(A)$ whose limit is $h+i k$, with $h, k \in H(A)$. Since $h_{n}-h \rightarrow i k$ we may assume (by putting h_{n} for $h_{n}-h$) that h_{n} converges to $i k$. The spectral mapping theorem for polynomials [43, p. 32] gives $\sigma_{A}\left(h_{n}^{2}-h_{n}^{4}\right)=\left\{\lambda^{2}\right.$ $\left.-\lambda^{4}: \lambda \in \sigma_{A}\left(h_{n}\right)\right\}$; since $\|h\|=|h|_{\sigma}$ and $\sigma_{A}(h)$ is real (see the first part of the proof of Theorem I, the Aren's-Fukamiya arguments and recall $\left.\sigma_{A}(h)=\hat{h}(\hat{A}) \cup\{0\}\right)$ we have

$$
\begin{aligned}
\left\|h_{n}^{2}-h_{n}^{4}\right\| & =\sup \left\{\lambda^{2}-\lambda^{4}: \lambda \in \sigma_{A}\left(h_{n}\right)\right\} \\
& \leqslant \sup \left\{\lambda^{2}: \lambda \in \sigma_{A}\left(h_{n}\right)\right\}=\left\|h_{n}^{2}\right\| .
\end{aligned}
$$

Letting $n \rightarrow \infty$ we obtain $\left\|-k^{2}-k^{4}\right\| \leqslant\left\|k^{2}\right\|$. Hence

$$
\sup \left\{\lambda^{2}+\lambda^{4}: \lambda \in \sigma_{A}(k)\right\} \leqslant \sup \left\{\lambda^{2}: \lambda \in \sigma_{A}(k)\right\} .
$$

Choose $\mu \in \sigma_{A}(k)$ such that $\mu^{2}=\sup \left\{\lambda^{2}: \lambda \in \sigma_{A}(k)\right\}$. Then $\mu^{2}+\mu^{4}$ $\leqslant \mu^{2}$, so $\mu=0$. It follows that $\|k\|=|k|_{\sigma}=0$ and hence $k=0$. This shows that $H(A)$ is closed.

Now it is easy to prove that the graph of the map $x \rightarrow x^{*}$ of A onto A is closed. For suppose $x_{n} \rightarrow x$ and $x_{n}^{*} \rightarrow y$. Then $x_{n}+x_{n}^{*} \rightarrow x+y$ and $\left(x_{n}-x_{n}^{*}\right) / i \rightarrow(x-y) / i$. Since $H(A)$ is closed, $x+y$ and $(x-y) / i$ are hermitian and so $x+y=x^{*}+y^{*}$ and $x-y=y^{*}-x^{*}$, whence $y=x^{*}$. Thus by the closed graph theorem, valid for conjugate linear maps, the involution in A is continuous.

Step 2. Let A be a B^{*}-algebra. Then $\|x\|_{0}=\left\|x^{*} x\right\|^{1 / 2}$ is an equivalent B^{*}-norm on A such that $\left\|x^{*}\right\|_{0}=\|x\|_{0}$ for all $x \in A$, and $\|h\|_{0}$ $=\|h\|$ for all hermitian $h \in A$.

Proof. [2], [53]. By Step 1 there exists $M \geqslant 1$ such that $\left\|x^{*}\right\|$ $\leqslant M\|x\|$ for all $x \in A$. Then

$$
M^{-1 / 2}\|x\| \leqslant\left\|x^{*}\right\|^{1 / 2}\|x\|^{1 / 2}=\|x\|_{0} \leqslant M^{1 / 2}\|x\|
$$

so that $\|\cdot\|_{0}$ and $\|\cdot\|$ are equivalent. Clearly $\|\cdot\|_{0}$ is homogeneous and submultiplicative. To prove the triangle inequality, let $x, y \in A$. Then

$$
\|x+y\|_{0}^{2}=\left\|(x+y)^{*}(x+y)\right\| \leqslant\left\|x^{*} x\right\|+\left\|y^{*} y\right\|+\left\|x^{*} y+y^{*} x\right\|
$$

so it is enough to prove that $\left\|x^{*} y+y^{*} x\right\| \leqslant 2\|x\|_{0}\|y\|_{0}$. For any positive integer n

$$
\begin{gathered}
\left\|\left(x^{*} y\right)^{2^{n-1}}+\left(y^{*} x\right)^{2^{n-1}}\right\|^{2} \\
=\left\|\left(x^{*} y\right)^{2^{n}}+\left(y^{*} x\right)^{2^{n}}+\left(x^{*} y\right)^{2^{n-1}}\left(y^{*} x\right)^{2^{n-1}}+\left(y^{*} x\right)^{2^{n-1}}\left(x^{*} y\right)^{2^{n-1}}\right\| \\
\leqslant\left\|\left(x^{*} y\right)^{2^{n}}+\left(y^{*} x\right)^{2^{n}}\right\|+2\left(\|x * x\| \cdot\left\|y^{*} y\right\|\right)^{2^{n-1}}
\end{gathered}
$$

For every $\varepsilon>0$ there is an integer n such that

$$
\left\|\left(x^{*} y\right)^{2^{n}}\right\| \leqslant\left(\left|x^{*} y\right|_{\sigma}^{2}+\varepsilon\right)^{2^{n-1}} \text { and }\left\|\left(y^{*} x\right)^{2^{n}}\right\| \leqslant\left(\left|y^{*} x\right|_{\sigma}^{2}+\varepsilon\right)^{2^{n-1}}
$$

Then

$$
\begin{gathered}
\left\|\left(x^{*} y\right)^{2^{n}}\right\| \leqslant\left(\left|x^{*} y\right|_{\sigma}\left|y^{*} x\right|_{\sigma}+\varepsilon\right)^{2^{n-1}} \leqslant\left(\left\|x^{*} y\right\| \cdot\left\|y^{*} x\right\|+\varepsilon\right)^{2^{n-1}} \\
\leqslant\left(\left\|x^{*} x\right\| \cdot\left\|y^{*} y\right\|+\varepsilon\right)^{2^{n-1}}
\end{gathered}
$$

and similarly

$$
\left\|\left(y^{*} x\right)^{2^{n}}\right\| \leqslant\left(\|x * x\| \cdot\left\|y^{*} y\right\|+\varepsilon\right)^{2^{n-1}}
$$

so that

$$
\left\|\left(x^{*} y\right)^{2^{n}}+\left(y^{*} x\right)^{2^{n}}\right\|^{2} \leqslant 2\left(\|x * x\| \cdot\left\|y^{*} y\right\|+\varepsilon\right)^{2^{n-1}}
$$

Combining these results we recursively obtain

$$
\left\|\left(x^{*} y\right)^{2^{k-1}}+\left(y^{*} x\right)^{2^{k-1}}\right\|^{2} \leqslant 4\left(\|x * x\| \cdot\left\|y^{*} y\right\|+\varepsilon\right)^{2^{k-1}}
$$

for any $k, 1 \leqslant k \leqslant n$. Thus

$$
\left\|x^{*} y+y^{*} x\right\|^{2} \leqslant 4\left(\left\|x^{*} x\right\| \cdot\left\|y^{*} y\right\|+\varepsilon\right)
$$

for arbitrary $\varepsilon>0$. Hence $\left\|x^{*} y+y^{*} x\right\| \leqslant 2\|x\|_{0}\|y\|_{0}$. So we have seen that $\|\cdot\|_{0}$ is an equivalent algebra norm on A. Further, $\|h\|_{0}$ $=\left\|h^{*} h\right\|^{1 / 2}=\|h\|$ for all hermitian $h \in A$ and so $\|x\|_{0}^{2}=\left\|x^{*} x\right\|$ $=\left\|x^{*} x\right\|_{0}$; i.e., $\|\cdot\|_{0}$ is a B^{*}-norm on A with $\left\|x^{*}\right\|_{0}=\|x\|_{0}$ for all $x \in A$.

Step 3. Positive elements and symmetry. Let A be a B^{*}-algebra with identity e. Then every hermitian $h \in A$ lies in a maximal commutative B^{*} algebra B with identity e. Observe that $\sigma_{B}(x)=\sigma_{A}(x)$ for all $x \in B$ [43, p. 35]. By the characterization of commutative B^{*}-algebras B is isometrically *-isomorphic to $C(\hat{B})$. Hence every hermitian element $h \in A$ has real spectrum.

A hermitian element $x \in A$ is called positive, and we write $x \geqslant 0$, if the spectrum of x in A is a subset of the nonnegative reals.

Clearly $x=h^{2}$ is positive for every hermitian $h \in A$. The set $P=\{x \in A$: $x \geqslant 0\}$ of all positive elements in A is called the positive cone. Indeed, P is a cone. For $\lambda \geqslant 0$ and $x \geqslant 0$ then $\lambda x \geqslant 0$ since $\sigma_{A}(\lambda x)=\lambda \sigma_{A}(x)$. That $x \geqslant 0$ and $y \geqslant 0$ implies $x+y \geqslant 0$ may be seen by the following KelleyVaught argument [31]:

Set $\alpha=\|x\|, \beta=\|y\|, \quad z=x+y$, and $\gamma=\alpha+\beta$. Since $|x|_{\sigma}$ $=\|x\|$ the assumption $x \geqslant 0$ implies $\sigma_{A}(x) \subset[0, \alpha]$, so that $\sigma_{A}(\alpha e-x)$ $\subset[0, \alpha]$ and therefore $\|\alpha e-x\|=|\alpha e-x|_{\sigma} \leqslant \alpha$. For the same reason $\|\beta e-y\| \leqslant \beta$. Hence

$$
\|\gamma e-z\|=\|(\alpha e-x)+(\beta e-y)\| \leqslant \alpha+\beta=\gamma .
$$

Since $z^{*}=z, \sigma_{A}(\gamma e-z)$ is real so that $\sigma_{A}(\gamma e-z) \subset[-\gamma, \gamma]$ which implies that $\sigma_{A}(z) \subset[0,2 \gamma]$. Thus $x+y=z \geqslant 0$.

The symmetry of the involution in A now follows readily by Kaplansky's argument [45]:

We intend to show $x^{*} x \geqslant 0$ for all $x \in A$. By observing that a realvalued continuous function is the difference of two nonnegative realvalued continuous functions whose product is zero, we can write the hermitian element $x^{*} x$ in the form

$$
x^{*} x=u-v, u \geqslant 0, v \geqslant 0, u v=0=v u
$$

Now $(x v)^{*}(x v)=v^{*} x^{*} x v=v x^{*} x v=v(u-v) v=-v^{3}$ so that $(x v)^{*}(x v)$ ≤ 0. Since $(x v)^{*}(x v)$ and $(x v)(x v)^{*}$ have the same nonzero spectrum, also $(x v)(x v)^{*} \leqslant 0$. Write $x v=h+i k$ with h and k hermitian. Then

$$
0 \geqslant(x v)^{*}(x v)+(x v)(x v)^{*}=2\left(h^{2}+k^{2}\right) \geqslant 0 .
$$

Thus $h=0=k$ or $x v=0$. But then $0=(x v)^{*}(x v)=-v^{3}$ and so $v=0$. Hence $x^{*} x=u \geqslant 0$; in particular, $e+x^{*} x$ is invertible for all $x \in A$.

Step 4. Let A be a B^{*}-algebra with isometric involution. Then there exists a net $\left\{e_{\alpha}\right\}$ of hermitian elements in A, bounded by one, such that $\lim e_{\alpha} x=x=\lim x e_{\alpha}$ for all $x \in A$. The net $\left\{e_{\alpha}\right\}$ is called an approximate identity.

Proof. The following construction is due to Irving E. Segal [50]. If A has no identity, we may embed A in a B^{*}-algebra A_{e} with identity e (see the proof of Theorem I). Thus in any case we can use the preceding results about positive elements.

For any $\alpha=\left\{x_{1}, \ldots, x_{n}\right\}$ in the class of all finite subsets of A, ordered by inclusion, set $h=x_{1}^{*} x_{1}+\ldots+x_{n}^{*} x_{n}$. Then $h \geqslant 0$ and so $e_{\alpha}=n h(e+n h)^{-1}$ is a well defined element in A. Viewing h as a non-negative function on the structure space of some maximal commutative B^{*}-subalgebra we see that $\left\|e_{\alpha}\right\|=\left|e_{\alpha}\right|_{\sigma} \leqslant 1$. It remains to show that $\lim e_{\alpha} x=x=\lim x e_{\alpha}$. Observe that

$$
\begin{aligned}
{\left[x_{i}\left(e-e_{\alpha}\right)\right]^{*}\left[x_{i}\left(e-e_{\alpha}\right)\right] } & \leqslant \sum_{j=1}^{n}\left[x_{j}\left(e-e_{\alpha}\right)\right]^{*}\left[x_{j}\left(e-e_{\alpha}\right)\right] \\
& \leqslant\left(e-e_{\alpha}\right) h\left(e-e_{\alpha}\right) \\
& \leqslant h(e+n h)^{-2} \leqslant e / 4 n
\end{aligned}
$$

where the last inequality follows from the fact that the real function $t \rightarrow t(1+n t)^{-2}(t \geqslant 0)$ has maximum value $1 / 4 n$. Thus

$$
\left\|x_{i}\left(e-e_{\alpha}\right)\right\|^{2}=\left\|\left[x_{i}\left(e-e_{\alpha}\right)\right]^{*}\left[x_{i}\left(e-e_{\alpha}\right)\right]\right\| \leqslant 1 / 4 n .
$$

Now for arbitrary $x \in A$ and $\varepsilon>0$ choose a finite set α_{0} of n elements in A such that $x \in \alpha_{0}$ and $n>\varepsilon^{-2}$. Then for all $\alpha \geqslant \alpha_{0}$ we have $\left\|x-x e_{\alpha}\right\|$ $=\left\|x\left(e-e_{\alpha}\right)\right\|<\varepsilon$. Hence $\lim x e_{\alpha}=x$ for every $x \in A$; and by the continuity of the involution also $\lim e_{\alpha} x=\left(\lim x^{*} e_{\alpha}\right)^{*}=\left(x^{*}\right)^{*}=x$.

Step 5. Every B^{*}-algebra without identity can be isometrically embedded in a B^{*}-algebra with identity.

Proof. Let A be a B^{*}-algebra without identity. By Step $2, A$ is a B^{*} algebra with isometric involution with respect to the equivalent norm $\|x\|_{0}=\left\|x^{*} x\right\|^{1 / 2}$. Hence, by Step 4, A has an approximate identity $\left\{e_{\alpha}\right\}$ consisting of hermitian elements such that $\left\|e_{\alpha}\right\|=\left\|e_{\alpha}\right\|_{0} \leqslant 1$. Now observe that for every $x \in A$,
$\|x\|=\sup \{\|x y\|: y \in A,\|y\| \leqslant 1\}=\sup \{\|y x\|: y \in A,\|y\| \leqslant 1\}$
and extend the norm on A to A_{e} by

$$
\begin{aligned}
\|x+\lambda e\| & =\sup \{\|(x+\lambda e) y\|: y \in A,\|y\| \leqslant 1\} \\
& =\sup \{\|y(x+\lambda e)\|: y \in A,\|y\| \leqslant 1\} .
\end{aligned}
$$

Then A_{e} is a Banach *-algebra with identity in which A is isometrically embedded as a closed ideal of codimension one. To see that the B^{*}-condition holds in A_{e} we first prove that

$$
\|x+\lambda e\|=\lim _{\alpha}\left\|(x+\lambda e) e_{\alpha}\right\|=\lim _{\alpha}\left\|e_{\alpha}(x+\lambda e)\right\| .
$$

Given any $\varepsilon>0$ there exists $y \in A$ with $\|y\| \leqslant 1$ such that

$$
\|(x+\lambda e) y\|>\|x+\lambda e\|-\varepsilon .
$$

Since $\lim _{\alpha}(x+\lambda e) e_{\alpha} y=(x+\lambda e) y$, there exists α_{0} such that for all $\alpha \geqslant \alpha_{0}$, $\left\|(x+\lambda e) e_{\alpha} y\right\|>\|x+\lambda e\|-\varepsilon$. Since $\left\|(x+\lambda e) e_{\alpha} y\right\| \leqslant\left\|(x+\lambda e) e_{\alpha}\right\|$ $\leqslant\|x+\lambda e\|$, it follows that $\lim _{\alpha}\left\|(x+\lambda e) e_{\alpha}\right\|$ exists and is equal to $\|x+\lambda e\|$. Similarly $\lim _{\alpha}\left\|e_{\alpha}(x+\lambda e)\right\|=\|x+\lambda e\|$. Thus

$$
\begin{aligned}
\left\|(x+\lambda e)^{*}\right\| \cdot\|(x+\lambda e)\| & =\lim _{\alpha}\left\|e_{\alpha}(x+\lambda e)^{*}\right\| \cdot \lim _{\alpha}\left\|(x+\lambda e) e_{\alpha}\right\| \\
& =\lim _{\alpha}\left\|e_{\alpha}(x+\lambda e)^{*}(x+\lambda e) e_{\alpha}\right\| \\
& =\left\|(x+\lambda e)^{*}(x+\lambda e)\right\| .
\end{aligned}
$$

Therefore $\left\|(x+\lambda e)^{*}(x+\lambda e)\right\|=\left\|(x+\lambda e)^{*}\right\| \cdot\|x+\lambda e\|$, and so A_{e} is a B^{*}-algebra.

Step 6. Let A be a B^{*}-algebra with identity e and isometric involution. Denote by $U=\left\{u \in A: u^{*} u=e=u u^{*}\right\}$ the group of unitary elements in A. Then every element x in A is a linear combination of unitary elements and $\|x\|=\|x\|_{u}$, where

$$
\|x\|_{u}=\inf \left\{\sum_{n=1}^{N}\left|\lambda_{n}\right|: x=\sum_{n=1}^{N} \lambda_{n} u_{n}, \lambda_{n} \in C, u_{n} \in U\right\} .
$$

Proof. To prove that every $x \in A$ is a linear combination of unitary elements it clearly suffices to show that every hermitian $h \in A$ with $\|h\|<1$
can be written as a linear combination of unitary elements. If $\|h\|<1$, then $\left\|h^{2}\right\| \leqslant\|h\|^{2}<1$ and so

$$
k=\sum_{n=0}^{\infty}\binom{1 / 2}{n}\left(-h^{2}\right)^{n}
$$

is a well-defined element in A. Clearly, k is a hermitian element commuting with h such that $k^{2}=e-h^{2}$. Thus $u=h+i k$ is unitary and $h=\frac{1}{2} u+\frac{1}{2} u^{*}$.

It now follows that $\|x\|_{u}$ (as given in Step 6) is well-defined for each $x \in A$; further, it is clear from the definition that $\|\cdot\|_{u}$ is a seminorm on A. We shall call it the unitary seminorm. Since the unitary elements form a group under multiplication $\|\cdot\|_{u}$ is submultiplicative.

Let us compare the unitary seminorm with the B^{*}-norm on A. Observe that $\|h\|_{u} \leqslant\|h\|$ for every hermitian $h \in A$. Indeed, if $\|h\|<1$, then $h=\frac{1}{2} u+\frac{1}{2} u^{*}$ for some unitary $u \in A$ and so $\|h\|_{u} \leqslant 1$. Thus $\|h\|_{u}$ $\leqslant\|h\|$ for every hermitian $h \in A$. Further $\|x\|_{u} \leqslant 2\|x\|$ for every $x \in A$. For if $x=h+i k$ with hermitian h and k, then $\|x\|_{u} \leqslant\|h\|_{u}+\|k\|_{u}$ $\leqslant 2\|x\|$. On the other hand $\|x\| \leqslant\|x\|_{u}$ for all $x \in A$. Indeed, if x $=\sum_{n=1}^{N} \lambda_{n} u_{n}, \lambda_{n} \in C, u_{n} \in U$, then

$$
\|x\|=\left\|\sum_{n=1}^{N} \lambda_{n} u_{n}\right\| \leqslant \sum_{n=1}^{N}\left|\lambda_{n}\right| \cdot\left\|u_{n}\right\|=\sum_{n=1}^{N}\left|\lambda_{n}\right|
$$

since $\|u\|^{2}=\left\|u^{*} u\right\|=1$ for every unitary $u \in A$. Thus $\|x\| \leqslant\|x\|_{u}$. Hence the unitary seminorm and the B^{*}-norm on A are equivalent norms with $\|x\| \leqslant\|x\|_{u} \leqslant 2\|x\|$ for all $x \in A$. To see that these two norms are actually equal we need the following result of Russo and Dye [44] about the closure of the convex hull of the unitary elements in A.

Russo-Dye Theorem. Let A be a B^{*}-algebra with identity e and isometric involution. Then then open unit ball of A is contained in the closed convex hull of the unitary elements of A; that is, for each x in A with $\|x\|<1$ and each $\varepsilon>0$ there exists a positive integer m and unitary elements u_{k} such that $\left\|x-\sum_{k=1}^{m} \frac{1}{m} u_{k}\right\|<\varepsilon$.

The equality of the unitary seminorm and the B^{*}-norm on A is an immediate consequence of this result. Indeed, let $x \in A$ with $\|x\|<1$.

Then for every $\varepsilon>0$ there is a positive integer m and unitary elements u_{k} such that $\left\|x-\sum_{k=1}^{m} \frac{1}{m} u_{k}\right\|<\varepsilon$ and so

$$
\begin{aligned}
& \|x\|_{u} \leqslant\left\|\sum_{k=1}^{m} \frac{1}{m} u_{k}\right\|_{u}+\left\|x-\sum_{k=1}^{m} \frac{1}{m} u_{k}\right\|_{u} \\
\leqslant & \sum_{k=1}^{m} \frac{1}{m}\left\|u_{k}\right\|_{u}+2\left\|x-\sum_{k=1}^{m} \frac{1}{m} u_{k}\right\| \leqslant 1+2 \varepsilon
\end{aligned}
$$

since $\varepsilon>0$ was arbitrary, $\|\mathrm{x}\|_{u} \leqslant 1$. This proves $\|x\|_{u} \leqslant\|x\|$ and so $\|x\|=\|x\|_{u}$ for all $x \in A$.

For completeness we will now prove the Russo-Dye Theorem The following elementary proof, valid for arbitrary Banach *-algebras with isometric involution, is based on ideas of Harris [28].

Proof of the Russo-Dye Theorem: Let $x \in A$ with $\|x\|<1$. Then $\left\|x x^{*}\right\| \leqslant\|x\| \cdot\left\|x^{*}\right\|=\|x\|^{2}<1$. Hence the hermitian element $e-x x^{*}$ is invertible and has the invertible hermitian square root $\left(e-x x^{*}\right)^{1 / 2}$ $=\sum_{n=0}^{\infty}\binom{1 / 2}{n}\left(-x x^{*}\right)^{n}$. Similarly $e-x^{*} x$ has invertible hermitian square $\operatorname{root}\left(e-x^{*} x\right)^{1 / 2}=\sum_{n=0}^{\infty}\binom{1 / 2}{n}\left(-x^{*} x\right)^{n}$. For complex λ with $|\lambda|=1$ define

$$
u_{\lambda}=\left(e-x x^{*}\right)^{-1 / 2}(x-\lambda e)\left(e-\lambda x^{*}\right)^{-1}\left(e-x^{*} x\right)^{1 / 2} .
$$

We intend to show that u_{λ} is unitary. Since $\lambda \bar{\lambda}=1$,

$$
\begin{aligned}
u_{\lambda}^{*} & =\left(e-x^{*} x\right)^{1 / 2}(e-\bar{\lambda} x)^{-1}\left(x^{*}-\bar{\lambda} e\right)\left(e-x x^{*}\right)^{-1 / 2} \\
& =\left(e-x^{*} x\right)^{1 / 2}(\lambda e-x)^{-1}\left(\lambda x^{*}-e\right)\left(e-x x^{*}\right)^{-1 / 2} .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
(\lambda e-x)^{-1}\left(\lambda x^{*}-e\right) & =(\lambda e-x)^{-1}\left[(\lambda e-x) x^{*}-\left(e-x x^{*}\right)\right] \\
& =x^{*}-(\lambda e-x)^{-1}\left(e-x x^{*}\right), \\
\left(e-\lambda x^{*}\right)(x-\lambda e)^{-1} & =\left[x^{*}(\lambda e-x)-\left(e-x^{*} x\right)\right](\lambda e-x)^{-1} \\
& =x^{*}-\left(e-x^{*} x\right)(\lambda e-x)^{-1},
\end{aligned}
$$

and

$$
\begin{gathered}
x(e-x * x)^{1 / 2}=\sum_{n=0}^{\infty}\binom{1 / 2}{n} x(-x * x)^{n}=\sum_{n=0}^{\infty}\binom{1 / 2}{n}\left(-x x^{*}\right)^{n} x \\
=\left(e-x x^{*}\right)^{1 / 2} x
\end{gathered}
$$

which may be conjugated to give the related equality

$$
\left(e-x^{*} x\right)^{1 / 2} x^{*}=x^{*}\left(e-x x^{*}\right)^{1 / 2}
$$

Utilizing these relations it follows easily that $u_{\lambda}^{*}=u_{\lambda}^{-1}$ so u_{λ} is unitary.

Let $u_{k / m}$ denote the unitary element u_{λ} with $\lambda=\exp \left(2 \pi i \frac{k}{m}\right)$ where k, m are positive integers. We will show that $x=\lim \Sigma_{k=1}^{m}(1 / m) u_{k / m}$.

With λ as above, let $x_{k / m}$ denote the element

$$
x_{\lambda}=(x-\lambda e)\left(e-\lambda x^{*}\right)^{-1} .
$$

Then

$$
\begin{aligned}
x-\sum_{k=1}^{m} \frac{1}{m} u_{k / m}=x & -\frac{1}{m} \sum_{k=1}^{m}\left(e-x x^{*}\right)^{-1 / 2} x_{k / m}\left(e-x^{*} x\right)^{1 / 2} \\
& =\left(e-x x^{*}\right)^{-1 / 2}\left[x-\frac{1}{m} \sum_{k=1}^{m} x_{k / m}\right]\left(e-x^{*} x\right)^{1 / 2}
\end{aligned}
$$

and so

$$
\begin{gather*}
\left\|x-\sum_{k=1}^{m} \frac{1}{m} u_{k / m i}\right\| \tag{1}\\
\leqslant\left\|\left(e-x x^{*}\right)^{-1 / 2}\right\| \cdot\left\|x-\frac{1}{m} \sum_{k=1}^{m} x_{k / m}\right\| \cdot\left\|\left(e-x^{*} x\right)^{1 / 2}\right\| \cdot
\end{gather*}
$$

Observe that

$$
x_{\lambda}=\sum_{n=0}^{\infty}(x-\lambda e)\left(\lambda x^{*}\right)^{n}=\sum_{n=0}^{\infty} \lambda^{n} x\left(x^{*}\right)^{n}-\sum_{n=0}^{\infty} \lambda^{n+1}\left(x^{*}\right)^{n}
$$

and so

$$
\begin{aligned}
x-x_{\lambda} & =\sum_{n=0}^{\infty} \lambda^{n+1}\left(x^{*}\right)^{n}-\sum_{n=1}^{\infty} \lambda^{n} x\left(x^{*}\right)^{n} \\
& =\sum_{n=1}^{\infty} \lambda^{n}\left[\left(x^{*}\right)^{n-1}-x\left(x^{*}\right)^{n}\right] \\
& =\left(e-x x^{*}\right) \sum_{n=1}^{\infty} \lambda^{n}\left(x^{*}\right)^{n-1}
\end{aligned}
$$

Summing over $k, 1 \leqslant k \leqslant m$, and dividing by m we have

$$
\begin{aligned}
x-\frac{1}{m} \sum_{k=1}^{m} x_{k / m} & =\frac{1}{m} \sum_{k=1}^{m}\left(x-x_{k / m}\right) \\
& =\left(e-x x^{*}\right) \sum_{n=1}^{\infty} \frac{1}{m} \sum_{k=1}^{m}\left[\exp \left(2 \pi i \frac{k}{m}\right)\right]^{n}(x *)^{n-1} \\
& =\left(e-x x^{*}\right) \sum_{n=1}^{\infty} \frac{1}{m} \sum_{k=1}^{m}\left[\exp \left(2 \pi i \frac{n}{m}\right)\right]^{k}\left(x^{*}\right)^{n-1}
\end{aligned}
$$

Now, if $1 \leqslant n<m$, then $\exp \left(2 \pi i \frac{n}{m}\right) \neq 1$ and so by the sum formula for
a finite geometric sum

$$
\sum_{k=1}^{m}\left[\exp \left(2 \pi i \frac{n}{m}\right)\right]^{k}=\frac{\exp \left(2 \pi i \frac{n}{m}\right)-\exp \left(2 \pi i \frac{n(m+1)}{m}\right)}{1-\exp \left(2 \pi i \frac{n}{m}\right)}=0
$$

hence we have

$$
x-\frac{1}{m} \sum_{k=1}^{m} x_{k / m}=\left(e-x x^{*}\right) \sum_{n=m}^{\infty} \frac{1}{m} \sum_{k=1}^{m}\left[\exp \left(2 \pi i \frac{n}{m}\right)\right]^{k}\left(x^{*}\right)^{n-1} .
$$

Then

$$
\begin{aligned}
\left\|x-\frac{1}{m} \sum_{k=1}^{m} x_{k / n}\right\| & \leqslant\left\|e-x x^{*}\right\| \sum_{n=m-1}^{\infty}\left\|\left(x^{*}\right)^{n}\right\| \\
& \leqslant\left\|e-x x^{*}\right\| \sum_{n=m-1}^{\infty}\|x\|^{n} \\
& \leqslant\left\|e-x x^{*}\right\| \frac{\|x\|^{m-1}}{1-\|x\|} .
\end{aligned}
$$

Since the right hand side converges to 0 as $m \rightarrow \infty$, the theorem now follows immediately from relation (1) above.

Step 7. The involution in a B^{*}-algebra A is isometric.
Proof. Since every B^{*}-algebra without identity can be isometrically embedded in a B^{*}-algebra with identity we may assume A has an identity. By Step $2\|x\|_{0}=\left\|x^{*} x\right\|^{1 / 2}$ is an equivalent B^{*}-norm on A such that $\left\|x^{*}\right\|_{0}=\|x\|_{0}$ for all $x \in A$. Hence, by Step $6,\|x\|_{0}=\|x\|_{u}$ where $\|\cdot\|_{u}$ is the unitary seminorm on A.

Observe that $\|u\|=1$ for every unitary $u \in A$. Indeed, since u and u^{*} commute, by the argument given in the first step of the proof of Theorem I, we have $\left\|u^{*}\right\|=\|u\|$ and so $\|u\|=1$.

Now, if $x=\sum_{n=1}^{N} \lambda_{n} u_{n}, \lambda_{n} \in C, u_{n} \in U$, then

$$
\|x\|=\left\|\sum_{n=1}^{N} \lambda_{n} u_{n}\right\| \leqslant \sum_{n=1}^{N}\left|\lambda_{n}\right| \cdot\left\|u_{n}\right\|=\sum_{n=1}^{N}\left|\lambda_{n}\right| .
$$

Thus $\|x\| \leqslant\|x\|_{u}=\|x\|_{0}=\left\|x^{*} x\right\|^{1 / 2}$ and so $\left\|x^{*}\right\|=\|x\|$.

Step 8. The Gelfand-Naimark-Segal Construction. We have seen that the involution in a B^{*}-algebra A is isometric. Further, if A has no identity
we can embed A isometrically as a closed ideal of codimension one in the B^{*}-algebra A_{e} with identity e. Thus we can and will assume without loss of generality that A has an identity e.

The representation of such an algebra A as a norm-closed *-subalgebra of bounded linear operators on a Hilbert space is effected by means of positive functionals on A and a construction due to Gelfand-Naimark [23] and Segal [49].

A positive functional on A is a linear functional p such that $p\left(x^{*} x\right)$ $\geqslant 0$ for all $x \in A$. For $x, y \in A$ set $(x, y)=p\left(y^{*} x\right)$. This scalar product on A is linear in x, conjugate linear in y and (x, x) is nonnegative for all x. Thus in particular $p\left(y^{*} x\right)=\overline{p\left(x^{*} y\right)}$ and $\left|p\left(y^{*} x\right)\right|^{2} \leqslant p\left(x^{*} x\right) p\left(y^{*} y\right)$ (Schwarz inequality). Setting $y=e$ we get $p\left(x^{*}\right)=\overline{p(x)}$ and $|p(x)|^{2}$ $\leqslant p(e) p\left(x^{*} x\right)$.

In general the scalar product on A is degenerate so that a reduction is necessary to obtain nondegeracy. To this end we define the associated null ideal $I=\left\{x \in A: p\left(x^{*} x\right)=0\right\}$. Since by the above properties of positive functionals

$$
I=\left\{x \in A: p\left(y^{*} x\right)=0 \text { for all } y \in A\right\},
$$

the null ideal is clearly a left ideal in A. Then the quotient space $X=A / I$ is a pre-Hilbert space with respect to the induced scalar product

$$
(x+I, y+I)=p\left(y^{*} x\right)
$$

and, further, for each $a \in A$ we can define a linear operator T_{a} on X by $T_{a}(x+I)=a x+I$. The map $a \rightarrow T_{a}$ has the following easily verified properties: $T_{a+b}=T_{a}+T_{b^{\prime}} T_{\lambda a}=\lambda T_{a^{\prime}} T_{a b}=T_{a} T_{b^{\prime}}$ and T_{c} is the identity operator; also

$$
\left(T_{a}(x+I), y+I\right)=\left(x+I, T_{a}^{*}(y+I)\right)
$$

so that $a \rightarrow T_{a}$ is a *-representation of A on the pre-Hilbert space X.
Let H be the Hilbert space completion of X. We want to show that every operator T_{a} on X can be extended to a bounded operator on H. We claim that $\left\|T_{a}\right\| \leqslant\|a\|$. Note that $\left\|T_{a}(x+I)\right\|^{2}=(a x+I, a x+I)$ $=p\left(x^{*} a^{*} a x\right)$. For any $\alpha>\left\|a^{*} a\right\|=\|a\|^{2}$ there exists a hermitian $h \in A$ such that $h^{2}=\alpha e-a^{*} a$. Hence

$$
\alpha p\left(x^{*} x\right)-p\left(x^{*} a^{*} a x\right)=p\left(x^{*}\left(\alpha e-a^{*} a\right) x\right)=p\left((h x)^{*}(h x)\right) \geqslant 0
$$

and so $p\left(x^{*} a^{*} a x\right) \leqslant\|a\|^{2} p\left(x^{*} x\right)$. Thus $\left\|T_{a}\right\| \leqslant\|a\|$. Denote the extended operator on H also by T_{a}.

The preceding discussion has shown that for every positive functional on A there is associated $a *$-representation of A as a *-subalgebra of bounded linear operators on a Hilbert space H such that $\left\|T_{a}\right\| \leqslant\|a\|$. In general this representation is neither injective nor norm-preserving. By constructing appropriate positive functionals in the next step we will, however, be able to build a representation with these properties.

Step 9. Construction of positive functionals. We will construct for every fixed $z \in A$ a positive functional p on A such that $p(e)=1$ and $p\left(z^{*} z\right)=\|z\|^{2}$. Clearly the associated *-representation has the property $\left\|T_{z}\right\|=\|z\|$. Indeed,

$$
\begin{gathered}
\|z\|^{2}=p\left(z^{*} z\right)=\left(T_{z}(e+I), T_{z}(e+I)\right)=\left\|T_{z}(e+I)\right\|^{2} \\
\leqslant\left\|T_{z}\right\|^{2}\|e+I\|^{2}=\left\|T_{z}\right\|^{2} p(e)=\left\|T_{z}\right\|^{2}
\end{gathered}
$$

which together with $\left\|T_{z}\right\| \leqslant\|z\|$ gives $\left\|T_{z}\right\|=\|z\|$.
The following construction of the desired positive functional is a special case of an extension theorem for positive functionals due to M. Krein [32].

Construction: Let $H(A)$ be the real vector space of hermitian elements in A and P the positive cone of all positive elements in A. On the subspace $R e+R z^{*} z$ of $H(A)$ generated by e and $z^{*} z$ define p by

$$
p\left(\alpha e+\beta z^{*} z\right)=\alpha+\beta\left\|z^{*} z\right\| .
$$

Note that p is well-defined on $R e+R z^{*} z$ even if e and $z^{*} z$ are linearly dependent. Since $\left\|z^{*} z\right\|=\left|z^{*} z\right|_{\sigma} \in \sigma_{A}\left(z^{*} z\right)$ we have that $\alpha+\beta\left\|z^{*} z\right\|$ lies in $\sigma_{A}\left(\alpha e+\beta z^{*} z\right)$. In other words, $p(x) \in \sigma_{A}(x)$ if $x \in R e+R z^{*} z$ so that $p(x) \geqslant 0$ for all $x \in P \cap\left(R e+R z^{*} z\right)$.

Assume p has been extended to a real-linear functional on a subspace W of $H(A)$ such that $p(x) \geqslant 0$ for all $x \in P \cap W$ and assume that there is a $y \in H(A)$ with $y \notin W$. Set

$$
a=\inf \{p(v): y \leqslant v \in W\} \text { and } b=\sup \{p(u): y \geqslant u \in W\}
$$

Since $y \leqslant\|y\| e$ and $y \geqslant-\|y\| e$ the infimum and supremum are taken over nonempty sets, and are therefore finite numbers, clearly satisfying $a \geqslant b$. Define p on the subspace of $H(A)$ generated by W and y by

$$
p(x+\alpha y)=p(x)+\alpha c(x \in W, \alpha \in R)
$$

where c is any fixed number such that $a \geqslant c \geqslant b$.

Suppose that $x+\alpha y \geqslant 0(x \in W, \alpha \in R)$. We shall show that $p(x+y)$ $\geqslant 0$. If $\alpha=0$, then $p(x+\alpha y)=p(x) \geqslant 0$ by assumption.

If $\alpha>0$, then $x+\alpha y \geqslant 0$ implies ' $y \geqslant-\frac{x}{\alpha} \in W$, so that $p\left(-\frac{x}{\alpha}\right) \leqslant c$, or $p(x+\alpha y) \geqslant 0$.

If $\alpha<0$, then $x+\alpha y \geqslant 0$ implies $y \leqslant-\frac{x}{\alpha} \in W$, so that $p\left(-\frac{x}{\alpha}\right) \geqslant c$, or $p(x+\alpha y) \geqslant 0$.

By Zorn's Lemma we conclude that p can be extended to a real linear functional p on $H(A)$ such that $p(x) \geqslant 0$ for all $x \in P$.

Finally set $p(x)=p(h)+i p(k)$ if $x=h+i k$ with $h, k \in H(A)$. Then p is a positive functional on A such that $p(e)=1$ and $p\left(z^{*} z\right)=\left\|z^{*} z\right\|$ $=\|z\|^{2}$. This completes the construction.

Step 10. The isometric *-representation. In the preceding step we constructed for every $z \in A$ a positive functional on A such that the associated *-representation $T^{(z)}$ of A on the Hilbert space $H^{(z)}$ is norm-decreasing and $\left\|T_{z}^{(z)}\right\|=\|z\|$.

Let H be the direct sum of the Hilbert spaces $H^{(z)}$. The direct sum of the family $H^{(z)}, z \in A$, is defined as the set of all mappings f on A with $f(z)$ $\in H^{(z)}$ such that $\sum_{z \in A}(f(z), f(z))<\infty$. The algebraic operations in H are pointwise and the scalar product is given by $(f, g)=\sum_{z \in A}(f(z), g(z))$. The reader may easily verify that all Hilbert space axioms are satisfied by H (see [14]).

Define the *-representation T of A on H by

$$
\left(T_{a} f\right)(z)=T_{a}^{(z)}(f(z))
$$

Note that the inequality

$$
\sum_{z \in A}\left(\left(T_{a} f\right)(z),\left(T_{a} f\right)(z)\right) \leqslant\|a\|^{2} \sum_{z \in A}(f(z), f(z))
$$

shows that with f also $T_{a} f$ belongs to H. Then T_{a} is a bounded operator on H such that

$$
\left\|T_{a}\right\|=\sup _{z \in A}\left\|T_{a}^{(z)}\right\|=\left\|T_{a}^{(a)}\right\|=\|a\|
$$

Hence the map $a \rightarrow T_{a}$ is a norm-preserving *-representation of A on H. This completes the proof of Theorem II as stated in the introduction.

