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§ 1. STABLE POINTS OF REPRESENTATION, EXAMPLES AND CHOW FORMS

For more details on the notations, definitions and properties which
follow see Mumford [14], which we will call G.I.T. or Seshadri [20].

Fix k an algebraically closed field,

G a reductive algebraic group over k (i.e. G =
[semi-simple group X G,]/finite central subgroup),

V' an n-dimensional representation of G,

xeV.

There are three possibilities for x whose equivalent formulations are summa-

rized in table 1.1 below.

1.1.

Xx unstable

X semi-stable

X stable

(a,)

0e 06 (x)

(ags)
0¢ 06 (x)

(ag)
i) OG (x) is closed
inV
i) stab (x) is finite

(b,) v non-constant

(bss) 3 a non-constant

(by) 1) yyeV—06 (x),

G-invariant G-invariant J a G-invariant
homogeneous polyno- homogeneous polyno- polynomial f's.t.
mials f mial fs.t. S # 1)
f(x)=0 f(x)#£0 i) tr deg,k (V)G

= dimV-dimG

(c) (css) (cs)

3 al-PS A of Gs.t. vV 1-PS’s A of G for all non-trivial
the weights of x the weights of x 1-PS’s » of G, x

with respect to A
are all positive

with respect to A
are not all positive

has both positive and
negative weights with
respect to A




1.2. REMARKS. i) Recall that a 1-PS (one parameter subgroup) A of G
is just a homomorphism A: G,, — G. Such A can always be diagonalized in a
suitable basis:

t' 0
A(t) =

0 t'n

If in this basis x = (x4, ..., X,,), the set of weights of x with respect to A
is the set of r; for which x; # 0.

i1) Unstable is not the opposite of stable, but of semi-stable. We will use
non-stable as the opposite of stable. '

iii) The important part of stability is the condition: O€ (x) closed in V.
In virtually all the cases that will interest us the finiteness of stab (x) will
be automatic (but cf. the remark following 1.15).

iv) A point x is stable if it merely has negative weights with respect to
every non-trivial 1-PS 4, for then it also has positive weights with respect
to A, namely, its negative weights with respect to 17 7.

v) The proofs of ¢, = a, = b, and of b, = a, = ¢, are obvious: for
example, if 4 is a 1-PS for which all weights of x are positive, then A (z) x —» 0
at t — 0; ie. ¢, = a,.

vi) The proofs of a, = b, and b, = a, are achieved by reduction to the
special case called geometric reducivity of G. A group G is called geomet-
rically reductive if
a) whenever V), is an invariant codimension-1 subspace of a vector space V

in which G is represented, there exists an #n for which the codimension-1

invariant subspace V° : Symm" 'V < Symm"V has an invariant
1-dimensional complement.

But notice that this is the same as saying that

b) whenever x # 0 is a G-invariant point, then there exists a G-invariant
polynomial f such that f (x) # 0 and f(0) = 0. (Just consider x as a

functional on the dual V and apply a) to its kernel there).

And b) is a special case of a, = b,. When char k = 0 we can take the poly-
nomial f to be linear, for by complete reducibility the invariant subspace
generated by x is invariantly complemented. A simple example shows this
does not happen in char p. Take p = 2, G = SL(2), V = the space of
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symmetric bilinear functions on k2, and x a non-degenerate skew-symmetric
form (x € V because p = 2 !). Then x is SL (2)-invariant and there are no
G-invariant non-zero linear functionals on V. A quadratic f which does
work is the determinant.

vii) The remaining implications ¢, = a, and a,=>c, are essentially
consequences of the surjectivity of the natural map

1PS’s 4 of G N G (k((1))) //_
A T i ]

where 1 is considered as a k ((¢))-valued point of G by composition with

the canonical map
Spec k((t)) — Speck[t,t7'] = G,

1.3. Let V (resp. V) denote the Zariski-open cones of semi-stable (resp.
stable) points. V—V, 1s the Zariski-closed cone of unstable points. The
conditions b of 1.1 tell us that if we try to map P (V) to a projective space
by invariant polynomials, we can only hope to achieve a well-defined map
on P (V),, and an embedding on P (V),. From the point of view of quotients
this can be expressed by:

PROPOSITION 1.3. Let X = Projk [V]°. Then there is a diagram

P(V) 2P (V) 2 P(V),

n T

¥ ¢
X > X

N

such that i) if x,yeP(V),, n,(x) = n,(y)=JgeG sit. x =gy
i) if x,yeP (V) n(x) = 2()) = 0°(X)n 0 () nP V), # 3 .

We now want to look at some examples to illustrate the application of
these ideas.

1.4. “BAD” AcTIONS. Using results of T. Kimura and M. Sato [11] 1),
we can give a list of all representations of simple algebraic groups in charac-

1) Plus help given by J. Tits.
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teristic 0 in which all vectors are unstable. The point is that there are very
few such representations.

G V
A
SL (W) Wi wi,1l <k <dim W
A
[ SL (W) AW, N2 W
A A

idim W odd NWe W, A2We W

Sp (W) w

Spin (10) Wor W W where Wis a

16-dimensional half-spin representation

1.5. DiscrRIMINANT. If G is semi-simple and char k = 0 then any
irreducible representation ¥ has the form V = I' (G/B, L) for a suitable
line bundle L on G/B (B is a Borel subgroup of G). To a point x in ¥ associate
the divisor H, on G/B which is the zero set of the corresponding section.
Except in the extremely unusual case that the set of singular H, is of co-
dimension > 1, there is an irreducible invariant polynomial &, the discri-
minant, such that

1) 0 (x) = 0 < H, is singular
2) V — (6 = 0) consists of semi-stable points.

An interesting case is

LemMA 1.6. Let G = SL(n), V = A*(K"). If W < k" is a subspace of
codimension [ then let &y, denote the natural map A* W@ A2 (k")
= AYK"). If 2<l<n—2or niseven | =2 or n— 2, then there is a
G-invariant 6 such that 6 (x) = 0 < x € Im (®y) for some W.

When/ = 2andn = 2m + 1 we have seen that there are no invariants;
corresponding to these cases the Grassmanian of lines in P?™ in its Pliicker
embedding in projective space has the unusual property that the singular
hyperplane sections are of codimension = 2 in the set of all such sections.

Question: if not every point of V' is unstable, then is the set of singular
hyperplane sections H, of codimension 1 ?
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For/ = 2 and n even or / = 3, n = 8, one can check that x is unstable
< § (x) = 0, hence J generates the ring of invariants. It would be nice to
have a necessary and sufficient condition for a 3-form to be unstable for
higher n as well.

1.7. 0-CycLes. For G = SL (W), dim W = 2,

V. = Symm" (W)

n

= vector space of homogeneous polynomials f
of degree n on W,

P (V,) = space of O-cycles of n unordered points on
the projective line P (W), the roots of an f
determining the cycle.

If f= Y a;x"""y" and A is the one-parameter subgroup given by
i=0

t 0 . i o

t > <O -1 ) in these coordinates, then 4 (£) f = Y. a;t"~ *'x""" y'. For f
i=0

to be stable, the weights (n— 2i) associated to the non-zero coefficients of f

must lie on both sides of 0: i.e. if j = n/2, neither x’ nor y’ divide f.

a, an_1 a, a, coefficient
- > —% ~ >— G
—-n —n+2 0 n—2 n  weight

In fact, the stability of f is equivalent to the same condition with respect
to all linear forms [: IV y fif j = n/2.

Thus P (V,), = {0-cycles with no points of multiplicity = n/2}
P (V,), = {0-cycles with no points of multiplicity > n/2} .

3 1.8. ReEmarRK. In the example above we can also prove that semi-
stability is a purely topological character. I claim that if #» 1s odd and f is
unstable then the action of G near fe P (V,) is bad: on all open neigh-
¢ bourhoods of the orbit of f, G acts non-properly and the orbit space is non-
¢ Haussdorf. Let’s see this for n = 7. Consider the following deformations
of a 7-point cycle.
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(Subscripts indicate multiplicities)

’L
).
X

3-fold 4-fold

At each intermediate stage the two cycles are projectively equivalent, but the
unstable limiting cycle in the right is clearly not equivalent to the limit on
the left. In fact, any pair of cycles with the multiplicities indicated on the
line + = 0 arise in this way as simultaneous limits of projectively equivalent
0-cycles. Moreover, there are cycles of the same type as the left hand limit
in any neighbourhood of the orbit of the right limit—just bring a multiplicity
one point in towards the triple point; so the orbit space cannot be Hausdorff
near the right limit.

1.9. Curves. Here G = SL (W), dim W = 3, ¥V, = Symm" (W), as
before, and a point f'e V, defines a plane curve of degree n. There is a very
simple way to decide the stability of . Represent f as below by a triangle of
coefficients, 7. .
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We can coordinatize this triangle by 3 coordinates i, i,, i, (the exponents
of x, y and z respectively) related by i, + i, + i, = n. The condition that
a line L with equation ai, + bi, + ci, = 0, (a, b, ¢) # (0,0,0), should
pass through the centre of this triangle is just ¢ + & + ¢ = 0; if L also
passes through a point with integral coordinates then @, b and ¢ can be
chosen integral. It is now easy to check that the weights of the 1-PS
t 0\
[ +— g

0 t€

at f'are just the values of the form defining L at the non-zero coefficients of /.
In suitable coordinates every 1-PS is of this form so:

fis unstable <> in some coordinates, all non-zero coeflicients of flie to
one side of some L

fis stable <> for all choices of coordinates and all L, f has non-zero

(resp. semi-stable)  coordinates on both sides of L (resp. f has non-zero
coordinates on both sides of L or has non-zero
coefficients on L).

Roughly speaking, a stable f can only have certain restricted singularities.
We summarize what happens for small 7, showing the “worst” triangle 7°
for f with given singularities, and the associated L when f is not stable.

1.10. n = 2: We can achieve the diagram below for a non-singular
quadric f by choosing coordinates so that (1,0,0)ef and z = 0 is the
tangent line there, so f is never stable. We cannot make the xz coefficient
of f zero without making f singular so f is always semi-stable; indeed, we
know f always has non-zero discriminant. A singular quadric always has a
diagram like that on the right: make (1, 0, 0) the double point. Henceforth,
we leave the checking of the diagrams to the reader.

o N

non-singular singular
quadric quadric
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1.11. n-= 3: It is well known that in this case the ring of invariants is
generated by two invariants, 4 of degree 4 and B of degree 6. If we set
A = 274° + 4B?, then up to a constant the classical j-invariant is just
A3/A. The possibilities are:

STABILITY

SINGULARITIES OF « » L
f WORST” TRIANGLE AND INVARIANTS

f has triple point unstable
A=B=0
j undefined
L
f has a cusp or two ‘ unstable
components tangent 0 A=B=20
at a point. J undefined
0 0 I
0_o—x*
* X ¥
f has ordinary double semi-stable and not
points (this includes stable

A=0butd, B#0
hence j = oo

the reducible cases:
f is a conic and a
transversal line, fis a
triangle)

f smooth ‘ stable
0 4 #0
0 * j finite
| 0 * *
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We remark that in this case, we have

M, = A
) ')
My = P?

and that the j-invariant is a true modulus. Note that from a moduli point
of view all three semi-stable types are equivalent.

1.12. n = 4: There are already quite a few diagram types here. Their
enumeration can be summarized by saying that f is unstable if and only
if £ has a triple point or consists of a cubic and an inflectional tangent line;
fis stable if and only if fhas only ordinary double points or ordinary cusps
(i.e. singularities with local equation y*= x> +higher terms). The remaining
f’s with a tacnode (a double point with local equation y?=x*+higher
terms) are strictly semi-stable.

1.13. REMARK. The fact that for » = 4 curves with sufficiently tame
cusps are semi-stable (or even stable!) is a definite problem because

i) such curves do not appear in the good compactification .#, of the
moduli space of non-singular curves of genus g. But

i) if we wish to obtain a compactification of .#, as the quotient space of
some subset of P (V,) by G, the natural candidate is P (V,),; so these

curves must be let in.

For example, when n = 4, we have

12

[P (Ve — (6=0))/G

M 3, non-hyperelliptic

N )

%3 P(V4)S/G
M o N

M f::::;::::: P(V,)../G

AM 5 is the moduli space for “stable” curves of genus 3: (see introduction).
Recall from Proposition 1.3 that P (V,),,/G is just the projectivization of
the full rings of invariants of P (V). The rational maps o and S induced
by the top isomorphism enable us to make a topological comparison of
these two compactifications. Let’s see geometrically how cuspidal curves in
P (V,)ss prevent o and f from being continuous.

First o: the diagram below shows on the left a deformation on .# 5 with

limit in ./ 3, and on the right the same deformation followed to its limit in
P (V4)SS/G'

% L’Enseignement mathém., t. XXIII, fasc. 1-2. 4




in 4

singularity

In the limit on the right, the value of the j-invariant of the shrinking elliptic 1
curve has been lost! So o blows up a point representing a curve C with a
cusp to the set of points representing joins of an arbitrary elliptic curve with

the desingularization C of C. « also blows up the point representing a double
conic to the family of all hyperelliptic curves.
As for f3, look at the double pinching below:

tacnodal
singularity

<O
or
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Here it is the manner in which the tangent spaces of the two branches have
been glued at the tacnodal point which has been lost in the limiting curve
on the left: this glueing corresponds on the left to the relative rate at which
the two pinches are made. Thus f has blown up the point corresponding
to the double join of two elliptic curves to a family of tacnodal quartics.

1.14. SurrAces. Here G = SL (W), dim W = 4and V,, = Symm" (W)
as before. The technique for determining stability here is essentially that
given for curves in 1.9 except that one has a tetrahedron T of coefficients
and 1-PS’s determine central planes, L : and, of course, the computations
required to apply the technique are much more complicated (cf. the case
n = 4 below). For small 7, the situation is summarized below.

n TYPE OF SINGULARITIES STABILITY
n=2 non-singular semi-stable, not stable
singular unstable
n=23 non-singular or with ordinary double )
) stable
points of type Al [
ordinary double points of type A2 semi-stable, not stable
tripl int bl high ble
riple points, double curve, higher dou 1 unstable
points f
n=4 singularities at most rational double
(due to points, or ordinary double curves poss-
Jayant Shah ibly with pinch points, but no double stable
[26]) line, and if reducible then no component
a plane, no multiple components
A triple point whose tangent cone has
only ordinary double points; or a double
line not as below; or an irrational double .
semi-stable

point not as below; or a plane plus a
cubic meeting in a plane cubic curve with
only ordinary double points; or a non-
singular quadric counted twice J

— but not stable

a) quadruple point, or triple point whose
tangent cone has cusp,

b) x = y = 01is double line and
J e (x? xyz?, xy*, %)

¢) a higher double point of form:
fe(x? xy?, xyz? xz38, y3z, y%)

unstable




1.15. ADJIOINT STABILITY.

PROPOSITION 1.15. Let G be any semi-simple group with Lie algebra g.
Then X egq isunstable < ad X is nilpotent.

Proof : (=) From the formula ad (Ad g (x)) = Adg o ad x o Adg ™' it
is immediate that the characteristic polynomial det (#/—ad x) is G-invariant,
hence that is coefficients are invariant functions. If x is unstable, these all
vanish so adx is nilpotent.

(<=) If adx is nilpotent then the { exp #(x) | t € k } is a unipotent subgroup
of G which must be contained in the unipotent radical R, (B) of some Borel
subgroup B of G. Fix a maximal torus 7' < B, so B = R, . T. Then by the

structure theorem of semi-simple groups we can write g = ¢ + ( > ga>
a>0

- ( ;O g, where t = Lie (T) and ( Y ga> = Lie (R, (B)). Let y, be

/ a>0
the character of 7, which is associated to « = («;) (i.e. if weT, ye g,

then Ad (w) () = x, (w) »), and let / be a linear functional on the group of
characters of 7" defining the given ordering: i.e.,

() = > coy >0 if o>0 and I(y) <0 if a<O.

We can always choose / so that all the c; are integers. If we define a 1-PS4: G,,
— T by A(t) = (..., 1t ...), then the weights of X with respect to A are
some subset of { /(«) | « > 0}, hence are positive. Thus X is unstable.

REMARK. There are no stable points. One can show that the regular
semi-simple elements of g have closed orbits of maximal dimension but
their stabilizers will be their centralizers, i.e. maximal tori of G, and hence
far from finite.

1.16. CHOwW FORM. The Chow form is the answer to the problem of
describing by an explicit set of numbers a general subvariety V" < P".
In two cases, the problem has a very easy answer: a hypersurface has its
equation F and a linear space L" has its Pliicker coordinates. The Chow
form is just a clever combination of these two special cases. Suppose V"
has degree d. There are two ways to proceed

i) If u = (u;) e P" write H, for the hyperplance ) u;X; = 0. One shows
that there is an irreducible polynomial @, such that

[VAH® A .. .nHY # 3] <[P, u®,...,u") = 0]
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Moreover @, is multihomogeneous of degree d in each of the sets of
variables (u$, ..., ul?’), @, is unique up to a scalar, and @, determines V.

ii) If G = Grassmanian of L"™ "~ Usin P"and 0 (1) is the ample line bundle
on G defined by its Pliicker embedding, then the set of L € G such that
LNV # @ is the divisor D, of zeroes of some section if O (d) and V
and D, determine each other. (Unfortunately, Dy is almost always a
singular divisor.)

These methods give the same result via the identification:

[ Homogeneous \

® I'(G,04(d)) = | coordinate
=9 ] ring of G J
J Subring W of C [..., U, ...] generated 1

by the Pliicker coordinates [
l P i, = detig, ey (Ui(lj)): o < iy < .. <, |

Letting W, be the d™ graded piece of W, the identification furnishes an

irreducible representation
r+1

Symmd (Ar-i—l (Cn+ 1)) N VVd =y ® Symm" (Cn+ 1)

Thus, although we will usually consider the Chow form as a point of the
SL (n+1) representation ®"** Symm? (C**1) this form lies in the irreducible
piece W, and can be thought of as defining a divisor on the Grassmanian.
For more details on Chow forms, see Samuel [17, Ch. 1 § 9].

1.17. AsympTOTIC STABILITY. We will say that a variety V" < P" is
Chow stable or simply stable if its Chow form is stable for the natural
SL (n+1)-action. If L is an ample line bundle on V, we say that (V, L)
is asymptotically stable if

dng s.t. Vn =ngy, Oppny(V) < P @M1 g stable.

Attention: a stable variety need not be asymptotically stable (nor, of course,
~ vice versa). Indeed, one of the main goals of this exposition is to show that
- the asymptotically stable curves are exactly the “stable” curves of Deligne
- and Mumford, and that by using asymptotic stability we can construct ./Z,
" as a “quotient” moduli space for these curves.
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