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2. The function f, = 2’1 A, ¢, (x,) maps the cube #" into the circle
1] = 1. ’ n

3. The transformation ¥ given by the equalities 7, = Zlﬂp @, (x,)
(g=1, ..., 2n+1) is one-to-one on S". ’

4. For any function f continuous on #" there exists a function g (z)
continuous on the disk |z | <1, holomorphic inside that disk, and such

2n+1 n
that £= Y g (3 20, (5)).
¢g=1 p=1
The transformation ¥ gives an embedding of the cube #" into the torus
] z‘l =1 (g=1, ..., 2n+1) such that any function continuous on the cube
2n+1

" =Y (F") is represented in the form f(Zy, ..., f2,51) = ., ¢ (1,), where
qg=1
g is a function holomorphic in the unit disk. This means in particular that

any function continuous on .#" has an analytic extension to the polydisk
|7, <1(g=1,...,2n+1).

§ 2. The theorem of Kahane

Let M be a complete metric space. We recall that a set is called a set of
second category if it is the intersection of a countable family of open sets
which are everywhere dense in M. By the theorem of Baire in a complete
metric space no set of second category is empty. The massivity of such sets
is characterized by the fact that the intersection of a countable family
of sets of second category is again a set of second category and consequently
is not empty.

We will say that a statement is true for quasi every element of M if it
is true for a set of elements of second category.

Let us consider an example. Let @ be the space with uniform norm
consisting of all functions continuous and non-decreasing on the segment
- S0 <t < 1). It can be shown easily that quasi every element of @ is a
strictly increasing function.

In fact, any strictly increasing function belongs to any set defined as
@ (r') < @ (r"), where r' < r" are fixed rational numbers. Any set defined
by an inequality of that type is open and everywhere dense in @, and the set
- of all such sets is countable.
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Let 4" be the cube {0 <x; <1,i=1,..,n}; C(F")-the space of all
functions continuous on #" with the uniform norm; @-the space of functions
continuous and non-decreasing on the segment .# ' (with the uniform norm);
®* = ¢ x ... x @ the k-th power of the space ®.

THEOREM 3.2.1. Let A, (p=1,...,n) be a collection of rationally inde-
pendent constants. Then for quasi every collection { ¢y, ..., p5,41 € P*"F1
it is true that any function fe C(F") can be represented on F" in the form

2n+1 n

flx) = ;g( Z Aoy (x,))

where g is a continuous function.

§3. The main lemma

We ﬁx a function fe C(S#"), positive numbers 4, (p=1,...,n) and a
positive ¢&. We will denote by Q, the set of all collectlons { @y s Pans1 }

e @>"*1! for each of which there ex1sts a continuous function 4 such that
2n+1

4] <07 and £ = £ A (S o) | < (1=0)| 1. The latter

inequality is strict and consequently the set €, 1s open.
The idea of the construction is contained in the following statement.

Lemma 3.3.1. If | f|| # O, the numbers {1,} are rationally inde-

1
pendent, and 0 < ¢ < ———, than the corresponding set Q , is everywhere
2

dense in ®*"+1 2n +

Proof. Let us fix an open set @ < &*"*! and prove that Q n Q, is
not empty. This will imply that Q, is everywhere dense in @>"*1.

We choose a number 6 > 0 and denote by ., () the segment defined
by the inequality

g0+ Q2n+1)j-o<t<<q "0+ 2n+1)jo + 2no
(q=1, ..., 2n+1,jis an integer) .

The value 6 will be determined below. Now we notice, firstly, that for any ¢
the segments £, (j) (=0, 1, £2) are pairwise desjoint and every two
consecutive segments are separated by an interval of length ¢ and, secondly,
that, every point of the real axis belongs to at least 2n of the sets Z )
(g=1,...,2n+1).
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