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2. The function tq £ Xpcpq(xp) maps the cube into the circle
P= l

hi-1-
3. The transformation W given by the equalities tq £/lp cpq (xp)

p= l
(^ — 1, 2/7 + 1) is one-to-one on </".

4. For any function / continuous on Jn there exists a function g (z)

continuous on the disk | z | <1, holomorphic inside that disk, and such

that / (**))•
t i p i

The transformation W gives an embedding of the cube into the torus
I t \ 1 (q= 1, 2/7+1) such that any function continuous on the cube

2«+l
jn _ p js represented in the form f(tlt t2n+i) — Z ^ where

^ is a function holomorphic in the unit disk. This means in particular that

any function continuous on J>n has an analytic extension to the polydisk
I tq I < 1 (q= 1, 2/7+1).

§ 2. The theorem ofKahane

Let M be a complete metric space. We recall that a set is called a set of
second category if it is the intersection of a countable family of open sets

which are everywhere dense in M. By the theorem of Baire in a complete
metric space no set of second category is empty. The massivity of such sets

is characterized by the fact that the intersection of a countable family
of sets of second category is again a set of second category and consequently
is not empty.

We will say that a statement is true for quasi every element of M if it
is true for a set of elements of second category.

Let us consider an example. Let <P be the space with uniform norm
consisting of all functions continuous and non-decreasing on the segment

(0 < t < 1). It can be shown easily that quasi every element of <P is a

strictly increasing function.
In fact, any strictly increasing function belongs to any set defined as

cp (/*') < (p (/'), where r' < r" are fixed rational numbers. Any set defined
by an inequality of that type is open and everywhere dense in 0, and the set

of all such sets is countable.



— 280 —

Let /" be the cube { 0 < x{ < 1, i *=* 1, n }; C («/")-the space of all
functions continuous on Jn with the uniform norm; <£-the space of functions
continuous and non-decreasing on the segment«/1 (with the uniform norm);
(pk cp x x <p the k-th power of the space <P.

Theorem 3.2.1. Let Xp (p= 1, ...,n) be a collection of rationally
independent constants. Then for quasi every collection { cpu cp2n +1 } G <P2n + 1

it is true that any function fe C (<fn) can be represented on Jn in the form

/w i .</' iKv*w) -

q=1 p=1

where g is a continuous function.

§ 3. The main lemma

We fix a function /e C (/"), positive numbers Xp (p—l>...,n) and a

positive s. We will denote by Qf the set of all collections { cpu (p2n +1 }

g <P2n + 1 for each of which there exists a continuous function h such that

I!h II < II/IIand ll/w - E h(Z xp<Pt(xp))II < c1 _£) II/II- The latter
q= 1 p=1

inequality is strict and consequently the set Qf is open.
The idea of the construction is contained in the following statement.

Lemma 3.3.1. If || / || / 0, the numbers {Xp} are rationally

independent, and 0 < e < than the corresponding set Qf is everywhere
dense in <P2n+1. 2n+2

Proof. Let us fix an open set Q c= <p2n + 1 and prove that Q n Qf is

not empty. This will imply that Qf is everywhere dense in <P2n+1.

We choose a number <5 > 0 and denote by Jq (/') the segment defined

by the inequality

q • ö + (2n + l)j • ö < I < q • ö + {In + 1) jS + 2nd

(q=T, 2n+ l,j is an integer)

The value <5 will be determined below. Now we notice, firstly, that for any q

the segments Jq{j) (J 0, +1, ±2) are pairwise desjoint and every two
consecutive segments are separated by an interval of length <5 and, secondly,

that, every point of the real axis belongs to at least 2n of the sets £ (j),
{q=l9 2«+l). j
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