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1. COMPLETELY CONVEX FUNCTIONS

Let 7 denote an open interval. A function f: I — R is called completely
convex, if it is C* and (=1 > 0 on I for k = 0.

The set of completely convex functions is a convex cone denoted W
= W (I). We always equip W with the topology of pointwise convergence,
i.e., with the topology induced by the product space R.

Lemma 1.1. If 1 is unbounded W (I) consists of the non-negative
affine functions, and W (R) consists of the non-negative constants.

Proof. Assume first that inf / = —oo. Then every fe W is decreasing
since it is non-negative and concave. For kK = 0 and fe W we have
(=1)f @® e W and consequently (—1)¥/2**1) < 0. This shows that also
—f"e W and then —f" < 0, but by definition f“ < 0 and therefore f is
affine.

The case sup / = oo is treated in a similar manner. Finally, every non-
negative concave function on R is constant.

Remark. Completely convex sequences are non-negative and affine.

For a sequence a = (a,, a4, ...) of real numbers we define 4a to be the
sequence (4a), = a,,; — a,,n = 0, and A*a is defined as 4 (4" 'a) for
k = 1, where A% = a. A sequence a 1s called completely convex if
(—1)*4%*a = 0 for k = 0. The same method as in Lemma 1.1 leads to the
conclusion that every completely convex sequence satisfies 4a = 0 and 4%a
= 0. The completely convex sequences are therefore exactly the sequences
a, = an + f, where o, f = 0.

This is an answer to a remark by Boas [1]: “Nothing seems to be known
about completely convex sequences”.

In the following we will always assume that 7 is bounded, and for the sake
of convenience we choose /tobe I = 0, 1[. We simply write W for W (J0, 1]).
For fe W we have —f"e W and f* e W, where f* is defined by f* (x)
= f(1—x). The mapping /'~ f* is an affine isomorphism of W onto itself.

LemMma 1.2. Let f:]0, 1] > R be non-negative and concave. Then the
following holds :

0 ) <2f(%)  for xelo,1[.

() S0 2 f(x) sin () for  xxo€]0, 1T
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(iii) ([6], Lemma 7.1) If there exists x,€10,1[ and a >0 such that
f(xo) < asin(nxy) then f(x) =< an for xe€]0, 1.

Proof. (i). For x €10, 4] we have that /' (x) lies below the line through
(Y%, f (%)) and (1, 0) and (i) follows for x € ]0, 146]. The interval [15, 1[ 18
treated similarly.

(ii). Let xo, €10, 1[. For x € ]0, x,] we have

J(xo) J(xo)

f(x) = x = f(xg) x = -sin (7x),
X0
and for x € [x,, 1[ we have
70 278U 2 (12 275 in m1 )
1 — x, T
S xo) sin (7x) .
T

(iii). If f(xo) > an the inequality (ii) implies that f(x) > a sin (nx) for
xel0, 1[.

Since every f'e W can be extended to an entire holomorphic function all
derivatives of f have finite limits at 0 and 1. This can also be established in
an elementary way from the property (—1)¥/©Z® > 0 for £ = 0. We will
therefore freely use £ ® (x) for x = 0, 1 as the limit of /' ® (x) at these points.

LeEMMA 1.3. The cone W is a closed and metrizable subset of R”.

Proof. The set of concave functions ' : I — R is a closed and metrizable
subset of R, and therefore it suffices to prove that the pointwise limit f of a
sequence (f,) from W belongs to W.

It follows by Lemma 1.2 (i) that there exists a constant 4 such that
fn < A for all n1). The dominated convergence theorem then shows that

r1

1

im | 90 = [ f(0@ iy
n— 0 0

for all p € 2 (]0, 1), so (f,) converges to f weakly in the distribution

sense. Therefore (— 1)/ ** = 0 for all k£ = 0 in the distribution sense, and

this implies that fis C* and hence fe W.

) In fact, A = 2 sup f,,(2) can be used. It is finite because lim f,('2) exists.

n—oo




	1. Completely convex functions

