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1. Completely convex functions

Let 1 denote an open interval. A function / : I -> R is called completely

convex, if it is C00 and (—l)kf(2k) ^ 0 on I for k t 0. |

The set of completely convex functions is a convex cone denoted W
W (/). We always equip W with the topology of pointwise convergence,

i.e., with the topology induced by the product space R7.

Lemma 1.1. If I is unbounded W (I) consists of the non-negative |

affine functions, and W (R) consists of the non-negative constants.

Proof Assume first that inf/= — oo. Then every feW is decreasing
since it is non-negative and concave. For k it 0 and fe W we have

(—1 )kf(2k)eW and consequently (~l)kf(2k+1) 0. This shows that also
|

—f'e W and then —f" st 0, but by definition f" rt 0 and therefore / is

affine.
The case sup / oo is treated in a similar manner. Finally, every non-

negative concave function on R is constant.

Remark. Completely convex sequences are non-negative and affine.

For a sequence a (a0, a1, of real numbers we define Aa to be the

sequence (Aa)n an+1 — amnt 0, and Aka is defined as A (Ak'1a) for

kti 1, where A°a a. A sequence a is called completely convex if
(— 1 )kA2ka ^ 0 for k ^ 0. The same method as in Lemma 1.1 leads to the
conclusion that every completely convex sequence satisfies Aa t 0 and A2a

0. The completely convex sequences are therefore exactly the sequences

an (xn + ß, where a, ß ^ 0.

This is an answer to a remark by Boas [1] : "Nothing seems to be known
about completely convex sequences". j;

In the following we will always assume that I is bounded, and for the sake |

of convenience we choose /to be / ]0, 1 [. We simply write W for W (]0, 1 [). j

For fe W we have —f" e W and /* e W, where /* is defined by f* (x) t

f(l—x). The mapping/1->/* is an affine isomorphism of W onto itself.

Lemma 1.2. Let /:]0, 1[ R be non-negative and concave. Then the

following holds :

(i) fix) ^ 2/( y2) for xe]0,1[
(ii) fix) ^ ~f(x0) sin (nx) for x,x0e]0,1[.
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(iii) ([6], Lemma 7.1) If there exists x0 e]0, 1[ and a > 0 such that

f (x0) < a sin (7ix0) then f (x) ^ an for x e ]0, 1 [.

Proof (i). For % e ]0, %] we have that /(x) lies below the line through

(%>/(%)) anc* 0> anc* (0 follows for xe]0, %]. The interval [%, 1[ is

treated similarly.

(ii). Let x0 e ]0, 1[. For x e ]0, x0] we have

^ /(*o) ^ X ^ /(*(>) X

f(pc) ^ X ^/(x0) x è Sin (nx),
X0 71

and for x e [x0, 1 [ we have

r/ /(*o)(l ~x) ^ W1 x /(*o) • M x/(x) ^ —- ^/(x0)(l-x) è sin 7i(l-x)
1 — X0 71
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(iii). If /(x0) > an the inequality (ii) implies that /(x) > a sin (nx) for
x ]0, 1 [.

Since everyf e W can be extended to an entire holomorphic function all
derivatives of/ have finite limits at 0 and 1. This can also be established in

an elementary way from the property (—1 )fc/(2/c) ^ 0 for k ^ 0. We will
therefore freely use/(/c) (x) for x 0, 1 as the limit of/(/c) (x) at these points.

Lemma 1.3. The cone W is a closed and metrizable subset of R7.

Proof The set of concave functions / : / - R is a closed and metrizable
subset of Rr, and therefore it suffices to prove that the pointwise limit/ ofa
sequence (/„) from W belongs to W.

It follows by Lemma 1.2 (i) that there exists a constant A such that

/„ ^ A for all n 1). The dominated convergence theorem then shows that

lim
M -> CO

f,,(x)v(x)dx (x)
Jo Jo

for all q> e 2 (]0, 1[), so (/„) converges to / weakly in the distribution
sense. Therefore (- ])kf<2k> ;> 0 for all k ^ 0 in the distribution sense, and
this implies that /is C00 and hence feW.') In fact, A2 sup fJ'A) can be used. It is finite because lim /„(Vi) exists.
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