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PREFACE

By means of an algebraic substitution, the so-called Tschirnhaus trans-
formation, the general algebraic equation of the n-th degree x" + a; x" !
+a,x""*+ ... +a,_yx +a, =0 may be reduced to the form "
+ b,y "+ bsy" >+ ...+ b,_yy+ 1 =0. Further attempts by al-
gebraists to reduce the solution of the general algebraic equation to the
solution of equations containing a smaller number of parameters remained
unsuccessful for a long time (the problem of resolvents).

In his famous Mathematical Problems [1] Hilbert looked at this problem
in a new way, formulating it as No. 13 in the following form: the impossi-
bility of solving the general equation of the 7-th degree by means of func-
tions of only two variables. To prove this Hilbert regarded it as possible to
show that the equation of the 7-th degree /7 + xf> + yf* +zf+ 1 =0
is not soluble by means of any continuous functions of only two variables.

Various mathematicians have understood the 13-th Problem differently
and have attributed to it results of a different character.

Hilbert [3] found an algebraic substitution reducing the solution of the
general algebraic equation of the 9-th degree to the solution of equations with
4 parameters. Hilbert proved also the existence of analytic functions of
three variables not representable by superpositions of functions of only
two variables. Ostrowski [2] constructed an analytic function of two variables
not representable as a superposition of infinitely differentiable functions
of one variable and arithmetic operations. The author [4] proved the
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existence of smooth functions of several variables not representable by
superpositions of smooth functions of a smaller number of variables.

Bieberbach [5] attempted to prove that there exist continuous functions
of three variables, not representable as a superposition of continuous func-
tions of two variables. Not for nothing did Bieberbach call the 13-th Prob-
lem “unfortunate” (see [6]). Many years later, by the combined efforts of
Kolmogorov [7], [9] and Arnol’d [8], the opposite was proved. So Hilbert’s
conjecture was shown to be false. By Kolmogorov’s theorem any conti-
nuous function of several variables can be represented by means of a superposi-
tion of continuous functions of a single variable and the operation of addition.

Hilbert’s 13-th problem gave rise to a great number of investigations
in algebra and analysis, but the kernel of the problem never the less remains
untouched. In this connection Lorentz [12] made an expressive analogy.
The example of Peano of a mapping of an interval onto a square does not
answer the question about the difference between an interval and a square.
In the same way the theorem of Kolmogorov does not close the 13-th
problem, but only makes it more interesting. It is known, for example, that
superpositions of Kolmogorov’s type, composed of smooth functions, do
not even represent all analytic functions [48].

Thus, Hilbert’s idea of proving the impossibility of solving the general
equation of the 7-th degree by means of functions of only two variables
can be developed in a more positive way. Results available at present do not
contradict, for example, the possibility that the function f(x, y, z) defined
by the equation /7 + xf° + yf'* + zf + 1 = 0 is not a finite superposition
of analytic functions of two variables. On the other hand nobody has
disproved that any algebraic function is a superposition of algebraic func-
tions of a single variable and arithmetic operations.

This paper is a summary of the lectures given at the University of Cali-
fornia in Los Angeles in April-May of 1977. Chapter I presents a survey of
results, the remaining chapters are devoted to proofs.

CHAPTER 1. — SURVEY OF RESULTS

The survey presented is based on the surveys [10]-[12], [33]-[35]. It also
covers recent results:

Definition. We will say that a function f = S (xy, ...y x,) 1S a super-
position of the functions
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() (a+1) (x+1) (a+1)
(pﬂla ﬂ2s..., ﬂa(Uﬁla ﬂ2s---’ ﬂa:1’ Uﬂl* 52----, ﬂaazj v Upl* ﬁ2""’th’ k)
(ﬁi: 1,2,...,k, l == ],...,CX, a:Oa 1'3"'98_1)

of k variables if f identically equals the function ¢, defined by the equalities
® = (P(O)(Ul(l), Uz(l), ey Uk(l)) :

(a) . (a) frr(a+1) (a+1) (a+1)
Uﬁl, v B T Py, ..., Ba (Um_, By ooy By 1 Uﬁl, B wois Bys 25 **0s U,sl, B2 oy /)’a,k)

p;=1,2,... k, i =1,2,...,0, « =1,2,...,s — 1,

(s) _
Upy by Bs = Xj(p1, Bas s Bs) -

The number s is called the order of superposition.

§ 1. Superpositions of analytic functions

In stating the 13-th Problem [1] Hilbert added that he had a rigorous
proof of the fact that there exists an analytic function of three variables
that cannot be obtained by a finite superposition of functions of only two
arguments. Although he did not indicate exactly what kind of functions
of two variables he had in mind, Hilbert was apparently thinking of analytic
functions of two variables.

The existence of analytic functions of three variables not representable
by means of superpositions of analytic functions of two variables is a simple
fact and can be obtained from the following considerations. The partial
derivatives of order k& of a function represented by a superposition are
defined by the derivatives of the functions composing the superposition.
The number of different partial derivatives of order p of a function of two

— 1
variables is equal to p%’?) Consequently, the number of parameters

defining. the derivatives of order k of the superposition has order k> (s is
fixed). On the other hand the number of different partial derivatives of
order not greater than k for a function of three variables is of the order k.
Hence for any s there exists a sufficiently large k such that one can find
a polynomial of the k-th degree not representable by a superposition of
order s of infinitely differentiable functions of two variables. The desired
non-representable analytic function can be given as a sum of non-represent-
able polynomials.

More general results in this direction were obtained by Ostrowski [2],
who showed, in particular, that the analytic function of two arguments
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o n :

E(x,y) = ), . is not a finite supérposition of infinitely differentiable
n=1 N

functions of one variable and algebraic functions of any number of variables.
The proof of this result is based on the fact that the function £ (x, y)
does not satisfy any algebraic partial differential equation, that is, an
equation of the form
0¢ 0¢ O (x, )
<b<5, x 2 e

= ey} = 0, where @
ox ~ dy ox*ady”

is a polynomial with constant coefficients in the function ¢ and its partial
derivatives up to a certain order. At the same, it is comparatively simple to
prove that any function of two variables which is a finite superposition of
infinitely differentiable functions of one variable and algebraic functions
of any number of variables necessarily satisfies some algebraic partial
differential equation. In the same paper, Ostrowski conjectured that the
function ¢& (x, y) is not a superposition of continuous functions of one
variable and algebraic functions of any number of variables (see the theorem
of Kolmogorov [9]).

§ 2. The problem of resolvents

Algebraic equations up to the 4-th degree inclusive are soluble by
radicals, that 1s, the roots of these equations can be represented as functions
of the coefficients in the form of a superposition of arithmetic operations and

functions of one variable of the form \’%—(n=2, 3). The general equation
of the 5-th degree, is insoluble by radicals, as Abel and Galois showed.
But since the general equation of the 5-th degree may be reduced by algebraic
substitutions to the form x> + zx + 1 = 0, containing a single parameter ¢,
we may say that a root of the general equation of the 5-th degree is also
represented as a function of the coefficients in the form of superpositions of
arithmetic operations and algebraic functions of one variable. The problem
of resolvents can be formulated in terms of superpositions in the following
way: to find, for any number », the smallest number k such that a root of
the general equation of the n-th degree as a function of the coefficients is
represented in the form of a superposition of algebraic functions of k
variables. In [3] Hilbert conjectured that for n = 6,7, 8 the number k
is 2, 3, 4, respectively. Hilbert’s result [3] for an equation of the 9-th degree
was all the more unexpected: a root of the general equation of the 9-th
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degree is representable as a superposition of algebraic functions of four
variables. Wiman [13], generalizing Hilbert’s result, proved that k <<n — 5
for any n > 9. As G. N. Chebotarev [14] observed, it can be proved by the
same method that kK <<n — 6 for n >21 and kK <n — 7 for n > 121.
A number of papers by N. G. Chebotarev [15] was devoted to the problem of
resolvents. However, the basic Theorem turned out to be wrong (see [16]).

In correcting Chebotarev’s paper Morosov found the right statements
but his proofs also were not without essential gaps [17]. Nevertheless, in
spite of the mistakes the papers of Chebotarev and Morosov have had a
positive influence on subsequent authors.

Arnol’d [18] and Lin [17] have shown that the function f, = f(z,, ..., z,)
which is the solution of the algebraic equation f" + z, f" ' + z, f"?
+ ... + z, = 0 for n > 3 can not be strictly represented as a superposition
of entire algebraic functions of a smaller number of variables and poly-
nomials of any number of variables. Let us recall that a function

= f(zy, ..., z;) is called an entire algebraic function if it satisfies an equa-
tion f™ + p, f™"* + ...+ p, = 0, where p,, ..., p,, are polynomials in
Z{, ., Z. The sentence “a function can not be strictly represented as a

superposition” means in the case under consideration that every super-
position representing the function must have unnecessary branches, 1.e.
the number of branches of any superposition must be at least » + 1. Using
that theorem for n = { 3,4} we see that in spite of the fact that the equa-
tions of degree 3 and 4 are soluble by radicals they do not have strict repre-
sentations. This explains in a sense why unnecessary roots appear when one
uses Cardano’s formulas.

Hovanski (see [19] and [20]) has shown that the solution of the equation
f° 4+ xf*+ yf+ 1 =0 can not be represented by a superposition of
entire algebraic functions of a single variable and polynomials in several
variables. We recall that the Tschirnhaus transformation reduces the
general equation of the 5-th degree to an equation with a single parameter,
that is, the function of Hovanski is represented by a superposition of
algebraic functions of a single variable and arithmetic operations. This
counter example demonstrates that the restriction not to use the operation
of division, is really strong.

We conclude the discussion of the problem of resolvents with a formula-
tion of a well-known problem: is it possible to represent any algebraic
function by means of a superposition of functions of a single variable and
rational functions of any number of variables.




§ 3. ‘Superpositions of smooth functions
and the theory of approximation

In [4] it was proved that in the class of all S times continuously differen-
tiable functions of n variables there exist some that cannot be represented
as a finite superposition of functions for which the ratio of the number of
arguments to the number of derivatives they have is strictly less than »n/S.

This theorem shows that the ratio n/S can serve as a measure of the
complexity of S times differentiable functions of n variables. The original
proof of this theorem made use of the theory of multi-dimensional variations
of sets and estimates of the number of e-distant smooth functions (see [21],
[22]). Kolmogorov [23] showed that the same result can be obtained using
only estimates of the number of elements of e-nets of functional compacts.

We denote by Fg the set of functions f(x,, x,, ..., x,) defined on an
n-dimensional cube, whose partial derivatives up to order S inclusive are
all continuous and bounded by some constant C. Let N, (Fg) be the mini-
mum number of spheres of radius ¢ in the space of all continuous functions
by which the set Fg can be covered.

It turns out that

. log log N, (F;) n
im = —

e—0 (1> S ‘
log| -
g

Hence it follows that if #/S > n’/S’, then the set of functions Fg is, in a
certain sense, “more massive” than Fa.

If a consideration of the massivity of functional compacts does not give
the answer then the problems remain open. For example, there is no answer
to the question: is it possible to represent any analytic function of several
variables by means of a superposition of smooth functions of a smaller
number of variables.

The topic of superpositions led to a large number of papers in approxima-
tion theory. Here we formulate two results concerning non-linear approxi-
mations.

Let #" be a cube 0 << x, <1 (i=1, ..., n); C—the space of all realvalued
continuous functions defined on #" with the uniform norm; F—a compact

subset of C, ¢—a surface in C which consists of the functions represented
in the form
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a ag L N
ay' . ay .. Ay fy
aptor+ ... fap=<k

@ =

BL+Ba+ . +pp=k

where the natural numbers p and k and the collections {f,, . 2p € C}
and { g, ... by € C} are fixed in advance and independent of ¢, {a;}
and { B, } are positive integers and the coefficients { ; } and { b, } defining
the function ¢ can take arbitrary real values.

We remark that for k = 1 the class @ can be turned into any of the
usual classes in approximation theory by means of an appropriate choise of
the number p and collections { f, . «, } and {95, .. 8, }- For example
it can be turned into the classes of polynomials or rational functions of a
fixed degree.

We pute,, (F) = sup inf |/ — ¢ |. Estimates of e, for some functional
feF @ped®

compacts can be found in [21], [22], [24], [25]. Here are two examples of

such estimates
1 s/n
1. e, (F)=>al——n——1 ,
alaiks (p log (k+l)>

where ¢ > 0 does not depend on p and k.

2. For the set F,, consisting of all functions which have an analytic
extension to some domain d in n-dimensional complex space bounded in
modulus by some constant C the following inequality is valid

where b > 0 and 0 < ¢ < 1 are constants independent of p and k.

Now there are more elementary proofs of these inequalities for k = 1
with precise estimates of the constant (see Erohin [26], Lorentz [24], Tiho-
mirov [27], Shapiro [25]).

Let us clarify the meaning of these inequalities. We agree to characterize
the complexity of any algorithm for the approximate calculation of func-
tions firstly by the number of parameters used in the algorithm, and secondly
by the complexity of the scheme of the calculation, for example, by the
number of arithmetic operations required for the approximate calculation
of functions by means of the given algorithm.

In the above-mentioned method of approximation of functions by
functions from @ the parameters are the numbers { @; } and { b; }, and the
number of arithmetic operations increases very rapidly as k increases. At
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the same time, from the inequalities mentioned above it follows that an
increase in k leads to an insignificant improvement in the accuracy of the
approximation. Hence, in a certain sense, a more economical approxima-
tion of functions is by means of expressions of the given form with k = I,
that is, by fractions of the form

P

';0 a; f; (x)

p
Z bjgj(x)
j=o

The same inequalities with & = 1 show that there are no methods of
approximating functions by fractions of the given form essentially better
than the standard methods of approximating functions by algebraic (or
trigonometric) polynomials. '

§ 4.  Superpositions of continuous functions

Kolmogorov’s theorem on the possibility of representing continuous
functions of » variables as superpositions of continuous functions of three
variables was highly unexpected (see [7]).

In this paper Kolmogorov proves that on the n-dimensional cube 4"
we can construct continuous functions ¢; (x) (i=1, 2, ..., n+1) such that
any continuous function f(x), defined on the cube .#", can be represented in

the form
n+1

S0 = ¥ Ad).
where d; (x) is a continuous mapping of .#" onto the one-dimensional tree ')
D if the components of the level sets of the functions ¢; (x), and f; (d;)
is a continuous function on the tree D;. Since the trees { D;} can be em-
bedded homeomorphically in the plane (see [30]), the functions { f; (d; (x)) }
can be thought of as superpositions

{fi(“i(xlax29 ....,X,, s vi(xl.a xz: vees X”))}

Y Kronrod [29] has shown that the components of all possible level sets of any
continuous function defined on #n in a certain natural topology, form a tree, that is, a
one-dimensional locally connected continuum, not containing homeomorphic images
of circles. Kronrod calls this the “one-dimensional tree of the function”.
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where { f; (u;, v;) } are continuous functions of two variables, and { u; (x) }
and {v;(x)} are fixed continuous functions of n variables. Kolmogorov
derived from this the result that for n >4 any continuous function of
n variables can be represented by the following superposition of continuous
functions of not more than n — 1 variables:

le,- (11 (X1 X s Xym 1) > Ui(X 5 Xgy ety Xpmq) s X,)

Arnol’d [8], [22] showed that, firstly, in Kolmogorov’s construction [7]
we can nianage with functions { ¢; (x) } whose one-dimensional trees { D, }
have index at each branch point equal to 3, and, secondly, for any compact
set F of functions defined on such a tree D, the given tree can be so placed
in three-dimensional u, v, w-space that any continuous function f(d)
= f(u,v, w) € F can be represented as the sum of functions of the coor-
dinates, f(u,v,w) = @ (u) + ¥ (v) + k (w). Hence it follows that any
continuous function f(x, y, z) of three variables can be represented as a

9
superposition of the form f(x,y,z) = Z /i ((p,- (x, y), z), where all the
i=1
functions are continuous, and the functions { ¢; (x, y) } can be regarded as
fixed, when f(x, y, z) is taken from a compact set. Thus, Arnol’d had the
last word in refuting Hilbert’s conjecture. At the same time Kolmogorov [9]
obtained, in a certain sense, the definitive result in this direction.

Each continuous function of n variables, given on the unit cube in

n-dimensional space, is representable as a superposition of the form

2n +1

f('xlax,b '-'7xn) = Z gq( Z (pp,q (xp)) ) (1)
q=1 p=1

where all the functions are continuous, and moreover the functions
{ ¢,,(x,)} are standard and monotonic. |

In particular, each continuous function of two variables is representable
in the form

fx,p) = Z_l fila: () +B:(y) - (1D

Kolmogorov’s theorem can be supplemented by the following result of
Bari, which was obtained in connection with problems of Fourier series:
any continuous function of one variable f'(¢) can be represented in the form

F (1) =fi (o (1) + 12 (02 (1) + f3 (¢35 (1)), where all the functions {f;}

and { ¢, } are absolutely continuous [32].
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From the theorems of Kolmogorov and Bari it follows that each con-
tinuous function of n variables can be represented as a superposition of
absolutely continuous monotonic functions of one variable and the opera-
tion of addition.

A detailed account of Kolmogorov’s theorem is to be found in the
surveys [9], [33]-[36]. The proof presented by Kahane is of special interest
[36]. He does not attempt to construct the functions { ¢, , } (as the proof of
Kolmogorov does) but instead he shows by means of Baire’s theorem, that
most selections of increasing functions { ¢,, } will do. This approach also
lead to other interesting results.

Fridman [37] showed that the inner functions { ¢,, } can be chosen
from the class Lip 1. Kahane noticed that this follows directly from Kol-
mogorov’s theorem. For any finite collection of continuous and monotone
functions {f, (x) } on the segment [0, 1] there exists a homeomorphism
x = ¢ (s) of the segment [0, 1] onto itself such that the functions { g, (s)
= fi (¢ (s)) } belong to the class Lip 1. The homeomorphism is taken as

s = 1 (x) = S(X+§|f}c(X)-f}c(0)l)-

The constant ¢ is chosen to satisfy the condition ¢! (1) = 1. By means
of such homeomorphisms all inner functions in Kolmogorov’s formula can
be turned into functions satisfying the condition Lip 1.

There are some other improvements of Kolmogorov’s theorem:
Doss [38], Bassalygo [39], Lorentz [34], Sprecher [40] (see chapter 3, § 1).
There are also many results concerning special types of superpositions
(see [21], [33], [41]-[44]).

§ 5. Linear superpositions

We return again to superpositions of smooth functions.

One of the most interesting current problems on the subject of super-
positions is the following: does there exist an analytic function of two
variables that cannot be represented as a finite superposition of continuously
differentiable (smooth) functions of one variable and the operation of
addition ?

Linear superpositions arise as a result of the following argument.
Suppose that a function of two variables f(x, y) is an s-fold superposition
of certain smooth functions of one variable {f; (t) } and the operation of
addition. We vary this superposition, that is, we consider a superposition

L’Enseignement mathém., t. X XIII, fasc. 3-4. 18
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S (x, ) of the same form, but composed of the functions { f; (¢) + ¢;(?) },
where { ¢, (#) } are small perturbations that are also smooth functions of
one variable. Then the difference of these superpositions can be written
in the form

F50) =f03) = ¥ pi(63) 0i(:(5, ) + 0 (max sup [@:(1) 1), (1)

where the functions { p;(x,y)} are expressed in terms of the original
functions { f; (#) } and their derivatives, so that we can only say of them that
they are continuous; { g; (x, y) } are expressed only in terms of the functions
{fi(#) }, hence they are continuously differentiable; the remainder term
o (max sup ‘ Q; (1) ]) is an infinitely small quantity compared with max sup
i t i t
. . do;

} @, (1) |, provided only that the functions {Ez‘—l} have some fixed modulus
of continuity. Equation (III) gives some hope of reducing the general
problem of superpositions of smooth functions to the determination of
analytic functions not representable by superpositions of the form

N
; pi(x, ) 9:(q:(x, ) , 0\%

where { p;(x,y)} are preassigned continuous functions, { ¢, (x,y)} are
preassigned continuously differentiable functions, and { ¢, (¢) } are arbitrary
continuous functions of one variable.

Such superpositions are called linear, to emphasize the fact that the
functions { p; (x, ) } and { ¢; (x, y) } are fixed and the superposition depends
linearly on the variable functions { ¢, (¢) }. We note that Kolmogorov’s
superpositions (I), (II) are also linear, since all p; =1 and ¢; (x, y) = «; (x)
+ B, (y) (i=1,2,3,4,5) are fixed continuous functions.

It is proved in [47], [48] that for any continuous functions { p, (x, ») }
and continuously differentiable functions { ¢; (x, y) } there exists an analytic
function of two variables not representable as a superposition of the form
(IV). Henkin showed that the set of superpositions of the form (IV) is
closed and consequently nowhere dense in the space of all continuous func-
tions of two variables. Hence, in particular, it follows that there exists even a
polynomial not representable as a superposition of the form (IV).

A comparison of these results with Kolmogorov’s theorem leads to the
conclusion that the inner functions of Kolmogorov’s formula, although
continuous, must inevitably be essentially non-smooth.
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We note that the results mentioned above can be extended without any
essential difficulties to superpositions of the form

N

Z Pi(X15 s Xp) [y (C,{i(xla oo xn)) ]

i=1
where { p;} are preassigned continuous functions, { g, } are preassigned
smooth functions and {f;} are arbitrary continuous functions of one
variable. But as it turns out this does not apply to superpositions of the
form

N .
Z pi('xla "'9xn)fi(CI1,i(x13 "'axn)a veey ('Zk,i(xlv "'7xn)) 9
i=1

where {p;} are fixed continuous functions of n variables; and
{4qi}s - { gy, } are fixed smooth functions of n variables (k<n). Fridman
answered that question only for n = 3,4, k = 2 and { p; } = 1.

Also it is not known to what extent the problem of superpositions of
smooth functions can be reduced to that of linear superpositions. “Such a
reduction is proved only in the case of the so called stable” superpositions
[10]. Tt turns out that not every analytic function of n variables can be
represented by means of superpositions of smooth functions of a smaller
number of variables it is assumed that the scheme is stable, i.e. for a small
perturbation of a function represented the perturbations of the functions
composing the superposition are comparatively small.

CHAPTER 2. — SUPERPOSITIONS OF SMOOTH FUNCTIONS

In this chapter we prove the existence of smooth functions of »n variables
(n > 2), not representable by superpositions of smooth functions of a
smaller number of variables.

§ 1. The notion of entropy

We will denote by C (#) the space of all functions defined on a set .#
and continuous on .# (the norm is the maximum of the absolute value of the
function). We fix a compact F < C(#) and a positive number . A set
F* < C(¥) is called an e-net of F if for any fe F there exists f* < F*
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such that {If— f* “ < &. We denote by N, (F) the number of elements
of a minimal e-net of F. The number H, (F) = log, N, (F) is called the
e-entropy of the set F.

The notion of entropy arises in a natural way in connection with various
problems of analysis. We consider an example.

Let f be a function. It is known only that f belongs to a compact F.
For example a smoothness condition of f and estimates of derivatives are
given. We consider the problem of tabulating the function f. The first part
of the problem is to write down in a table some number (parameters of f').
For example, the values of f at certain points or the Taylor coefficients of f
can be taken as such parameters. The second part of the problem is to present
a decoding algorithm universal for all fe F which allows f to be calculated
at any point with the accuracy e.

The complexity of a table is usually characterized by two factors—its
volume (the total number of binary digits required to write down all the
parameters of the table) and the complexity of the decoding algorithm.
It is easy to see that the volume of the most economical table presenting f
with the accuracy ¢ equals H, (F). Moreover it is possible to characterize the
decoding algorithm too in terms of the entropy [21], [22], [24], [25].

It will be shown in paragraphs 2 and 3 that the number of e-distant
smooth functions depends in an essential way on the number of variables.
This enables us to construct smooth functions of » variables not represent-
able by smooth functions of a smaller number of variables.

We present here estimates of the entropy for a few concrete classes.

1. Let Fg be the class of all real valued functions, defined on a cube
J:{0<x;<1,i=1,..,n} whose partial derivatives of order up to S

—~

are bounded in modulas by a constant C. Then

1 n/s A n/s
() <man <o

& &

7

where C’ > 0, C” > 0 are independent of e.

2. LetF,, ... ,, bethespaceof functionsanalytic on the n-dimensional

cube { — 1 <x, <1} (k=1,2, ..., n) having analytic continuations in the
region E, = E, X E,, X .. X E, which are bounded in modulus in this
region by the constant C > 0, where E,, is the region of the complex plane
z, = x, + iy, bounded by the ellipse with semi-major axis p, and with foci
at the points — 1, 1 of the real axis (k=1, 2, ..., n). Then
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1 no 1 1 c n+1 0 (1 c>nl 1 g C‘:]
1. (F, — og — + og- | loglog-|.
He(Forps.pa) (n+1)! kUl log p, 5 g ) gs e

3. Let F!_ be the class of real valued functions on the cube { — 1
< x, <1} (k=1, ..., n), bounded in modulus on that cube by the constant
s, and such that their analytic extensions are entire functions of order s,
with respect to z, = x, + iy, (k=1, ..., n). Then

H F,, 1 ﬁ 1 C n+t1 fl i C>—n
= - 0g-— og log—-1| -
a( .S‘,C) (n+1)!k:>1 Sk g8 ( g8

c n+1 c —-n—1
= () l:(log-> (log log > ] .
> €

These estimates and other results connected with estimates of entropy
and applications are to be found for example in [49]-[53].

§ 2. The entropy of the space of smooth functions

Here we give an estimate of the entropy of the class of S times differ-
entiable functions of n variables. The lower estimate was obtained in [4],
the upper one—in [23].

We fix integers n >1 and p >0 and numbers 0 <o <1, L > 0,
C >0, p > 0. We will denote by .# the cube 0 << x; <p (i=1, ..., n) and
by F= Fg'L . (S=p+a) the set of all real valued functions defined on .#
such that their partial derivatives of order p satisfy the condition Lip «
with the constant L and

1 ak1+...+kn,f(0) n
< e, &
; aklxl . 6knxn = € (lg.l cl = p)

We say that the function g (x) satisfies the condition Lip « with the constant
L if for any x" and x”

g (x") — g (x") | < L(r (x', x"))*,

where r (x’, x”) is the distance between x’ and x”.

THEOREM 2.2.1. If & > 0 s sufficiently small then

L n/s L n/s
Ap" () < H,(F) < Bp" <> ,
& &

where A and B are positive constants depending only on s and n.
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We choose 0 > 0 such that the number p/d is an integer. We divide

the cube .# into <§) cubes P; (z‘ =1,2, .., (g)) by hyperplanes, parallel
o

to its (n—1)-dimensional edges. Each of the cubes P; has side of length
0, and the edges of these cubes are parallel to those on #£. Let C; denote
the centre of the cube P; and S; the n-dimensional closed sphere (inscri-
bed in P;) of radius §/2 and centre at the point C;. Put

( 0, if xef — S,
i = i > Koy veey Xy) = 2 ’ 1
()D (.X) (P (xl xz \') iA(l_l__Cos (_ST_C}/’(CD _X))) lf xES[;

where r (C;, x) is the distance from the point x to the centre C; of the sphere
S;. Put, further,

q0’71,’12,

ceey

h
i (X) = .Zl n; (x)

LEmMMA 2.2.1. We can find a positive number A (s, L, n), such that when
A= A(s,L,n)d° and given any set of numbers n;(i=1,2, ..., h)-the
corresponding function @, .. . (x) belongs to F.

.....

Proof. By differentiating ¢; (x) it is not difficult to see that inside the
sphere S; its partial derivatives of all orders exist. And the modulus of any
partial derivative of order k is bounded inside S; by AB (s, k, n)d ¥,
where B (s, k, n) is some constant, depending only on s, k, n. In particular,
any derivative of the function ¢; (x) of order p + 1 is bounded in the sphere
S; by the constant \

A(s, L,n)B(s,p+1,n)

51—& Co
Let g (x) be any p-th order partial derivative of the functions ¢; (x). We
take two points @ and b belonging to the sphere S;. Then g (b) — ¢g (a)

0 0
= r(a, b) —%(f} , where 9(0)
r

AB(s,p+1,n) 6?71 =

3 is the derivative of g (x) along the direction
r

(a, b), taken at some point ¢ of [a, b]. Since any p + 1-th order partial
derivative of ¢, (x) is bounded inside the sphere by the constant
dg (c),

or

A(s,L,n)B(s,p+1,n)

51—a

A(s, L,n)B(s,p+1,n)
’l ST
él—a

-
.
<3

. we have
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And then
dg () A(s,L,n)B(s,p+1,n)
lg(b) —g(@)| < |p ——| <pn =
- or 5
< p*nd (s, L, n)B(‘s,p—{— 1,n).
Put
As, L) =
B = 2nB(s,p+1,n)"
Then

1
lg(b) —g(a)] < : Lp*.

Now let ¥ (x) be any of the p-th partial derivatives of the function
Pyimg....nn (¥). We choose two points x' and x" of S (x'eS;, x"€S))
and let g, (x) and g, (x) be the partial derivatives of the same kind as
¥ (x) of the functions ¢;(x) and ¢; (x) (respectively). It is easy to verify
that g, (x) and g, (x) are continuous on 4 and identically equal to zero
on the sets & — §; and J — §; (respectively). We select some point x,
belonging to the boundary of the sphere S; and lying on the segment [x’, x"].
Then

W) = ()< 1g9.(x") —g1 (X) ] + [g2(x") — g2 (x") |
< g1 () = g1 (xo) | +192(x") — g2 (x0) | < g (D) — g (a)|
1 1
< 3 L(r(x',xo)* + 3 L (r(x",x0))* < L (r(x',x")* .
h
If one of the points x’, x” (or both) belongs to the set # — ) §,, then we
=1

1l
can prove similarly that

o (x") — @ (x) ] < L(r(x',x")*.
Q.E.D.

LEMMA 2.2.2. There exists a positive constant A, depending only on
s, L, n such that for sufficiently small ¢

' 1 n/s
H,(F) > Ap" <> -
)

Proof. We choose some positive number & > 1 such that when

ke /s
0 = <m) 1S an integer.

/
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We choose two different functions of the type ¢, . .
Ofrg,.itp X), A = A(s,L,n)é° and A (s,L,n) is taken so small that
both functions belong to the family F. Since the functions we have chosen
are assumed to be different, for some i 7; % #5;. And therefore

l ¢n1,n2, wenstth (ci) - (pfl,TZ, .ostn (Ci) ‘
=24 = 24 (s, L,n)o° = 2ke > 2¢.
Hence

n

o (P\ _ (AL 1
Helf) = log 2 ’(5) ’< Tk )"O

LEMMA 2.2.3. There exists a constant B > 0 such that for sufficiently
small ¢ > 0

|3

7]

Q.E.D.

n

H.(F) < Byt ()
&

Proof. Let us choose some 6 > 0 such that the ratio p/o is an integer.
In the cube # consider the uniform lattice with step o, consisting of the

points d; (i =1, 2, ..., h; h = (g + 1> > .

We shall assume the corners of the lattice to be numbered so that the
point d; coincides with the origin of co-ordinates, and for any i

r(di—y,d) = 6.

We now choose some function f(x) of the family F and we shall show a
method of constructing a table for this function the volume of which is less

1 n/s
than By" <_> .
&

Let 4, denote the number of different kinds of partial derivative (of all
orders up to and including the p-th) of a function of n variables. It is not
difficult to verify that 1, <<(p+1)". Let { o } (zJ*=0, 1) be the coefficients

of the binary representation of the numbers
akl +k2+...+knf(d1)
— " (kg +ky ...+ k,) <
dx*1 6x’§2 ... Oxkn (e 2 ) P

written in some order (k is the order of the derivative, j = 1,2, ..., A%).
Then the numbers
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{ak1+kg+...+knf(d1)

Akl A ke oLk
Oxy! 0x3* ... Ox,"

} (ki +ky+...+k, =k)

are represented in the table to an accuracy of 57k ie.

' ¢
By < <[10g 55_;(] + 1) (k+ 1)

binary digits ¥ (j =1, 2, ..., h}) are sufficient to represent them in binary.
Thus, to represent all partial derivatives of f(x) at the point x = d; in
binary we need
p\ ko -/ n+ ¢
hy = Y hy <(p+1) I +log .
k=0 0,
binary digits ’
G =1,2,...,h, k=0,1,2,...,p).

Let us assume now that we have found a method for selecting the digits
{f{”‘} (i=1,2,...,g—1) together with a rule for calculating from these
digits the values of the numbers

ak1+k2+...+kn di i
{‘mx?—-j;%f:)} (ky +ky,+...+k,=k)

(i=1,2,..,g—1) to an accuracy of * % (k=0, 1, ..., p). We examine the
subsequent procedure for constructing the table for f(x). Let g, (x) be one
of the k-th order partial derivatives of f(x). According to the induction
hypothesis, the values of all partial derivatives of order m <p — k of
g, (x) at the point x = d,_; can be calculated to an accuracy of oS ~k—m
(m=0,1, ..., p—k) from that part of the table already constructed. From
Lagrange’s formula, the value of g, (d,) is found sufficiently accurately
from the approximate values of the derivatives of g (x) at d,_. Therefore,
to represent the numbers g, (d,) to an accuracy of 5°~* we need only a small
number of binary digits. Since r(d,_{, d,) = ¢ all the corresponding co-
ordinates (except one) of the points d,_,, d, are equal. For definiteness,
we shall suppose that

Xy (d) = x;(dy—y) + 0 and x;,(d) = x;(d,_,)

for i = 2,3, ..., n. Then

p—m—1 om d 5
gi(d, 1)
geld) = 3, guldy-y)

m=0 6x'1" m !
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1 07 g, (dy—y +09)

+— 6Pk
(p—1)! oxf "
p—k om d 5m
_ Z gk(mq 1) . R Hés_k ’
m=0 axl m ! (p—l)'
| o"g, (d, | |
where 0 < 0 < 1. But since ——-g—k(—nf———l—)is given by the table only to an
X1

accuracy of *7*" ™ (m=0, 1, ..., p—k) g, (d,) is determined by the cons-
tructed part of the table only to an accuracy of

p—1 a‘m Lés—k +p—k 1

L
5S Thk—m — 53k 4 ij <e(L+1 s—k
P ml T (=l (ZO 1 (k) ST

Therefore, in order to represent the value of g, (d,) in the table to an accuracy

of 6°7%, it is sufficient to put another 4)* = [log (L +1)¢)] + 1 binary
digits in the table. Hence, to determine the values of all k th order partial
derivatives of f(x) it is sufficient to add At < (k-+1)" A" binary digits
to the table (k=0, 1, ..., p). Thus, the approximate representation of the
values of all partial derivatives of the functions f(x) at the point will use
only .

p

h, = kZo hy < (p+ 1" (1 +log [e(L +1)])
binary digits.
The volume of the table T which we have -constructed is equal to

/

k X
C
P(T) = ¥ hy < (p+1)+! <1+log 5)
g=1

+ (=D (p+1)"" (1 +log [e(L+1)]).

We shall now describe the rule we use to enable us to compute the value
of f(x) at any point of the cube 4 from the parameters of the table. To
do this, we divide the cube .# in some way into sets w, (o, 3 d,) the diameter

h
of each set not exceeding 9 \/;, and such that ), w, = . The approximate
g=1

value of the function f'(x) is calculated using the parameters ré’k of T in the
following way. :
Let x € w,. Then, for the approximate value of f(x) we take

1 .. —x. (d))ki
f*(x) = Z Oy ko, .. kn H Grs =i { q))

ky+kg+...+k,=p i=1 k; !

[T e o e T TR
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where a;, .

.....

«, 1s the approximate value (to an accuracy of K k=5 ky
=1

5k1+k9+ +knf( )
q

X oxk2 L oxkn

Hf(x) f*(x) “ < (p+D"+L+1) = B(s,L,n)o* = ¢".

of partial derivative

Since f(x) e FF

Therefore,
H,(F)< (p+1y*! (1 —Hogé) +h-D(p+1)H! (1 +log (e(L + ]))).

We now define o in the form

p ke 1/s
- o)

We choose k < 1 so that the ratio p/d is an integer. Then

H (F)y<<H,(F)<(p+1)y*! <l+log§;>

+ (h=1)(p+ 1" (1 +log (e(L+1))),

\ n/s

i.e. for sufficiently small ¢ H, (F) > Bp" (—> , Where B > 0 is a constant
\ 8

which can be taken to depend on s, L, n only.

Q.E.D.

Proof of the Theorem 2.2.1. First let L = 1. Then from lemmas 2.2.2.
and 2.2.3 we have

nls

nls ;
Ap" () < H,(F) < Bp"( )
X3 &

where 4 and B are positive constant, depending only on s and #, since in
this case L = 1. But since

Hs(Fs,1,c) = Ha(F)

L L
for sufficiently small ¢

AL s
A (s, n) p" <§> << H,(F) < B(s, n)p" ()
/ &€

/

Q.E.D.
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§ 3. Theorem on superpositions of smooth functions

We will denote by C, (#") the space of n times differentiable functions
of n variables defined on the cube .#" with the norm

' s ak1+...+knf(x)
= 2 T, ™| G o

p=1 ki+ko+ ..+kp,=p xegn

/

THEOREM 2.3.1. Let the numbers s > 1, s" > 1 and natural n and n’

/

non
be such that — > — . Then the set of functions from C (F") not representable
s s

on J" by superpositions of S’ times differentiable functions of n’ variables
is a set of second category.

The space C, (#") is complete and consequently the set mentioned in the
theorem is not empty. The theorem is true for any s > 1, s" > 1 but we will
assume for simplicity that s and s" are integers.

LemMA 2.3.1. Let f and f' be g-fold superpositions composed of the

functions { ¢}, }oand { g,

,...,ap

,,,,, ap > } where all functions composing the
superpositions satisfy the condition Lip 1 with the constant L and for any

collection p, oy, ..., o,

< &

max I (pa]’,,_,ap - @al,...ap
Then

max | f(x) —f() | < (L+1)7
xegn

The lemma can easily be proved by induction in g.

Lemma 2.3.2. Let Q be an open subset of C,(F") and Q* < C(S").

If every fe Q allows uniform approximations on #" with any accuracy by
n/s

functions from Q*, i.e. the closure of Q* contains 2, then H, (Q*) >C <—> ;
e

where C > 0 is independent of e.

The lemma is easily reduced to lemma 2.2.1 and lemma 2.2.2.

We denote by Q, the set of all functions of C(#") which are k-fold
superpositions composed of s times differentiable functions of »’ variables
with partial derivatives bounded by the same constant k.

A - e
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!/

LEMMA 2.3.3. ]fE > n—, then for any natural k the set Q0 C (F")
s S

is nowhere dense in Cg (S").
By lemma 2.3.1 and the theorem 2.2.1 for any natural k H,(2,)

n'/s’
< C(—) , where C does not depend on ¢. Hence, it follows from the
€

n n' ' ,
inequality — > — and lemma 2.3.2 that the set Q, n C, (/") is nowhere
s S

dense in C, (S").
Now to prove the theorem we have to notice only that the set of func-

o8]

tions from C, (#") representable by superpositions coincides with U (£,
k=1

N C; (A"). By lemma 2.3.3 the sets {Q.n Cy(F") } are nowhere dense and
consequently the set of not representable functions is a set of second cat-

egory.

CHAPTER 3. — SUPERPOSITIONS OF CONTINUOUS FUNCTIONS

In this chapter we present the proof of the theorem of Kolmogorov
given by Kahane [36]. This proof which is based on Baire’s theory contains a
minimum of concrete constructions and shows that there exists a wide
choice of inner functions for Kolmogorov’s formula.

§ 1. Certain improvements of Kolmogorov’s theorem

By the theorem of Kolmogorov any function defined and continuous
on the cube #" can be represented as

2n+1

f(xla"‘bxn) - Z gq( q)p,q(xp)):
qg=1 p=1

where {¢,,} are specially chosen continuous and monotonic functions

which do not depend on £, and where { g, } are continuous functions.
Lorentz [12] has noticed that in the theorem of Kolmogorov the func-

tions { g, } can be chosen independently of ¢. In fact, by adding constants

n

to the functions 7, = ) ®,4(x,) (=1, .., 2n+1) one can make the ranges
p=1
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of the functions pairwise disjoint and consequently the functions {z,}
can be considered as the restrictions of a single function { g, }.

Sprecher [40] has shown that the functions { ¢, , } can be chosen in the |
form ¢,,(x,) = 4,¢,(x,) where {1,} are constants and { ¢, }-are 5
continuous monotonic functions.

Thus any continuous function can be represented as

2n+1 n
f(xlﬂ "'an) = Z g( Z ﬂ“p(pq(xp)_) 5
g=1 p=1
where the constants { 1, } and the continuous monotone functions { ¢, }
do not depend on f, and where g is a continuous function.

Kahane [36] has shown that such a representation is possible with
almost every collection of constants { 4,} and “quasi every” collection
of continuous functions { ¢, }. The precise statement of this theorem
will be given below. Here we consider some further results concerning the
formula of Kolmogorov.

Doss [38] has shown that for any continuous monotonic functions
0, (p=1,2; g=1,2,3,4) there exists a continuous function f(x, x;)

4
of two variables not representable as a superposition of the form ) g,

2 qg=1

(> ¢,,(x,), where { g, } are continuous functions.
p=1 ‘
Bassalygo [39] succeeded in showing that for any continuous functions

@; (xq, x,) (=1, 2, 3) there exists a continuous function f (x{, x,) that is not
3 B

equal to any superposition of the form > g;(¢; (xq, x,)), where {g;}
i=1

are continuous functions.

Tihomirov showed that Kolmogorov’s theorem can be generalized as
follows: for any compact K of dimension n there exists a homeomorphic
embedding ¥ (x) = {¥; (%), ..., ¥2,+1 (x) }, x € K into (2n+ 1)-dimensional

euclidean space such that any continuous function f(x) on K can be repre-
2n+1 )

sented in the form /'(x) = ), g;(¥; (x)), where { g, } are continuous func-
i=1

tions of one variable.

In the same paper [36] Kahane has shown that there exist complex
numbers 1, (p=1, ..., n) and complex valued functions ¢, (g=1, ...,2n+1)
possessing the following properties.

1. The function ¢, is a monotonic continuous transformation of the
real axis onto the circle | 7| = 1 (¢=1, ..., 2n+1).
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2. The function f, = 2’1 A, ¢, (x,) maps the cube #" into the circle
1] = 1. ’ n

3. The transformation ¥ given by the equalities 7, = Zlﬂp @, (x,)
(g=1, ..., 2n+1) is one-to-one on S". ’

4. For any function f continuous on #" there exists a function g (z)
continuous on the disk |z | <1, holomorphic inside that disk, and such

2n+1 n
that £= Y g (3 20, (5)).
¢g=1 p=1
The transformation ¥ gives an embedding of the cube #" into the torus
] z‘l =1 (g=1, ..., 2n+1) such that any function continuous on the cube
2n+1

" =Y (F") is represented in the form f(Zy, ..., f2,51) = ., ¢ (1,), where
qg=1
g is a function holomorphic in the unit disk. This means in particular that

any function continuous on .#" has an analytic extension to the polydisk
|7, <1(g=1,...,2n+1).

§ 2. The theorem of Kahane

Let M be a complete metric space. We recall that a set is called a set of
second category if it is the intersection of a countable family of open sets
which are everywhere dense in M. By the theorem of Baire in a complete
metric space no set of second category is empty. The massivity of such sets
is characterized by the fact that the intersection of a countable family
of sets of second category is again a set of second category and consequently
is not empty.

We will say that a statement is true for quasi every element of M if it
is true for a set of elements of second category.

Let us consider an example. Let @ be the space with uniform norm
consisting of all functions continuous and non-decreasing on the segment
- S0 <t < 1). It can be shown easily that quasi every element of @ is a
strictly increasing function.

In fact, any strictly increasing function belongs to any set defined as
@ (r') < @ (r"), where r' < r" are fixed rational numbers. Any set defined
by an inequality of that type is open and everywhere dense in @, and the set
- of all such sets is countable.
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Let 4" be the cube {0 <x; <1,i=1,..,n}; C(F")-the space of all
functions continuous on #" with the uniform norm; @-the space of functions
continuous and non-decreasing on the segment .# ' (with the uniform norm);
®* = ¢ x ... x @ the k-th power of the space ®.

THEOREM 3.2.1. Let A, (p=1,...,n) be a collection of rationally inde-
pendent constants. Then for quasi every collection { ¢y, ..., p5,41 € P*"F1
it is true that any function fe C(F") can be represented on F" in the form

2n+1 n

flx) = ;g( Z Aoy (x,))

where g is a continuous function.

§3. The main lemma

We ﬁx a function fe C(S#"), positive numbers 4, (p=1,...,n) and a
positive ¢&. We will denote by Q, the set of all collectlons { @y s Pans1 }

e @>"*1! for each of which there ex1sts a continuous function 4 such that
2n+1

4] <07 and £ = £ A (S o) | < (1=0)| 1. The latter

inequality is strict and consequently the set €, 1s open.
The idea of the construction is contained in the following statement.

Lemma 3.3.1. If | f|| # O, the numbers {1,} are rationally inde-

1
pendent, and 0 < ¢ < ———, than the corresponding set Q , is everywhere
2

dense in ®*"+1 2n +

Proof. Let us fix an open set @ < &*"*! and prove that Q n Q, is
not empty. This will imply that Q, is everywhere dense in @>"*1.

We choose a number 6 > 0 and denote by ., () the segment defined
by the inequality

g0+ Q2n+1)j-o<t<<q "0+ 2n+1)jo + 2no
(q=1, ..., 2n+1,jis an integer) .

The value 6 will be determined below. Now we notice, firstly, that for any ¢
the segments £, (j) (=0, 1, £2) are pairwise desjoint and every two
consecutive segments are separated by an interval of length ¢ and, secondly,
that, every point of the real axis belongs to at least 2n of the sets Z )
(g=1,...,2n+1).
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We denote by P, (jy, ..., /) the cube
go + 2n+1)j,0 <x, < q 0 +Q2n+1)j,0 + 2nd (k=1,...,n).

We emphasise that every point x € #" belongs to at least n + 1 of the sets
Y P,(jis s ju) (=1, ..,2n+1). We also remark that for any g the

jl ...,_]n
cubes { P, (ji, ..., j,) } are pairwise disjoint.

We denote by Q* the subset of @*"*' consisting of the collections
@1, ..., P2,+1 such that for every g the function ¢, is constant on every one
of the segments { £, (/) }. We will assume that é is so small that Q* n Q
i1s not empty.

We choose a collection { @y, ..., ¢3,41 } e Q* n Q. We will show that

this collection belongs to Q.. We put 7, Z A, @, (x,). Since the numbers

{ 4, } are rationally independent we can change the constants { ¢, (7, (M)}
slightly, so that the new values of t, (p, (j;, .., J»)) are pairwise different and
the collection ¢y, ..., ¢,,+; remains in Q% N Q.

We denote by f, (ji, ..., j,) the value of the function f at the center
of P, (ji,...,J,) and by h the function defined in the following way:

h (fq (.]1: a]n)) = *—*f;] (]19 ooy ]n) outside the set v tq (.]13 -"9.]11)
2” —I_l q4.J1,--0n
the function £ is deﬁned in such a way that it is continuous on the whole real

axis and | /| < ﬁi 171
2n+1 2n+1 f
Now we estimate the function |/ — Z h(t)| =13 — h(t,)
For any x € .", q, jy, ..., ji, ” o 2t
f 1
w1 h (1) Y ”f“ +[h] < 2_17 | £+ o+l | /]
'2775?1 Hf”
If xe P, (jy, ..., ju), then
f
2n+1 —h (1)
< max max f&) — min A =
@J1sesin | X€pg(Uls-ndn) 2n+1 xepy (1, .sin) 2n+1

We recall that every xe.#” belongs to at least n + 1 of the cubes
{ P, (i, - J) }- Hence

L’Enseignement mathém., t. XXIII, fasc. 3-4. 19
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2n+1

|f - Z h(t) | < (n+1)p +n

— 71

: , 1
But lim p = 0, consequently for sufficiently small § and ¢ <
6—0 2n‘F2

2n+1

7= 5 h] <=2l

The lemma is proved.

§ 4. The proof of the theorem

We denote by F a countable set, everywhere dense in C (#"). We choose ¢
satisfying the condition of lemma 3.3.1 and consider Q,, ( f, € F) corres-
ponding to this ¢ and the collection 4, mentioned in the theorem. The sets
{ Q) are open and by lemma 3.3.1 they are everywhere dense in ¢*"*1.
Consequently, according to the definition, almost every element of ¢2"*!

belongs to &* = N Q.
SreF
We fix a collection { @y, ..., 95,41 } € * and a function fe C (5"

and show that the desired representation of f takes place. If f= 0 then as
the function g we can take g = 0. We will assume below that f == 0. Accord-

ing to the definition of Q,, there exists for any f; € F a function 4, such that
2n+1

o = 2 h (Y 2,0, (x)) | <(1—¢)| fi |- The set F is everywhere dense
p=1

in C(#"). Consequently for any fe C(F") (f £ 0) there exists & = y(f)
such that

=L HCE )| < (1-2) 111

We define the sequence of functions 70, X1> X2, .- Dy the recurrent

equalities
2n+1

Xo =S5 Xes1 = Xk — Z gk( Z A‘p(pq(x ))

where g, = y (xx). The series ) g, converges umformly and consequently

00 k=0
the function g = ) g, is continuous and
k=0
2n+1

f - Z g( Z ’lpqpq(xp)) = 0.

The theorem is proved.
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CHAPTER 4. — LINEAR SUPERPOSITIONS

In this chapter we prove that there exist analytic functions which are not
representable by means of linear superpositions of smooth functions of one

variable.

§ 1. Notation

Throughout we assume that all the functions are defined and continuous
for all values of the arguments. If we say that a function is continuously
differentiable, we mean by this that its first partial derivatives are defined
and continuous for all values of the arguments; z = (x, y) is the point of the
plane with coordinates x and y; grad [¢ (z)] is the gradient of the function

0 0
g (z), that is, the vector-function with coordinates Eq and % ;
X y
2, 04,
'q4, ox 0
D (9_1;31_2) _ y
X, %4> %4
ox 0y

is the Jacobian of the pair of functions ¢, and ¢,.

q (D) is the image of the set D under the mapping effected by the func-
tion ¢ (x, y); g~ * () is the complete inverse image of the interval § on the
axis of values of the function g (x, y).

e (g, t) is the set of level ¢ of the function ¢ = ¢ (x, »).
7 (e, z) is the unit tangent vector to the curve e at the point z € e.

v (14, T,) 1 the absolute value of the acute angle between the vectors t,
and 7,.

h, (e) is the length of the set e.
d, (e) is the one-dimensional diameter of the set e.
0 (y) is a quantity bounded by a constant depending only on y.

p (Ay, A,) is the distance between the sets 4, and 4, in the sense of
- deviation, more precisely

p(A;, 4;) = max { sup inf p(z;,z,), sup inf p(zy,z,)},

z1€ A1 zge A9 z9e A9 z1e 41

~ where p (zy, z,) is the distance between the points z; and z,.
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§ 2. Estimate of the difference of the integrals of one term
of a superposition along nearby level curves

Let G be a region of the plane of the variables x and y, and ¢, (x, y)
and g, (x, y) continuously differentiable functions satisfying in this region
the following conditions: a) the partial derivatives with respect to x and
with respect to y have modulus of continuity w (J); b) the inequalities

1
0<y< | grad [q;(x, »)]| \; <o (i=1,2)

are satisfied everywhere in G, where y is a constant; c¢) for any point (x, y)
€ G the absolute value of the acute angle formed by the level curves of the
functions ¢, (x, ) and ¢, (x, ) which pass through this point is greater
than some positive constant y.

LEmMMA 4.2.1. Let e:m and 822 be two level curves of the function ¢,
and e;I and 621 level curves of the function ql, [a’ a’l =« G the segment
of the curve e;I with end-points a’ € e;,, and a’ eeqz, [6', b"] the segment
of the curve e, with end-points b’ €e,, and b" € e,,. Then

hy (b, 51) < hy ([’ @) x (1 ¢ () @ (3),
where ¢ = d; ([a', a") v [b',b"]) and c, (y) depends only on 7.
Proof. Since g, (a") — q, (@) = q, (b") — q, (b'), we have

0g, (a*

ACH - dq, (a*)
a——h ([a',a"]) = > hy ([b', b"]), Where»

0s

Consequently,

0q, (b*)

Js

and are the derivatives at the points a* € [@', a"] and b* € [b, b"]

dq, (a*)
0s

along the curves [d’, a"] and [b’, b"], respectively. We show that

an *)

+ O (y) w (6). We denote by ¢; the derivative of g, at the point b*

in the direction of T (ey,, a*) and put o = y { 7 [e,, b*], 1 [e;,, a*] }. From
q, (a *)

S

conditions a) and b) it follows that g5 + O()w (5) and «
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= O (y) w (5). We denote by B, and f, the values of the angles formed by
the vectors t [e:z/p b*] and 7 [e; » @*] with the vector grad [q, (b*)]. We have

0q, (b* :
a3 - -qza(s L= erad [4:6%]] |eos By — cos fy| = O()e
= 0(y) w(9).
Thus,
0q, (a* , 0q, (b*)
L) romoen =2
0s
g, (b™)) 04, (b*) ~
+O(1){ qs — q:( ) +w(5)} = — 263 + OB o) .
Consequently,

, 0q, (a*) (g, (b*)\ ™
hl ([b,—‘ b//]) = h'l ([a’,a”]) qasa < qas >

0q, (b*)\ 71
= hy([a’,a"]) <1+O(y)a)(5)< ﬂ?( )> )

s
= h ([a,a N1 +0 D o B)),
04, (b*)

since by virtue of b) > | grad [gq, (b™)] | sin y. This, proves the

lemma.

LemmA 4.2.2. Let gq,,(x,y) (m=1,2,..., N) be continuously differ-
entiable functions. In any region D we can find a subregion G < D, deter-
mine a constant 7y > 0, and renumber the functions { q, (x,y)} with two
indices so that the functions

qi—‘(x,y) =q,x,y) (=0,1,2,...,n; k=1,2,...,m;; Z m; =N)
i=0

obtained after the renumbering satisfy the following conditions :

(1) when i=0,q;=const in G, and when >0, y<|grad
| 1
[47 (x, ]| < = for every point (x,y) e G;
Y

(2) the functions q'%(x,y) (i>0 fixed, k=1,2, ..., m,) have in the
region G identical sets of level curves, more precisely, in the region G,
g% (x, y) = %! (q,' (x, y)), where ¥ (1) is a strictly monotonic continuously
differentiable function of t:;
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(3) when i # j(i, j#0), then for any k and | the absolute value of the
acute angle formed by the level curves of the functions g (x,y) and g Jl (x, ¥)
which pass through an arbitrary point (x, y) € G is greater than .

Proof. By the continuity of the partial derivatives of the functions
{ ¢ (x, ) } there exists a subregion G* = D inside which for any function
q. (X, y) either grad ¢, (x, y) = 0 or | grad g,, (x, y) | is greater than some
positive constant. From the continuity of the partial derivatives of the
functions { g,, (x, y) } it follows also that there exists a subregion G** <= G*
inside which for any pair of functions ¢, (x, y) and ¢, (x, y) one of two

q”&>}: 0 in G**, or for every point of G**

X,y
the level curves of ¢, (x, y) and ¢, (x, y) that pass through this point intersect

q,,qi> # 0 in G**). From the implicit function

X, V.
theorem it follows that there exists a subregion G < G** in which condi-

tion (2) is satisfied for every pair of functions ¢, (x, y) and ¢, (x, y) with

conditions holds: either D (

at a non-zero angle (D(

gradients different from zero and with determinant D <q,, qs) = Q.
X,y

We now renumber the functions { g,, (x, y) } with two indices in such a
way that only functions constant in G have lower index zero, and the same
lower index is assigned to those functions whose level curves coincide
identically in G. This proves the lemma.

We consider in the region G a superposition of the form ) > p, (x, »)
i=0k=1
f5(q% (x, »)), where {f%(#)} are continuous functions of one variable,

1% (x, ) } are continuous functions satisfying in G the condition ] Ph(x, )

< —and { g% (x, y) } are continuously differentiable functions satisfying in G
Y

conditions (1), (2), (3) of Lemma 4.2.2. Let w (6) be the common modulus of
aqs (x,y) g5 (x,
qi (X, ¥) . %ai S22
0x oy
[a', a"] and [b', b"] be segments of the level curves of the functions { g% (x, ) }
(i>0 fixed) lying in G. Let

o = hy([a’a)); 6 = p([a’,a"], [b,b"])

continuity in G of the functions {pf‘ (x,¥);

g = sup | ;O 121 pi (e 05 (g7 (6, ) |
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m = max sup |£4(d (5, 0) |
i,k
where sup is taken over all points (x, y) € [¢, a"] U [b', b"].

LEMMA 4.2.3. If & is sufficiently small (w (0) < C, (y)), then for any
i >0

| J ZL pi () f% (g5 () ds — Jv i pr ()75 (g5 (s)) ds‘

sela’,a”] se[b’, b” ]
< C5 () (ae + maw (8) + md) ,

where the constants C, (y), C5 (y) depend only on 7.

Proof. By (1), (2), (3) there exists a sufficiently small constant C, (y)
and a sufficiently large constant C; (y) such that if w (6) << C, (y) and for a
point a € [a', a"] the inequalities A, ([¢', al) = C5 (y) 6; hy ([a, a"]) = C;5 ()9
are satisfied, then for any j # i (j>0) the level curve of the function qj-‘
that passes through a intersects [b’, b"] of the level curve of ¢%. Suppose that
o > 2C5 ()0 (if « <2 C5 () 0, then the assertion of the lemma is trivial)

~ o~

and suppose that the segment [a’, a”] of the level curve of ¢f is such that

~ o~ ~

@', d'] = [d,a"] and hy ([, a]) = hy ([d",a"]) = Cs () 6. On the arc

[a’, a"] we fix a system of points ay, a,, ..., a, (a'=a,, a"=a,), uniformly
distributed along the length of this arc, and denote by b, the point of inter-
section of [b’, b"] with the level curve of qf that passes through a, (here
Jj #i should for the time being be regarded as fixed). Using Lemma 4.2.1
we have

J p; ()5 (qj () ds — f p; (9)f5 (4 (5)) ds

Se[al, an] Sé[b’,b”]

- J o ()% (4 () ds — f p5 ()5 (45 (5)) ds

sefay, ay] ‘ selby, byl
+ O (y) mo
= lim l Z p; (a) f5 (45 (a)) hy ([a,, a,41])

- Zl 25 (0 f5 (a5 (b)) hy ([bys byii]) | + O () mo
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= lim | Z pj (Cl )fj (qJ (CI ))h ([ai’ar+1])

V> r=

- Z_ P} (@) £ (a5 @) hy ([a, a,a1]) (140 (3) 0 (5))

+ X (i (@) = i (b)) S5 (a] (@) by ([bys bris]) | + O () mo

= lim | f p; (@) f5 (45 (a) by ([ay, a,41]) O () @ (5)

V=0

+ ‘Zlf'} (45 (@) iy (b1, by44]) O ) @ (8) | + O () mé

= O (y) maw () + O (y) maw(8) + O (y) mé = O (y) m (6 +aw (9)).
Then

T | m;
> i (s)f% (Qf (s))ds — J > pr(s)f% (q'f (s))ds
J k=1 k=1 '

Se[a,, a//] Se[b,, b//]

r noom; noom; ‘
< 2 2 pi(9)fi(gi () ds — J W ACHICHOILS
se[.il’,fl"]l_Ok_l se[b',b”]l_ =l
mJ mj

+ 3 | TEOREOs - | Y A0s@e)es

[ #i k= -

7z sefa’,a”] : Se[b'ab”]k 1
< Cy(y) ae + n(max m)) Cs(y) m (6 +aw(0))

j#i

< Ca (y) (e + md + maw (9)) .

This proves the lemma.

§ 3. Deletion of dependent terms

On a bounded closed set D we consider the space of linear superpositions

of the form ) p.(x,»)fi(q(x,»), (x,y)e D. Here the functions
k=1

{ pr (x, ) } and ¢ (x, y) are continuous and fixed, and { f; (¢) } are arbitrary
continuous functions of one variable. We assume that the function g (x, y)
is such that for any sequence t,e¢q (D) — teq (D) we have p[e(q,t,)
N D,e(q,t)n D] - 0. We put

/,{(tpquﬂpl""vpm) = inf sup l Z Ckpk(xﬁy),D

{ck} (x,y)ee(q,t)nD k=1
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where inf is taken over all sets of numbers { ¢, } for which max | ¢, | = 1.
k

The function A (¢, D, g, { p; }), as a function of ¢, is defined only on the set
q (D).

Lemma 4.3.1. The function A (t, D,q,{p.}) depends continuously
on t.

m
Proof. The linear combinations ) ¢ p, (x, y) for all possible systems
k=1
of numbers { ¢, } for which max | ck| < 1, form an equicontinuous set
k

of functions, considered on the bounded closed set D. Consequently, for
any ¢ > 0 there is a 6 > 0 such that if | 7, — 7, | < J, then

m m

| s [ Yan|- s | antnn] <

(x,v)ee(q,t1) k (x,¥)ee(q,t2) k=1

simultaneously for all systems of numbers { ¢, } such that max { € f < 1.
k

For definiteness, suppose that A(¢,, D,q, {p.}) = A(ty, D, g, {pi}).

m

Since the expression sup | Y cwpr (X, y)[ depends continuously
(x,y)ee(q,t1) k=1
on the coefficients { ¢, }, there exists a system of numbers { ci} such that

max | ¢ | = I and
. .

m

/l(t’laDaqa{pk}) == Sup l Z Clipk(xay)l'
(x.y)ee(q,t1) k=1
Since
}“(tZDDa Q>{pk }) < sup , Z C’Isl'pk (X, y) ’
(x.y)yee(q,t9) k=1
we have

m

0<2(t) = A(t) <  sup | Y elp(x,))]

(x.y)ee(q,t9) k=1

— sup | Zl c:,ﬁpk (x,y) ] < €.

(x,y)ee(q.t1]) k=

This proves the lemma.

LEMMA 4.3.2. The function 1 (t, D, q, { p: })  depends continuously
on D in the sense that there exists a function u(g) - 0 as ¢ — 0, having the
property : if the set D, = D is such that, for any t, D, e(q,t) forms an
e-net in the set e (q,t) n D, then
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max | 1(t, D¢, {p}) = 2(, Dy g, {pe}) | << () -

teq(D) ‘
n
Proof. Using the equicontinuity of the set of functions Y, ¢, p, (x, )
K=1
where max | ¢, | << 1, we conclude that there exists a function u(g) — 0
k

as ¢ — 0 such that the inequality

0-< sup I Z CkPk(XaJ/)' - sup I Z by (X, J’)! Zu(e). r

(x.y)ee(qg,t)nD k=1 (x,y)ee(q,t)nDg k=

uniformly over all te€ ¢ (D) and over all systems of numbers {¢,} for
which max l c,cl < 1. For any ¢ > 0 there exists a system of numbers
k ,

{ ¢; } such that max | ¢;| = 1 and
k

AMt, D, q,{p}) = sup | Z cepr (x, ) |-

(x,y)ee(q,t)nDg k=
Since for any ¢

l(taDaqa{pk}) {:; sup ! Z Clipk(xny)!

(x,y)ee(q,t)nD k=1

and, on the other hand, A (¢, D,q, {p,}) = A(t, D,, q, { p }) (we recall
that D, < D), we have

O‘{;}'(z’:Daqa{pk})_i(taDaaqa{pk})< sup ! chipk(xay)l

(x,y)ee(g,t)nD k=1

- sup | Y an(ny)| <ule).

(x,y)ee(q,t)nDg k=1

This proves the lemma.

LEMMA 4.3.3. Let F be a closed set on the t-axis, F < q (D). For
every te F, suppose that there exists one and only one system of numbers

{ Ce ) (max | C|=1) suchthat Y, Cyp,(x,y)=0 ontheset e(q, )N D.
k k=1 :

Then each of the functions { C,(t)} depends continuously on t on the
set F.

Proof. Suppose that 7, € F te Fand ¢, — t. We put lim C.(t) = Cy

n—oo

and lim C, (¢,) = Ck Since Z C,(t)p.(x,y)=0onthesete(q,t,)n D

and ple(q,t)n D,e(q,t,)n D] - 0 as n — o0, we have Z Ckpk (x, ¥)

k=1
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m ~

= Y Cypx(x,p) on the set e (g, 1) N D. Consequently, by the condi-

k_1
tion of the lemma, C,\ = Ck = (, (¢). This proves the lemma.

LEMMA 4.3.4. Suppose that 1(t, D, q, { py }) =0 on some non-empty
portion & of the set q (D). Then there is a non-empty portion 6* < ¢ and
an index | such that for any continuous functions {f.(t)} there are con-
tinuous functions {fy (t)} such that

m

Y L@ ) ey = Y fild () pe(x, )
k+1 k=1
on the set q~' (6%) N D.

We recall that a portion § of a set E is that part of it which lies in the
interval 0.

Proof. We prove the lemma by induction on m. For m = 1 the asser-
tion of the lemma is obvious. We denote by 0, the set of all points ¢ of the
portion o for which A(z, D, g, pys «os Pk—1s Pk 15 - Pm) = 0. By Lemma
4.3.1, the set is closed. Two cases are possible.

1) For some k the set §, contains a non-empty portion &, of the set
q (D). Since A (1, D, @, Pyy oo Puc s Prs 15 s D) = 0 for every ted,, then
by the inductive hypothesis there is a non-empty portion §* < §, and an
index / # k such that for any continuous functions f; (¢), ..., fi— (£),
Jis1 (O, ooy £y (t) there are continuous functions f 5 (¢), ..., fr—1 (), f i1
(t), ..., f o (¢) such that

Y filaxo ) pix,y) = 3 5 (g (x,0) pi(x, y)

i#k i#k,l

on the set ¢ ' (6%) n D. Putting £ () = f, (t), we obtain

fila G, ) pi(x, ) = Y fi(ax,»))pi(x,p).

i #1

—_1

i:

So in case 1) the lemma is proved.

2) None of the sets ¢, contains non-empty portions of the set g (D),

m

that i1s, U ¢, is nowhere dense in ¢ (D). Therefore there exists a non-
k=1
empty portion 6* = &\ U d,. Since A(t, D, ¢, { p, }) = 0 on &%, for every
k=1
t € 0* there are numbers { C, (1) } (max|C,(r)| = 1) such that Y C,
k

k=1




e
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(g (x, ) pi(x,y)=0 on e(g,t) n D. If we had C,(¢) = 0 for some &,
then it would turn out that ¢ € §,. Consequently, C, (¢) # 0 for any k. We
show that for every t € 0* the numbers { C, (¢) } are uniquely determined.
Assume the contrary. Then there are numbers { Cy (1) } (max ] C, (¢) l= 1)

such that Y G (g (x, V) (x, ) =0 on e(q,t)n D and C, # C,
k_1

for some k. Then

Y [C) CLt) = Ce) CL (] pe(x,) = Y Colt) pi(x, y) = 0

k#1 k#1

on e (g, t)’n D and in addition, C, # 0 for some k. Consequently, t € ;.
So we have obtained a contradiction, and the uniqueness of the choice of the
numbers C, (¢) is proved. Further, we may regard { C, (¢) } as single-valued
functions of ¢t on the portion 6*. By Lemma 4.3.3, the functions C, (¢)
are continuous and, as noted above, C, (t) # O for any ¢ € 6*. Then

py(x,y) = _Z —hgc%yg pe(x, ), (x,))eq™ " (6¥)nD.
. Cy (1) . -
Putting f (1) = /i (1) — - (t)fl (1), € 6%, we have 3 £ (q (x, ) pi(x, )
- =z Ck
= ka((ﬂpk(x,y) - Z . EZ; pi (x, )

|
i

= k;fk (@) pr(x, ¥) + f1(q) py (x, p)

l

S (@) pe(x,y), (x, ) eq (8% D.

k=1

This proves the lemma.

§ 4. Reduction of linear superpositions to a form
with independent terms

We fix the continuous functions pf (x, ») and continuously differentiable
functions ¢; (x, y) (1=0,1,2, ..., n; k=1, 2, ..., m;) n > 2, where { g; (x, y) }
satisfy in D conditions (1) and (3) of Lemma 4.2.2, and we consider in D
superpositions of the form

YOS A0S (4 xs 09)

i=0 k=1

where { 1% (¢) } are arbitrary continuous functions of one variable.

O AP TR S Y
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We call a bounded closed region G = D polyhedral if the boundary of G
consists of a finite number of mutually non-intersecting simple closed
contours that are unions of a finite number of segments of level curves
of the functions ¢; (x, y) i=1,2,..,n). Let G = D be a polyhedral region.
We denote by I'; the set of those t € g; (G) for which the set e (g;, )N G
contains a segment of a level curve belonging to the boundary of G. For
any i the set I'; consists of a finite number of points. By property (1) of the
functions { g; (x, )} for every i and for all points 7, € g; (G\I'; there

exists lim e (q;, 1) = e (qq, to). If 1o €', then the last assertion need not
t—1tg

hold, but in any case there exists lim e (g, 1) < e(q;, to) and lim e (g;, 7)
t— +ig t——1g

< e (g, t,) where the limit is taken over the points € g; (G). Here the
limit is understood in the sense of the distance p (e (¢;, 1), e (¢;, t0))-

LEMMA 4.4.1. There is a region G <= D and a system of numbers
=0 or 1(i=0,1,2,..,n;, k=1,2,...,m;) such that

(4) for any i and for any continuous functions {(p’f (t)} there exist
continuous functions { f§ (1) } such that in G

my

fi PE(x, 1) 05 (q:(x, ) = kZV s (x, ) fi(q; (x, )
k=1

(5%) for any polyhedral region G* < G and any i, the set
{t:2(t, G*, q;, piy ..., pF*) = 0}
is nowhere dense in q;(G*), where
ky = ki (@), ky = ky (i), .oy kg = k(i)

is the set of all values of k for which % = 1.

Proof. 1f i = 0, then by (1) the set g, (D) consists of only one point.
We choose a region G, = D and number 75 (k=1, 2, ..., m,) such that in G,
the functions pfl, ..., pks are a basis for the linear hull of the functions
{ ps } (condition (4) for i =0) and in any region G* = G, these functions are .
linearly independent (condition (5*) for i =0). Let G* = D be an arbitrary
polyhedral region. Then A (¢, G*, q, { pt }) as a function of t has, for
any i > 0, a finite number of points of discontinuity (of the first kind)
on the set g; (G*), which consists of a finite number of segments (see Lemma
4.3.1). Hence it follows that if the set { 7: A (#, G*, ¢;, {p§}) = 0} is not
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nowhere dense on ¢; (G*), then the function A (¢) = 0 on some segment
0 < g;(G*) not containing points of I';. By Lemma 4.3.4, there is a segment

6* = 9 such that in the expression Y pf(x, ) /% (q; (x, »)) one of the
k=1

terms can be deleted, without narrowing the class of the functions represent-
able in the region ¢~ ' (6*%) n G* as superpositions of the given form.
Carrying out all possible deletions we can find a region G = G, < D for
which the assertion of the lemma is satisfied.

A region G < D is called regular if, firstly, it is polyhedral and, secondly,
there is a number y; > 0 such that for every i > 0 and every ¢ € ¢, (G)
the set e (g;, t) n G is the union of a finite number of simple arcs, each of
which has length not less than y;. A point 4 of the boundary of the poly-
hedral region G is called a vertex if it belongs simultaneously to two segments
of the level curves of g; (x, y) and ¢; (x, y) (i # j) on the boundary of G.
Every polyhedral region has a finite number of vertices.

LeEMMA 4.4.2. For every polyhedral region G and every neighbourhood
U of the vertices of this region we can construct a regular region G* < G
such that G\U < G*,

Proof. Let A, A,, ..., A, be the vertices of the polyhedral region G;
U,, U,, ..., U, suitably small neighbourhoods of these vertices. Let k,,

= k,, (4,) be the number of all those functions { g; (x, y) } for each of |

which the level curve passing through the point 4, does not contain any
other points of the set U, n G. Let ¢;, (x, y) be one of these functions.
We put £k (G) € g; (G). If kK (G) = 0, then for any i/ and any t € g, (G) the
length of any component of the set e (g;, ) N G is greater than zero and
consequently the region G is regular. Suppose that k& (G) > 0 and m such
that k,, # 0. :

We fix ¢ > 0 and put

Gﬁlsm = G l {(xa y) |Qim(x9y) — Q(A;r)l < 8} M Um'

If U, and ¢ are sufficiently small, then inside U,, the region G{,, has two
vertices A, and A,,, while the region G has only one vertex A4,, there, but
k, (4,) = k, (4,) = k, (4,) — 1. We now put G} = n G,, where
the intersection is taken over all m such that k,, # 0. Then k£ (G Y = k(G)
— 1. Repeating this construction k (G) times, we obtain a polyhedral
region G* for which G\G* <« U and k (G*) = 0. Consequently, G* is
regular. This proves the lemma.

:
4
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LEMMA 4.4.3. There exists a set G <= D, a number A > 0, and a set
of numbers =0 or 1(i=0,1,..,.nk=1,2,..,m) such that condition
(4) of Lemma 4.4.1 is satisfied, and also the conditions

(5) for every i and te q;(G) and for any functions {f’ﬁ (1) |

.
2

e ‘ i ok (x, )T (g:(x, ) | > A max |15‘jf‘ (1)
k

(x,y)ee{q;,t)nG k=1

(6) G is a regular region.

Proof. By Lemma 4.4.1 there exists a region G* < D and a set of
numbers % such that for every polyhedral subregion G** = G* and for
every i the set {t:2(t, G**, q;, pi', ..., pi*) = 0} is nowhere dense in
g, (G**), where ki, k,, ..., k, is the set of all values of k for which § = 1;
moreover, on the set G*, for any i the property (4) of Lemma 4.4.1 is sat-
isfied. In order not to change the notation unnecessarily, we assume that
all T8 = 1. We now construct a system of regular regions G, > G; © G,
> ..>G, =G, having the following property: for every j < I,

inf A(¢, G, g, {pf }) >2;,>0. For G, we choose any regular
teqi(G;
reg]ion)GO e G*. Suppose that the regular regions G, Gy, ..., G;_; have
been constructed. We now construct the set G;. We denote by o4 the set
{t:3(t qs Gy, {P5)) > ). Since the functions 4 (1, ¢;, G;—1, { P }),
have only finitely many points of discontinuity (of the first kind) on the
set g, (G,_,), which consists of a finite number of segments (see Lemma
4.3.1), any component of «; is either an interval, or a half-interval, or a
segment, or a point. Suppose that the set o} = o5 consists of the N longest
components of non-zero length of the set o (if o5 has only Ny, (< N) com-
ponents of non-zero length, then let oy = }°). We denote by &5 the closure
of the set of. We put G,*, = G,_, n ¢~} (&@y). We fix ¢ > 0. Since G,_,
is regular, for every j the length of any component of e(g;, 1) n G,_, is
greater than yg > 0. And since the set {7:1(t,¢, Gy, {p5}) = 0} is
nowhere dense in ¢; (G;_,), for sufficiently small 0 and sufficiently large N
the set G, forms a ¢/2-net on every set e(q;,t) N G,_, j < i. The set
G, is a polyhedral region. We denote by U (¢) the set of points (x, y)
each of which is at a distance of no more than ¢/4 from one of the vertices
of the set G ;. By Lemma 4.4.2 there exists a regular region G, = G |
such that G |\G; = U (¢). The set G, forms an e-net on every set e (g;, 1)
N G,_y,j < iand forms an ¢/2-net on every set e (q;, ) N G;*,. By Lemma
4.3.2, for sufficiently small &,
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1 0
A = min inf  A(t, G, q;, {pf)) > imin {5, min AJ}.

J=i teqj(Gy) J<i

Thus, the regular regions' Gy, G,, ..., G, can be constructed. The regular
region G = G, satisfies all the requirements of our lemma (1=21,), which
i1s now proved.

§ 5. The set of linear superpositions in the space
of continuous functions is closed

THEOREM 4.5.1. Suppose that continuous functions p,, (x,y) and
continuously differentiable functions q,, (x,y) (m=1,2,..., N) are fixed.
Then in any region D of the plane of the variables x, y. there exists a closed
subregion G < D such that the set of superpositions of the form

N

Y P (X ¥) oo (@ (X, ),

m=1
where {f,, (t)} are arbitrary continuous functions, is closed (in the uniform
metric) in the set of all functions continuous on the set G.

By Lemma 4.2.2 and 4.4.3 we can find a subset G < D, determine cons-
tants y > 0 and A > 0, and renumber the functions {p, (x,»)} and
{ ¢ (x, y) } with two indices so that the functions obtained after the renum-
bering, {pi(x,»)} and {q¢%(x,»)} (i=0,1,2,...,n; k=1,2,..,my;

Y m; << N) that is, some functions may be omitted in the renumbering)
i=0

satisfy conditions (1), (2), (3) of Lemma 4.2.2, and also the conditions:

(4') for any continuous functions {f, (#)} there exists continuous
functions { f%(¢) } such that on G

Y pn (60 ulan () = 3 3 pECe S 0k (5, 2):

i=0

(5') for every i and 7€ ¢} (G) and for any functions { £ (¢) }

max | Y pr(x, 0 fi(qi (x, )| = A max |[fi(0)];
(x,y)ee(q %,t)nG = k

(6) G is a regular region with respect to the functions { ¢% (x, ») }.

P i e
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LEMMA 4.5.1.  In the sets { q; (G) } we can select subsets consisting of a
finite number of points t; ;€ gi (G) (i=0,1,2,...,n; j=1,2,..,5;) such
that for any continuous functions { f “(1) }

n  m;

max max |fi(t)|<Zc ((max | Y > Pk (e, ¥ (ai (x,9) |

Ik teq'li(G) (x,y)eG i=0k=1
k
+ max ‘fl (1, ;) D ,
Kk
where C is a constant not depending on the functions { f% (1) }.

Proof. Since G is polyhedral, for each /i we can choose in g;(G) a
finite set of points { #; ; } so dense that the components of ‘the level curves
e (q1, t; ;)N G form a é-net in the set of all components of the level curves
e(qi, 1) n G, teq: (G). A sufficiently small §, not depending on the func-
tions { £% (r) 1, will be chosen below. We put

= max max |ff(q;i(x,»)|;

ik (x,»eG
h m;
e = max | Y Y pFe /(i ()]s e = max £ ]
(x,»eGCG i=0 k=1 ki

For definiteness, let £} (q} (a)) = u at the point a € G.’ By (5') there exists

a point @' € G such that | Y pf(a)f1(q: (a))| =>Au. Let [a, a*] be a
k=1

segment of the level curve of the function ¢; (x, y) with end-points at a’
and a* such that A, ([¢', a*]) > yG/2 (see the definition of a regular region

y)

in § 4). On the arc [a’, a*] we fix a point ¢” such that w (a) < Pyl where
my

o = hy ([@’,a"]). Then on the segment [a’, a"] the function ¢, (x, y) =

mjy

= Y pr o fi(g:(x y)) keeps’a constant sign and satisfies the inequality
k=1

[ o (x,p) | > Auj2. In fact,
point s € [a’, a"]

@, (a) | = Au at the point a', and for any

’ - j, 1
[01() =0 (@)| = X (P18 = pL(@))fi(@) ] < mypo (o) < é
k=1
Consequently,
1
j ¢y (s)ds| = 5 AL

sefa’ a”]

By construction there is an index j and a segment [b’, b"] of the level
curve e (qy, t; ;) N G such that p ([¢, a"], [, b"]) < 6. We have

[’Enseignement mathém., t. XXIII, fasc. 3-4. 20
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| ei()ds| <cpef,

se [b', b”]

where f = h ([b',5"]), C; = m, max max |pf(x,y)|. And since o
: k (x,y)eG

and B are commensurable (6 will be chosen small in comparison with «),

1 ;
| ei(ds — | ei(s)ds| = - Aue — creso.
se [a’, a"]} ’ Se [b', b”] 2
By Lemma 4.2.3
T e ®ds — [ @i (s)ds | < ¢ (agy +paw () +ud) .

se [a’, a”] se [b'b"]

Thus, ¢ (ae; + pow (8) +ud) = Aua/2 — ¢; o - e,. If § is taken sufficiently
small in comparison with « (in order that c¢; (aw (8) +6) < Aa/2), then we
have u << C (¢, +¢,). This proves the lemma.

Let B be the Banach space consisting of all systems of functions { £ (¢) },
defined and continuous on the sets { ¢; (G) }, with the norm

1 {f5®}| s = max max [fi@®)] (i=0,1,2,..,n; k=1,2,...,m,).
i,k L

teq ; (G)

We denote by C (G) the space of all functions f(x, y) continuous on G
with the uniform metric:

”f(xay)“_C(G)z max lf(an)|-

(x, y) eG

LemMA 4.5.2.  The linear operator T : B — C(G) acting by the formula

T/ ®}) = f(x,y) = 2% i G fi(ah ()

maps bounded closed sets of B onto closed sets of C (G).

Proof. Let F < B be a closed and bounded set of elements of B.
Suppose that f, (x, y) is a sequence of functions in 7 (F£) < C (G), and that
f(x,y)e C(G), where || f(x,») = fn (%, ¥)|lc¢y = 0 as n > co. We show
that then f(x, y) e T (F). Since f, (x, y) € T (F), there exists a sequence of
elements { /¥, (#) } € F such that T ({ f{.(¢) }) = f, (x,»). By Lemma 4.5.1
we can select in the sets {qf (G) } subsets consisting of a finite number of
points ¢, ; € 7;(G) (i=0,1,...,n;j=1,2, ..., s, such that for each element
{f%(#) } € B the inequality

Hri O3 e e/ 0 ]e + max |fi)

)
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is satisfied, where the constant C does not depend on the functions {f"l (1) }.
Since F is a bounded set, there exists a subsequence of suffixes ny, n,, ..
such that for any i =0,1,..,n; k= 1,2,..,m;; j=1,2,..s; the
numerical sequence f’in‘, — C.;.; as v = oo. From this and the previous
inequality it follows that {f’;i,,,v (1) } e F(v=1, 2, ...) is a Cauchy sequence,
because it is known that the sequence f, (x, y) € T (F) is Cauchy sequence.
Consequently there exists an element {f%(z) } € B such that | { /(1)
— fﬁ,,,v ()} HB — 0. Since F is a closed set, { % (¢) } € F. The operator
T: B — C(G) is bounded. Therefore T ({ f% (¢) }) = f(x,y). Consequently
f(x,y)e T (F). This proves the lemma.

The following lemma from the theory of linear operators [28] turns out to
be useful.

LEMMA 4.5.3. Let B, and B, be Banach spaces. If a linear operator
T: B, — B, maps bounded closed sets of B, onto closed sets of B,, then
its domain of values is closed.

Proof of Theorem 4.5.1. The set of superpositions of the form

N
Y. P (X, ) fou (9 (x, ¥)) coincides on G with the set of superpositions of the
m=1 )

form Y Y pi(x, »)f%(gi (x, ). By Lemma 4.5.2 and 4.5.3 the set of the
=0 k=1

2

latter superpositions is closed in the space C (G). This proves the theorem.

§ 6. The set of linear superpositions in the space
of continuous functions is nowhere dense

THEOREM 4.6.1.  For any continuous functions p,, (x, y) and continuously
differentiable functions q,, (x,y) (m=1,2, ..., N) and any region D of the
plane of the variables x,y the set of superpositions of the form

2. P (%, 9) fo (Gm (x, 1)) 5

where {f, (1)} are arbitrary continuous functions, is nowhere dense in the
space of all functions continuous in D with uniform convergence.

By Lemma 4.2.2 we can find a subregion G* < D, determine a constant
y* > 0, and renumber the functions { ¢,, (x, y) }, with two indices so that
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the functions ¢% (x, y) (i =0, 1,2, ..., n;k=1,2, ..., m;; Y. m;= N) obtained 4
i=0

after the renumbering satisfy conditions (1), (2), (3) of Lemma 4.2.2. We
now fix the point (x,, yo) € G* and the number v so that the line (y — y,)
+ v (x—x,) = 0 does not touch at any of the level curves of the functions

g% (x,y) (i=1, 2, ..., n) that pass through (x,, ¥,). Let G¥* < G* be a disc

with centre at (x,, yo) and radius small enough so that the { g% (x, »)}
and gy .4 (x,y) = y + vx satisfy condition (3) of Lemma 4.2.2 with some
set G < G**, determine a constant 4 > 0, and again renumber the func-
tions p,, (x, y) and g, (x, y) (m=1, 2,..., N +1) with two indices so that the
functions p* (x, y) and

n+1

g (x,y) (i=0,1,2,...n+1; k=1,2,..., m; ; Z m; << N +1)

i=0
that is, some functions may be omitted in the renumbering) obtained after
the renumbering satisfy conditions (1)-(3) of Lemma 4.2.2, conditions (4')-

(6") of § 5, and the condition

T Mysy = 1, pyar = Pyar(X,)) = 1, qyer = dneg (X, 9) =y + vx,
Let L be the linear space consisting of all system of functions {f* () }
defined and continuous on the sets { q; (G) } and satisfying the condition

ni-1 m;

> Y pi e nfi(gi(x,y)) =0 in G.

i=0 k=1
LEMMA 4.6.1. L is a finite-dimensional linear space.

Proof. By Lemma 4.5.1, in the sets {q,l (G) } we can select a subset
consisting of a finite number of points { 7, ; } such that, if {f%(¢)}eL
and f% (¢, ;) = 0 for all k, i,/ then f% (#) =0 on g; (G) for all i, k. Thus,
the set of functions { 7% ( t) } is completely determined by a finite set of
parameters { /% (¢;,) }. Consequently the dimension of the space L is
finite. This proves the lemma. ’

LEMMA 4.6.2. There exists a natural number u such that in D the
polynomial (y+vx)* = Q(x,y) is not equal to any superposition of the form
N

> P (5 ¥) fon (@ (x,¥)),  where  {f,, ()} are arbitrary continuous
m=1

functions.
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Proof. We denote by @ the space of functions of the form f(y+vx)

= foer (@ne1 (x, y)) that are representable on G by superpositions of the
N

form [ Y pn (X, ) /o (¢m (x,»))]. Or, what comes to the same thing
m=1

n m;

(see properties (4) and (7)), of the form [ Y Y pf (x, ») f% (45 (x, »)].
=0 k=1
n+1 m;

Thus, functions of @ satisfy the relation Y Y ph(x, ») /% (¢F (x, »)) ==
=1

i=0 K
in G. Consequently the linear space @ is naturally embedded in L. Since L
is finite-dimensional (Lemma 4.6.1), & is also finite-dimensional. Let / be
the dimension of @. Since the polynomials (y+vx), (y +vx)?, ..., (¥ +vx)'*!
are linearly independent, at least one of them Q (x, y) = (y+vx)* is not
equal to any superposition of the form under discussion on G or, conse-
quently, in D. This proves the lemma.

Proof of Theorem 4.6.1. By Lemma 4.6.2 the set of superpositions of the
form given in Theorem 4.6.1 does not exhaust all continuous functions on G.
Consequently, by Theorem 4.5.1, the set of these superpositions is a closed
linear subspace of C (G). Hence we conclude that the set of superpositions
under discussion is nowhere dense in C (G), nor consequently in C (D).
This proves the theorem.

COROLLARY 4.6.1. For any continuous functions p,, (X, X5, ..., X,
and continuously differentiable functions gq,, (x{, x5, ..., x,) (m=1,2, ..., N)
and any region D of the space of the variables (x,, x,, ..., x,) the set of
superpositions of the form

N
Z pm(x17x23""an)fm(qm(xiﬁx27"'ﬂxrx)9 xZ’XS’ 7xn—1)’
m=1

where  { f, (t, X3, X3, ..., X,_1) }  are arbitrary continuous functions of
(n—1) variables, is nowhere dense in the space of all functions continuous in
D with uniform convergence.
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CHAPTER 5. — DIMENSION OF THE SPACE OF LINEAR SUPERPOSITIONS

In this chapter we present a calculation of the functional dimension of the
space of functions representable by means of linear superpositions and prove
that a representation of analytic functions by means superpositions of
smooth functions can not be stable.

§ 1. (e, d)-entropy and the “dimension” of function spaces

Let G, be a closed region of n-dimensional euclidean space, and C (G,)
the space of all functions continuous in G,. Two functions f; (x), f, (x)
e C(G,) are called (e, §)-distinguishable if there exists an n-dimensional
closed sphere S; = G, of radius ¢ such that

min [fi(x) =f,(x)| > ¢
xeSg

Let F < C(G,) be a set of continuous functions. A subset K < F is
called (e, 0)-distinguishable if any two of its elements are (g, ¢)-distinguish-
able. We denote by N,;(F) the maximum number of elements in an
(¢, 0)-distinguishable subset of F.

Definition 5.1.1. The number H,;(F) = log, N,;(F), by analogy
with the definition of e-entropy, is called the (g, 6)-entropy of F.

Let f, € F. We denote by F,, (f,) the set of functions fe F such that
| f(x) = fo (x)| < Je. It follows immediately from the definition that the

i e logy Hyg (F;.g (fo))
expression lim Iim — - -

6-0 -0 ; log,d
as 1 — .

as a function of 4 does not decrease

Definition 5.1.2. The number
— = logy Hy5(F i (fo)
r(F,fo) = lim lim lim - 2 Hos (P2 (/o)
Amom 620 -0 log,0
is called the functional “dimension” of F at f,. The number r (F)
= sup (F, f,) is called the functional “dimension” of F.

The functional “dimension” r (F) of a set of functions F < C(G,)
has the following properties.
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5.1.1. Let @ < F be a set of functions. Then r () < r (F). Moreover,
if ¢ is everywhere dense in F in the uniform metric, then r(®) = r(F).

Proof. The first part of the assertion follows immediately from the
definition. For a proof of the second part it is sufficient to show that r (@, @)
> r (F, ¢,) for any element ¢, € ®. Suppose that the functions fi, ..., /'y
from a (2 ¢, d)-distinguishable subset of F,, (¢,). Since ¢ is everywhere
dense in F, there exist functions ¢4, ..., ¢y € P such that mezx |f,« (x) — @;(x) |

< min (%, As) (i=1, 2, ..., N). These functions form an (¢g,0)-distinguishable

subset of F,;, (¢,). Consequently N, ;(P;;,(¢0)) =Ny (Fzs (900))-
Hence r (@, @) = r (F, ¢,).

5.1.2. For any set F < C(G,) we have r (F) < n.

Proof. Suppose that f, e F and fi, f5, ..., f, is a maximal set (with
respect to p) of pairwise (g, 6)-distinguishable functions of F,, (f,). Let
0y, 0,, ..., 0, be a maximal set (with respect to g) of spheres of radius 9/3
in G,, such that no two of them have common interior points. Then any
pair of functions f; (x) and f; (x) of the given set satisfies on at least one
of the spheres g, the inequality min lfi (x) = f; (x) | > ¢. For the func-

Xea]

tions f;(x) and f;(x) satisfly on some sphere S; = G, the inequality
min lf,- (x) = f; (%) [ > ¢. Since ¢ is maximal, it follows that one of the

spheies g, < §s;. Consequently on this sphere the inequality we need is
satisfied. We denote by a; the centre of the sphere g, (/ =1, 2, ..., g). Every
set of functions fips figs > fi, €ach pair of which has values differing by not
less than ¢ at one and the same point consists of a number r <2 1 + 1
of functions. (All functions are taken from the set indicated above.) Since
every pair of functions f; (x) and f ; (x) has values differing by not less than
¢ at one of the points g, at least, we have p <C 21 + 1. But since the spheres
{ 0;} do not intersect, ¢ << C/d", where C is a constant depending only on
n. Consequently,
C

511
log, log, (21 +1
F(Ffo) < lim lim lim — 082 108224+ D

Aovon 620 £-0 log,0

5.1.3. If F is everywhere dense (in the uniform metric) in the space
C(G,), then r (F) = n. In particular r (C (G,)) = n.
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Proof. By 5.1.1 and 5.1.2 it is sufficient to show that r (C(G,)) > n.
We denote by C, (G,) the set of all f(x) e C (G,) for which max | f(x) | <e.

xeGp
Let 0 > 0O be a constant such that for any 6 > 0 we can find H = [0/5"]
closed and pairwise non-intersecting spheres o,, 0,, ..., oy of radius ¢
in G,. For any system of numbers { «;} (a;= +1, i=1,2, ..., H) we construct

a function f,,, (x)e C,(G,) such that f, (x) = ae for xeo;
(i=1,2,..., H). These functions are obviously pairwise (g,0)-distinguishable.
The number of functions S (a;y (x) for all possible sets { o; } is equal to 28
Consequently H, ;(C, (G,)) > H = [0/6"]. Hence r (C (G)) > n.

COROLLARY 5.1.1. The space of all polynomials in n variables has
Jfunctional “dimension” n.

-In the same way, the following properties are easily proved.

5.1.4. Let G, and G? be two non-intersecting closed regions in #- dimen-
sional space, and F (G, U G?) a space of functions, defined and continuous
on G, U G?. Denote by F (G,) the space of all functions ¢ (x), defined on
the set G,, for which there exists a function @ (x) € F(G! U G?) such that
@ (x) = @ (x) for x € G.. The space F(G?) is defined similarly. Then

r(F(G,uG)) = max {r(F(G,); r(F(G))}.

5.1.5. If F is a linear space, then-r (F) = r (F, f,) for any function
fo € F. If F is a finite-dimensional linear space, then r (F) = 0.

5.1.6. Let F be a linear metric space with metric p (¢, ¥) between a pair
of functions ¢, v € F. We denote by F (p,) the set of all those functions
@ € F for which p (¢, 0) < p,. Then r (F) = r (F(py)).

COROLLARY 5.1.2. The set of all polynomials in n  variables whose
partial derivatives of order p, forany p = 1, 2, ..., are bounded by a constant
0 < K, < oo has functional “dimension” n.

5.1.7. Let F be a complete linear metric space and F = U F,, where
i=1
{ F; } are sets of continuous functions. Then r (F) = max r (F)).

i

We now write down the main result on the functional “dimension”
of a set of linear superpositions.

5.1.8. Let ¢g; = ¢q; (x4, X5, ..., X,) be continuously differentiable func-
tions of n variables, and p; = p; (x4, x5, ..., X,) continuous functions of »
variables (i =1, 2, ..., N). We denote by F (G,, { p; }, { ¢; }) the set of super-
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N
positions of the form Y p;(xy, X, oy X,) i (¢; (X1, X3, o0y X)), Where
i=1
(xy, X3, ..., X,) € G,, and { f; (¢) } are arbitrary continuous functions of one
variable. Then in any region D, there exists a closed subregion G, < D,
such that

r(F(Gna {pi}’ {ql}))< 1.

For ease of presentation we limit the proof to the case n = 2 (8§ 3).
It is interesting to compare the result 5.1.8 with the following proposition.

n

5.1.9. Let ai(xl,x:z,‘..,xn) —_ Z OCU(XJ) (l =1,72,..., 2”"*—])

i=1

be the continuous functions involved in Kolmogorov’s formula (I).
We denote by Y (G,, a;) the space of all functions of the form
W (o (xy, X5, ..y X)), Where W (7) is an arbitrary continuous function of
one variable and (x,, x,, ..., x,) € G,. Then for any i and every region G,
r( (G, a;)) = n (see 5.1.7).

Let p;(xy, X,, ..., x,) be fixed continuous functions of n variables,
q1.i (X1, Xgs oo0s X)), o (X1, Xgy coy X))y ooy @i (Xg, X5, .o, x,)  fixed  con-
tinuously differentiable functions of n variables, and f; (¢,, ¢,, ..., #;) arbitrary
continuous functions of k variables, Kk <n (i=1,2,..., N). One would
expect that the set of superpositions of the form (V) (see Chapter I) has
functional “dimension” not greater than k. However, in this direction, only
the following partial result has so far been proved.

5.1.10. Denote by F(A G, {p;},{q1.i}> - { qc;}) the set of all
those continuous functions ¢ (x,, x,, ..., x,) for which there exist continuous
functions { f; (¢4, t,, ..., #;) } such that in G,.

QD (xlﬂ x2> smey xn)

I
M =

) pi (xl > x2> treo xn)fi (ql,i (xlo x27 seey xn): fe ey CIk,i (x1> x2> ey xrr))

i

and

max sup Iﬂ(tlthQ"'th)l < l sup I(/)(xlax?,a“-axn) |
i (1. t9, 5., t}) (X1, x2, ..., xp) eGpy

Then, for any A < oo, in any region D, there exists a closed subregion
G, < D, such that

F(F(ﬂw Gn: { pi}a{ql,i}a ) {Qk,i})a O) < k'

From the last result and Banach’s open mapping theorem there follows

L’Enseignement mathém., t. XXI1II, fasc. 3-4. 21
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CorOLLARY 5.1.3. For any continuous functions p, and continuously
differentiable functions qy ;,q, ;5 ..., Gk < n (i=1,2,.., N) and every
region G, there exists a continuous function that is not equal in G, to any
superposition of the form (V).

§ 2. (g, 0)-entropy of the set of linear superpositions

We denote by S (0, z) the disc of radius 6 with centre at z. Let p (2)
= p(x,y) and g (z) = g (x, y) be functions defined in a closed region G
of the x, y-plane and having the properties: ,
aq (x, 0q (x, . X
a) p(x,y), q; ) , qg V) are continuous in G and have modulus
X y
of continuity w (9),

1 1
b) the inequalities 0 < y <{| grad [¢ (r)] | <—and | p (z) | <—, where
Y 7

y 1s some constant, are satisfied everywhere in G.

LemMMA 5.2.1. Let S(0,z) = G andlet p,(t) be the function equal to
2 \/ 6* — (t—q (2))* | grad [¢ (2)] |7 on

q(z) — 9| grad [q(2)] | <t<q(2) + 8| grad [q(2)]]

and equal to zero elsewhere. Then

[ L) = By (e(@. 1) S5, 2) | di < e, () (8) 5,
where ¢y (y) is a constant depending only on y.

Proof. Let [a,b] < e(q,t) n S (9, z) be the segment of the level curve
e(q,t), endpoints a and b, lying on the boundary of S (0, z); [z, a] and [z, b]
the vectors with origin at z and endpoints at a and b, respectively;

v, =y([z al, grad [q(2)]), @, = y([z,b], grad [q(2)]).
We have '
a—q— ds

lt—q()| =|q@ —q()]| = l § 5

se [z,a]

— 5§ cos oy | grad [g(2)]] (1 +0(1) w(d))
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Hence

o sin o, = /& — (1 —q(2) + 0() 0w (9)?| grad [q(2)]]?

and similarly

5 sin oy = /6% = (t —q(2) +0(y) 6 (9))* | grad [q(2)] |2

By b) the size of the angle swept out by the tangent vector to the level curve
e (g, t) on moving along [a, b] does not exceed C, (y) w (). Therefore

hy([a, b]) = 6 (sinay +sina,) (1 +0(p) @ (9))
= 2/8~ (t—q(2) +0(y) 6w (9))*| grad [q()]| > + 0() 6w (5).

Ifo; = C; (y) w (9) (Cs is a sufficiently large constant), then [a, b] = e (q, t)
N S (9, z). Consequently, for

1= q(2)| <0 = 5cos [C;w ()] | grad [9 )] ] x (1+0(1) w (8))
we have 7, (e (g, 1) n S (9, z)) = hy ([a, b]). Since for every ¢ (by b))

hy(e(g, 1) S(6,2)) <C,(MNS(l+w 9),

we have
J [ hi(e(@, D0 S8, 2) =, (1] dr =
q(z) +0
= J @D ns6.2) —u,0]é +00) 50 G).

We now estimate

4 (z) 4 O
S (@D nS(6,2) = () |dr =
q(z) —
q(z) 4+ @
= | |h(a,b]) = p,0)]dt <
q(z) —0
q(z) + O

<2 [ (J@-(1—9(2)+0() 0 (8)*]| grad [q()]| >

q(z) — O

~ /0"~ (t=q(2)*] grad [q (2] | ?)dt + 0() 6% ()

! d
= 0 F0() |y + 00 F0 ) = 06) 5% (0).

-1 L — 7

Here we have the mean value theorem. This proves the lemma.
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LemmA 5.2.2. Let p(z2),q(z) satisfy conditions a) and b); S (9, z)
< G; let f(t) be an arbitrary continuous function, uniformly bounded in
modulus by the constant m. Then

I i p (,9) f(q (u,v)) dudv

(u,v) e S (9, z)
= p@)| grad [g (][ [ 7O, () dt + A mF0 (),
where | A(z) | < Cs ().

Proof. Using a) and b) and Lemma 5.2.1 we have
I pu,v)f(qu,v))dudo

S(d,z)
=p ]  flg,v)dudv + 0(1) mé*w(6)
(u,v) eS (0, z)
=p(2) | {f(®) ( )jS(5 | | grad [q(s)] | %ds}dt -+ 0(1) mé*w (5)
— w0 see (g, 1) n ,Z) :

=p@| erad 0@ ] O [ dshdi +0G)mie ()

see (q,t) nS (9, z)

= p(@)| srad [g@]|7 [ )by (e(@, DS G, ) dt +0() mbo ()

= p() | grad [q@]]7* [ O, di + 00) mde (5).

This proves the lemma.

LEMMA 5.2.3. Suppose that a number o > 0 and functions p (z),
q (2), f(t) satisfying the conditions of Lemma 5.2.2. are given. If for every
integer k such that

o
min g (z) <t, =ko— < max ¢(2)
m

zeG zeG
and any integer | such that
, o
min | grad [¢(2)]| <t = 1— < max | grad [¢q(2)]],
zeG m zeG

the inequality

tk_}_t;é f—¢ 2
[AO Jaz --< "> dt | < 0d?

th—1,9 g
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is satisfied, then for every disc S (6,z) = G
| ] pw,v)f(q(u,v)dudv | < 6 (7) (20 +md*w (9)) -

(u, v) eS (0, z)

Proof. Suppose that a disc S (3, z) = G is given. By the condition of the
lemma there are integers k and [ such that |g(z) — #,| < da/m and
|| grad [¢ (2)]| — t/ | < «/m. From Lemma 5.2.2 we obtain

| p(2) ]
u dudv | < -
l(u, v) £S (s, z)p w, U)f(q w, 7))) e l 1 grad [q (2)]

g (z) +
+5lgrad [q (Z)]l

2 —~ 2 2 t"—q(z))
s () moe(9) /\)72‘ ! j i \/ ° | grad [q(2)] |

| I_I ormora

q(z) —

— 0] grad [q (2) 1]
z,mLt'a

f f(t)\/éz /"‘, k>2dt

t 1

2
+ — ad” + cs(y) mé*w (0) <
¥

(by the mean value theorem)

2 2 omdrt o
— ad® + ¢5(7) moé*w (d) + < J 7 2> o —
y .

m

1

2 52mdr ‘

+ — < /1 > 2 < < ¢ (p) (06” + m*w (9)) .
—17?

This proves the lemma.

WC denOte by En = m (D pla Pas - '7pN; CI1a qos ees QN) the set Of
superpositions of the form

f(xa y) = 'Zl pi(xay)fi(qi(xay))a Where {pi(x> y)}

and { g; (x, y) } are fixed functions, defined in the closed region D of the
x, y plane and satisfying conditions a) and b) with a constant y not depending
on i and {f;(¢)} are arbitrary continuous functions, defined on { [a;, b] }

= {[ min ¢;(2); max ¢;(z)]} and uniformly bounded in modulus by
ze D ze D

the constant m.




— 310 —

THEOREM 5.2.1. There exist constants A and B such that if ¢ > Amw(5)
B /m\?
then for the (e, 0)-entropy of the set of functions F,, H, ;(F,) < F <—> ,

g
where A and B depend only on y, N and D.

—}3 Jf f(u,v) dudv
7o

(u,v)e S (4,2)

 Proof. We put
R(f(z),0) = max

S (3,z)=D

We denote by 7, ; (F,,) the e-entropy of the space F,,, taking as the distance
between the functions f; (z), f, (2) € F,, the number R (f; (z)— 15 (2), J).
The inequality H,, ; (F,) << o, s (F,) holds owing to the fact that if two
functions f; (z) and f, (z) are (e, 0)-distinguishable, then they are e-dis-
tinguishable also in the sense of the metric R (f; (z)— f (2), d). We now
estimate the value of S, ; (F,,). Let k and / be integers such that

min q;(z) < t, = k5 — < max g, (z)

zeD m ze D
and '
, o
min | grad [¢;(2)]| <1 = l~n; < max | grad [¢;(2)]] .
zeD ze D

To compute the function

1 N
f5(2) = —5 JJ f(u,v) dudv ,
(u v)eS(9,2)

where f(x, y) € F,,, S (0, z) < D to within g, it is sufficient by Lemma 5.2.3
to give the values of

tk+tl§

v, (L, 1) = J f(z)\/éz (7“‘) dt

tj, — t]o

to within « = 7e / (2 NCg (y)) and to assume that é is small enough so
that

2NC,(y) mw(6)
>

T

= A(y, N) mow (9) .

Since [ v, (t, 1)) | < C, m, to write the numbers v, (¢, 1) (i, k, [ fixed)
log, (C; m/x) binary digits are sufficient. Since
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1

, ; 1 T oomdt \ |«
lvi (tee 1> 1) — Vi (B 1) | < Cg -\7-’) 0— = ¢o(y)a
=1

8 1 —12/ m

(here we again use the mean value theorem), to store the numbers
v (tes1, 1) — vi (4, 1)) to within «, log, Co binary digits are sufficient.
Therefore to write the numbers v; (#,, t;) (i, / fixed; k any admissible number)

Cio () [loggm - (bi-—ai) ;] = #;, binary digits are sufficient. Con-
o o

sequently the total number of digits sufficient to store all the numbers
v, (f,, t7) to within «, that is, to store the functions /5 (z) to within ¢, is

m m11m  B(y,N,D) /m\?
H o=y Hiy <Ncio©®) |log, — + (bi—a) “—<W—<— :
T o ol y o 0 g

This proves the theorem.

§ 3. Functional “dimension” of the space of linear superpositions

Suppose that continuous functions p; (x, y) and continuously differenti-
able functions ¢q; (x, y) (i=1, 2, ..., N) are fixed. Let G be a closed region
of the x, y plane. We denote by F = F(G, { p;}, { g, }) the set of super-

N

positions of the form f(x,») = Y p;(x,»)f;(q:(x,y)), where (x,y)e G
i=1

and {f;(z)} are arbitrary continuous functions of one variable. We are

interested in the functional dimension of the set F.

THEOREM 5.3.1. In every region D of the X,y plane there exists a
closed subregion G < D such that

r(F(G {p},{a:}) <1

Proof. By Theorem 4.5.1, in D there exists a closed subregion G* < D
such that the set of superpositions F(G*, { p;}, {¢;}) is closed (in the
uniform metric) in C (G¥*), and the functions { ¢; (x, ) } satisfy the condi-
tion: for any i, either grad [g; (x, ¥)] # 0 on G* or ¢q;(x, y) = const on G*.
We show that r(F(G* {p;}, {q; 1)) <1. By Banach’s open mapping
theorem, there exists a constant K such that for any superposition

N
2 P filgi(x, ) = f(x,»)e F(G*, {p;},{q;}) there are con-

i=]
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tinuous functions { /7 (¢) }, defined on the sets {¢; (G*)} and satisfying
the conditions

N
8) fG,9) = Y pi(x,0)f7 (a.(x,) for all (x,y)eG*;
=1
9) max max |f}()|>K max |f(x,))].
i teq; (G*) (x,y)eG*

Denote by F,, = F,,(G*,{p;},{4g,}) the set of superpositions f(x,y)
e F(G*, {p;},{4q;)) such that max |f(x,y)| < Je. By Theorem 5.2.1
(x,y) e G*

and (8), (9), there exist constants 4 and B such that if w (§) <(AAK)™*
then H,,; (F,,) < B(LK)?/5. Hence the functional dimension

1 K)2
og, log, 240?

r(F(G*, {p;},{q;}) <lim lim lim =1

Ao 020 -0 log,o

This proves the theorem.
From Theorem 5.3.1 and the properties of functional dimension (§ 1)
we have the following result, which is a stronger form of Theorem 4.6.1.

CorOLLARY 5.3.1. For any continuous functions {p;(x,y)} and
continuously differentiable functions { q;(x,y)} and every region D the
set of linear superpositions F (D, { p;},{ q;}) is nowhere dense in any space
of functions that has in every region G < D functional “dimension” greater
than 1.

Remark 5.3.1. All the results about linear superpositions of the form
N
> pi (%, ) fi (g; (x, »)) remain valid if we assume that { f; (¢) } are arbitrary
i=1

bounded measurable functions.

§ 4. Variation of superpositions of smooth functions

Let G, be a closed region of the space of the variables x,, x,, ..., X,
(n > 2). A function F(x) = F (x4, X5, ..., X,) 1s called a superposition of
order s generated by the functions of k& (k > 1) variables

Fovope (s oy s 1) (@=0,1,2, 0y 53 B =1,2, .., k)

if it is defined in G' by relations
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’ F :f(Q1>an "'an) >

-----------------------------

----------------------------

| 9B1.B20Bs+1 = y(B1.B2sesBs+1) 2

where y (B4, B2, ..., Bs+ ) is a function of the indices S, f,, ..., fs+1 and
takes one of the values 1, 2, ..., n. As before, we assume that the functions
{ @8y ps.....5, (T15 125 s 1) } are defined for all values of the arguments.

A superposition of any order, generated by functions of one variable,
is again a function of one variable. Therefore in this case (kK =1) we consider
superpositions of functions of one variable and the operation of addition,
that is, superpositions definable in the following way.

A function F(x) = F(xq, x5, ..., x,) (n>1) is called a superposition of
order s of the functions fp, ., (#) (@=0, 1, 2, ..., 5; §;=1, 2) if the following
relations are satisfied:

IEREE]

F = f(q;+4q5),

--------------------------------

9p1.820be = S 018208 (D120t T Dp1,posenfn2) - (VID)

...............................

8182, sBs+1 — N9(BLB2sBst+1) 2

where y (1, P2, ---» Ps+1) takes one of the values 1, 2, ..., n.

Note that we can represent as superpositions of the form (VII), for
example, all rational functions of xy, x,, ..., x, since we can write any
arithmetic operation by such superpositions, for example, u -v = ™+
- f(f1 (u) + 1> (v))

Let F (xy, x,, ..., X,) be a superposition of order s of the continuously

differentiable functions {-/bl,ﬂz,---,ﬂa (t1, 12, ..., ) } and  F(xq, x,, ..., X,
the superposition of the same form of the continuously differentiable func-

k
0 ty,...,1
[t = max Y sup UIRACE ’~~k)- ,
o, f1 fa =1 t 5tl
& = max sup ‘ (Plj’l ..... ﬂa(t17t2>'-->rk)l
%, B1,... Py t




.
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LEmMA 5.4.1. The inequality
su% ‘I;(xl,xz, e X)) = F (X, xp,00,x,) | <X A, 8)e.
holds, where the constant A (u, s) depends only on u and s.
Proof. We‘proceed by induction on s. For definiteness suppose that
k < 1. Having verified the statement of the lemma for s = 1 and having

made an appropriate inductive assumption for superpositions of order
s — 1, we have

su;(); | F (Xy, X0, 00 X)) — F(Xq, X5, 00, X,) |

(\‘/: ‘f(czl’ "':qwk) —'f(qla"'an)l + IQD(;DZIZa >;k)l

<. | max sup ]qﬁ1 ——q,,1| +e<lu-A(,s—1)e+e = A(u,s)e.

b1 xeG

(the last by the indictive assumption). This proves the lemma.
Further, let o (6) be the common modulus of continuity of all the func-

_ 0 iy by) , .
tions { IEAY k)} and, in addition, put

p ,
0 Ly oes )i
o = max Z sup _(P[fl ..... ﬁy_( 15 K)
o0 B1,..nfy i=1 ¢ at;
LEMMA 5.4.2. We have (for case k > 1)
Fxg,oo0n%)) = F(xy,.00,%,) = Z Doy (X1s X255 X,)
a, f1,.-s Ba

X (pﬂl,...ﬂa, (qﬂl ..... ﬁa,l (x19 Y xn)) cesy qﬁl ..... b’a’k (X1, saey xn))
+ R(X1,X5, .5 X,) »
where
| R(x1, %5, 0, x,) | < B(u, s, k) [¢' + (A, s)e)] e,
1

lpﬂl ..... ﬁa(xlaxza---axn) = H p
i=0 Cdpy,...piy1

B (u, s, k) is a constant depending only on u, s, k. For k = 1 the correspond-
ing equation is slightly different (see Chapter I, (1)) :
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= Z pﬂl ,,,,, ﬁa(x1>x29 ...,X”) @ﬁl,...,ﬁa(qﬂl....,ﬁa,l (xl’ ...,x,,)

Proof. As in the preceding lemma we proceed by induction on s.
Again for definiteness we limit ourselves to the case kK > 1. For s = 1
the assertion of the lemma is easily verified. We assume that it is true for
superpositions of order s — 1. By Lemma 5.4.1, for superpositions of
order s we have

F(xlr'-'axn "‘F(Xla"'axn) :f(C]la(Z29"'>Qk) _f(qla QZa'“a('Ik)

A ~ ~ ‘ k a ~
+ (@15 G20 s qi) = @(d1sq2s s @) + 2, o g —qp)
p1=1 04 py

+ A, e e +k-A(u,s)w (A, s)e)e.

Since gz, and g5, (B;=1,2, ..., k) are superpositions of order s — 1,
by the inductive hypothesis we have ‘

~ A
qﬁl - qﬁl = Z pﬂ] ..... ﬂa(XI:XZa .,.,X,,)
a>0
quﬂ:'},-'-,ﬂa

ST (Qﬁl ..... Barl (%op 5 By s, Bl o o3 dp1,....Bgk (X1, X2, .00, xn))

/
+ R (Xl, x?_: "-axn) >
where

| R(x{, %5, ..., x,) | <BGus—1,k)[¢' + o (A4 (u,s—1) e)] e,

N a—1 afﬂ P

4B, 2,...;ﬁi
Dgi.,.... /}a(xla“'axn) = H P
i=1 O04py,...pis1

(for a=1, ps, (x4, ..., x,) = 1). ~
When we now substative the expressions for the differences 98, — 4p,

in the formula for F — F above, we obtain the required representation of

the difference of two superpositions F — F. This proves the lemma.
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§ 5. Instability of the representation of functions
as superpositions of smooth functions

Let A be a set of functions of n variables and B a set of functions of k
variables (k <n). Suppose that a function F (x4, ..., x,) € A is in a region G,
of the space x, x,, ..., x, an s-fold superposition, generated by a system of
functions { fy, . 5 (t1, ..., 1) } of B.

We say that this superposition is (4, B)-stable in G, if every function

F(xy, ..., x,) € A can be represented in G, as the s-fold superposition of the

.....

max sup lf[fl ..... ﬂa(tla'-'atk) _ff)’l ..... ﬁa(tla---7tk)l
s By, ., Py t
< A sup }F(xl,...,x,,) — F(xy,...,x,) 1,
xeGp

where 1 is a constant not depending either on F or on the { f3, 8, |-
We denote by C(E,l(%) the space of all continuously differentiable func-
tions of k variables whose partial derivatives have modulus of continuity

@ () ( (5) — 0 as & — 0).

THEOREM 5.5.1.  Suppose that each function F (x, ..., x,) € A is in some
region D, of the space xq, ..., x,, a superposition of order s of functions of k
variables { fp,. .. g, (E1s s 1) | belonging to C((Dl(z;) (k<mn). If for any sub-
region G, < D, the functional “dimension” of A at F(xq,...,x,) €A
is greater than k, then the function F(x,, ..., x,) cannot be an (A, Cc(ol(%))-
stable superposition in any such region G < D,,.

Proof. Assume the contrary, that is, in a region G, < D, the function

F(xy, .., x,)€A 1s an (A, Cfol(%))-stable s-fold superposition of functions

" (1 : - -
{fop, (s s 1) 1 Of Cysy. Then any function F(xy, ..., x,) €A can

{fﬂl ,,,,, 8, (ty5 ..., ) } of Cc(ol(};) such that

max  sup |@g. 4 (t, ., t) | < A sup ll*: —F|,
oa; f1, .-, Bo t

xeGp

~

where @4, 5 = fpi....8, ~ Jpi....s, By Lemma 5.4.2 we have (for defi-
niteness, k > 1)
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F—F = Y Dppop, (X5 Xn)

a3 B, By

.....

where l R (x{, ..., x,) | <y(e)e, y(e) > 0ase — 0, and

g = max sup | Qg ﬁx(t],...,tk)|
a; f1,- ., By t

< A sup \F(xl,...,x,,) ~~F(x1,...,x,,)‘.

xeGp

That y (¢) — 0 as ¢ — 0 follows from the fact that as ¢ — 0 the quantity

k
1610 (ty ..o tp)
¢ = max Y sup | —lelNDUUR Q)

@3B, By i=1 o,

provided only that the modulus of continuity of the partial derivatives of the
functions { g, 5 (t1, ..., #) } is fixed. By 5.1.10 it follows that r (4, F)
< k in some subregion G, = D,. So we have obtained a contradiction
to the assumption that r (4, F) > k in any subregion G, < D, and this
proves the theorem.
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