Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 23 (1977)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: STABILITY OF PROJECTIVE VARIETIES

Autor: Mumford, David

Kapitel: 84. Asymptotic Stability of Canonically Polarized Curves
DOI: https://doi.org/10.5169/seals-48919

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-48919
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

8

§ 4. ASYMPTOTIC STABILITY OF CANONICALLY POLARIZED CURVES

The chief difficulty of using the numerical criterion of Theorem 2.9 -
to prove the stability of a projective variety is that it is necessary to look
inside Oy, 1 to compute the multiplicity e; (#). To. circumvent this
difficulty, we will construct an upper bound on e; () in terms of data on X
alone. For curves, this bound involves only the multiplicities of ideals
J < Oy, but for higher dimensional varieties—in particular, surfaces—it
requires a theory of mixed multiplicities, i.e. multiplicities for several ideals
simultaneously. To motivate the global theory, we will first describe what
happens in the local case. Here the basic ideas were introduced by Teissier
and Rissler [22]. Recall that if @ is a local ring of dimension r with infinite
residue field and 7 is an ideal of finite colength in it then whenever fi, ... f,
are sufficiently generic elements of 1, e (I) = e((f, - f.)). This suggests

DerINITION 4.1. If O" is a local ring and 1., ..., I, are ideals of finite
colength in O, the mixed multiplicity of the I, is defined by

ey, ...1) = e((f1,--s 1))

where f; € 1, is a sufficiently generic element. (The set of integers e ((f1, ..., f,))

has some minimal element and a choice (f, ..., f,) is sufficiently generic if

the minimum is attained for these f;.) h
The basic property of these multiplicities is:

ProroSITION 4.2. Let I, ..., I, be ideals of finite colength of a local
ring O and let

' 1
P.(my,...,m) = Z_ 1@

ri=o0

[r; [ r v
. 8(11”], ...,Ikrk]) . mll e mkk

where IVl indicates that I, appears r; times. Then

k
i) | dim (O] J] 1) = Pe(my, ey m) | = 0((Lm)"™)

ii) There exists a polynomial of total degree r
P (my, ...,my) = P,(my, ..., m) + lower order terms
and an Ny such that if m; = N§ for all i, then
dim (O/]] I7") = P(my, ..., m).
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Proof. See Teissier and Rissler [22].
Using this we obtain the estimate:

PROPOSITION 4.3. Let I < O [[t]] be an ideal of finite codimension and
let I,={acO|at*el}; then I, I, <..SIy=0,N>0. Then
for all sequences 0 = ry < ry < .. <r; = N,

-1

e(l) = Z (Fra1 =75 Z e(Ir;EJ]»Ir[;JFi])

Proof. Since I > @ t"' I,

"S> I (O+10+...+11710) + L[N L ((O+T 0+ +177 70 0)
4+ . +I I” 1(t(" 1)"1(9+ +tnr1——1 (9)
+ 11:1 (an1(0+ +t(n 1)yr1+ro9—1 @) 1 In 11'2(t(n—1)r1+r2(9+”.)
T P I”l-—l (tnrl 1(9+"') + Irnz—11 (t(n 1m"“”@—l—...)
+ o+ O[]

whence

dim (O [[:]]1") = Z (1 =72) Z dim (0/(, ™" - 1., )

i=0

;\ (4.4) Z(’”kﬂ_’k)nz [i ! (I[1 i1 I,[i]ﬂ) (n——i)r“jij—l-Ri]

; i1 (r—i)!

By Proposition 4.2 i) each remainder terms R; is O (n"~'). Indeed, ii) of

4.2 says that except when i or n — i < N,, the R, are all represented by a

polynomial of degree r — 1 so that we can obtain a uniform O (n"~!)
n—1

estimate for the R;; hence ). R; = O (n").
i<0

But the n.l.c. of the (r+1)* degree polynomial representing
dim (0O [[¢]]/1") is by definition e (/); so evaluating the n.l.c. of the sum
in (4.4) using the lemma below, gives the proposition.

LEMMA 4.5.

j!(r——j_)i a5l
(r+1)!

Proof. We can reexpress the left hand side in terms of the f-function as

n—1
=Y (=) il + 0

=)t
(;11;)'~~— U= B, r—j)n"tt = <th(1—t)r‘jdt>n 1
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and the right hand side is just another expression for #"*! times this integral
as a Riemann sum plus error term.

To globalize these ideas we combine them with some results of Snapper
[5, 21].

DEFINITION 4.6. Let X" be a variety, L be a line bundle on X and
Iy s I, be ideals on Oy such that supp (Oy/F,) is proper. Choose a
compactification X of X on which L extends to a line bundle L and let
n: B — X be the blowing up of X along [[J; sothat n~'(F)) = 05(—E)).
Let n*L = 05 (D). We define

e (F1,.sF) = (D" —((D—Ey) . .(D—E,)).

We omit the check that this definition is independent of the choice of X
and L.

4.7. CLASSICAL GEOMETRIC INTERPRETATION. Suppose X is a projective
variety, L = Oy (1) and #;.L is generated by a space of sections W,
I (P,0 (1)). If Hy, ..., H, are generic hyperplanes of P", then # (H;
N..n H. nX)=degX. One sees by an argument like that of Pro-
position 2.5, that as the H; specialize to hyperplanes defined by elements of
W, but otherwise generic, the number of points in H, n...n H,.n X
which specialize to a point in one of the W’s is just e, (£, ..., £,).

We can globalize Proposition 4.2 to give an interpretation of the mixed
multiplicity by Hilbert polynomials.

ProrosITION 4.8. 1) Let X" be avariety, Ly, ..., L, be line bundles on X
and S, ..., 5, beideals in Oy such that supp (Ox/F;) is proper for all i.
Then there is a polynomial P (n, m) of total degree r and an M such that
if m;= M, forall j then

®»

(X,

l

z k
L] 11 #77. ® LiY) = P(n,m).
i=1 i=1

1
Now suppose all the line bundles are the same, say L and let

1
P, y eee, M) =
’ (’nl l) Eriz=r H (ri ')

r; >0

] [ri] r r
e, (LI ATy mit L om)

Then

i) PO my;my,...,m) = P,(my, ..., m;) + lower order terms
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l
i) | g (X, L™/ ]] 77 ® LZ"”) — P, (my,...,m)| =0(> mp)
j=1
(i.e. we retain an estimate assuming only > m ; is large).

Proof. Making a suitable compactification of X will not alter the Euler
characteristics so we may assume X is compact.
Before proceeding we recall certain facts: If R = @ R, . ., 1sa

n;=>0
multigraded ring we can form a scheme Proj (R) in the obvious way from
multi-homogeneous prime ideals. Quasi-coherent sheaves & on Proj (R)
correspond to multigraded R-modules M = & M, . .. Suppose Ry, ..., ¢
= k a field and that R is generated by the homogeneous pieces
Ry, ooy 05 15 05 -+ o- Then we get invertible sheaves L, ..., L; on Proj (R)
from the modules M, where M, = (R with i™-grading shifted by 1), and
the multigraded variant of the F.A.C. vanishing theorem for higher coho-
mology says that if % is a coherent sheaf on Proj (R) then

) M , 1 =20 )
H‘(ff@(@ L?J’)) = { mnp ! if n; >0, all j

0), , 1 >0
- Now if #4, ..., #, are ideal sheaves on X such that supp (0x/f ;) is proper
for all 7, let o = @ JS71... " Then o/ is a multigraded sheaf of

mjéO
Ox-algebras. Let B = Proj («/); the blow up of X along [[.#; is just n: B
— X. If E; is the exceptional divisor corresponding to .#,, then when
- 0y (=) m; E))is coherent and when all the m ; are large the relative versions

of the vanishing theorems say:

a) R'n, (0(=Ym;E)) =0,i>0

i=1
In any case,
¢) supp R'm, (0 (—). m; E;)) has dimension less than r,i > 0,

d) 7, (0 (=), m;E;)) =[] #I"" except on a set of dimension less
than r. :

: From a) and b) we deduce that when all the m; are large, ¥ (177
= x(w 0 (=Ym, Ep). Thus, (X, ® L[] #9 L) = (X, ® LI

—x(B, @ LI (=) m ;Ej)) and both of these last Euler characteristics
- polynomials of degree =r by Snapper [5,21]. Now if n* L = 0,4 (D),
~ his result also says,
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rl.nle.(x (X, L*™T] £} @ L*™) = (Ymp)"(D") — (X m;(D —E))))

!
R
erE:O !

eL (L7 Ly i oml

r!
ZrJ r H(

which is i1). Fix an N such that ii) holds when all m; = N.

Now suppose [ is a proper subset of { 1, ..., [}, J is its complement and
that values m; < N are fixed for all ie I. Let n; : B, — X be the blow up
of X along [[ ;. As above we deduce that 3N’ depending on 7 and the

jeJ
m;, i € I such that if m; > N’, Vje J, then
(X, IT I = (B, [T I (- Z m;E;)) .

iel

Then applying ¢) and d) we see that for some C, also depending on I and
the m;, ie I,
12(B, 0 (=L miE)) = 2 (B, [T A1 (= T mi) [ =CC Y m)™!
iel je Je

Combining this with the argument used in the proof of i) and ii) shows that
for some C’ (depending on [ and the m;, i€ I)
G LT £ IL2) = Py (my o) | <€ )y
jed .

From ii), we get an estimate of this type with a uniform constant C’, when
all the m; = N. Since there are only finitely many sets I and for each of
these only finitely many choices for the m;, i € I with m; < N we can com-
bine all these estimates to show: there exists M and C” such that if any
m; > M, then

| (X, L*™[ [T #579 L*™) = P, (my, ...,m) | <= C"(( Y, m)'™*)
j j
which is iii).
The following analogue of Proposition 2.6 allows us to calculate mixed
multiplicities in terms of the dimensions of spaces of sections.

ProrosiTioN 4.9. If L, #L, ..., 7 ,L are generated by their sections,
then

|z (X, L*™)(] #79) L*™) — dim (I (X, L*™)/T (X, ] #™L*™)) ]|

= 0 ((xmy)™)
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Proof. We give only a sketch of the proof which is very similar to that
of Proposition 2.6. One first shows as in the proof of 2.6a), that for

i > 0, A" (L*™[T #™ L*™i) = O((3.m;)'~"), hence that

|y (X, L] #59 L™) — dim T' (X, L*™/[] f;."fo'"f) |

= 0((Xm)™")
Using the long exact sequence

0 TI'(X,]]# L™) - I (X,L*™™) > I'(X,L*™[] #5iL*™) - ...
this reduces the proposition to showing that

dim (coker (I' (X, L*"/) —» I (X, L*™]] #77 L*"})) = O (O my)" ")

and this is done exactly as in the proof of 2.6b). (Note that the extra hypo-
theses of 2.6b) were not used in this part of the proof.)
The global form of Proposition 4.3 is:

PROPOSITION 4.10. Given a variety X, a line bundle L on X and an
ideal # < Oxy a1 with supp (Oxxa1/F) properin X x (0), let S, = {a
eOx|thae s} sothat Sy = I, = ... € Iy = Oy andlet L, = L @ O1.
Suppose that L, ¥ L and J L, are generated by their sections. Then for all
sequences 0 = ryp <r; < ..<r;, = N,

l r
e, () ékZ (M1 =10 ). er (fEi], j'!;;]l]) -

Proof. By Proposition 4.9, e, () is calculated by the order of growth
of
dim [HO(X x A', LD)/H° (X x A!, J". LD].

Exactly as in Proposition 4.3, for each n, we introduce using the r,’s an
approximating ideal sheaf .#:

(v 0]
anf}; = k(‘_DOtk.jn,k

where S, = S, © ... @ S,y = Oy for N > 0. Since

H°(X x A", " L) o H°(X x A, 7, . L") = @ H°(X, Fur- L,
k=0
it follows that
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dim (H°(X x A", LD)/H (X x A', #" . L})
= Y dim (H° (X, L")/H° (X, S, . L")
k=0

The rest of the proof follows Proposition 4.3 exactly, using 4.9 again to
get the estimate

dim (H° (X, L")/H° (X, 4, . J5 . LD)
for y (L"S}, . Fot L"),

Fe+1°

COROLLARY 4.11. If in Proposition 4.10, X is a curve

er, () = min [ ZO(”kH — 1) (eL (F,) +e (S, 1))]

O=rg<ry...<rj=N k=

If X is a surface,
eLl (j) .
= min [ Z (Fr+1— i) '(eL (J) +ec(Fo frkH) + e (jr[c))]

0=rg<rj..<rj=N k=0

We now show how this upper bound proves the asymptotic stability of
non-singular curves. It turns out that the estimate is, however, not sufficiently
sharp to prove the asymptotic stability of curves with ordinary double
points: more precisely, if # is the ideal associated to a 1-PS A with nor-
malized weights p; then the estimate of the corollary may be greater than
2deg X

. . (cf. Theorem 2.9
2= Y i (of. Theorem 2.9

THEOREM 4.12. If C' < PY is a linearly stable (resp.: semi-stable)
curve, then C is Chow stable (resp.: semi-stable).

Proof. We prove the stable case; the semi-stable case follows by

replacing the strict inequalities in the proof by inequalities.
Fix coordinates X, ..., Xy on PY and a 1-PS

f—_tpo O —
/l(t)z . ,pof\-:plé...ép]vzo

0 1PN
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Let .7 be the associated ideal on O, 41 and let £, = O be tl;e ideal defined
by £, .L = [sheaf generated by X, ..., Xy]; thus S = kzo iF2 £, The

deg C

linear stability of X implies (cf. 2.16), e (J}) < .codim < X, ..., Xy >

deg C k

. So using Corollary 4.11,

e, (J) = min [Z (psk, ~Psp+ 1) (eL (jsk) T e (jSkJr 1>):|

0=sg<...<sp=N

: deg C
< min [Z (psk_psk+1) (Sk+sk+1)

0=s50<..<sp=N N

2deg C
°& ? p; which in
N +1

i=

In view of the Lemma below this implies ¢, (¥) <

turn implies C is stable by Theorem 2.9.

LEMMA 4.13. If po==..>=p, = 0, then

) Sk + Sk—{—l
min Z(ps—'ps ) : <_—’_——— Z P
0=s0<...<s]=n [ " kel 2 Il + 1k

Proof. Draw the Newton polygon of the points (k, p,) as shown below

}o

77

The left hand side is just the area under this polygon so moving the points
., above the polygon down onto it as shown, does not affect this expression.
+ Since this can only decrease the right hand side we may assume all the p;

are on this polygon. Then the left hand expression can be calculated with
2 5, = k and it becomes

& o
ny ——




1 ] ~ 1

5)00 + P1 + eve T Pr-1 + Epn = Po + ..+ Pp — '2_(:00+pn)
=Zpo + .. + L (pot )
=Po T v T Py n+ 1 Po T oo T Py

since the Newton polygon is convex. But the last expression is just

(po + ... +p,), hence the lemma.
n+1 .

THEOREM 4.14. If C < PN is a smooth curve embedded by T (C,L)
where L is a line bundle of degree d, then

1) d > 29 > 0= C linearly stable,

1) d =29 =0 = C linearly semi-stable.

Combining this result with Theorem 4.13 gives the main theorem of this
section:

THEOREM 4.15. If C is a smooth curve of genus g =1 embedded by a
complete linear system of degree d > 2g then C is Chow-stable.

Proof of 4.14. Consider all morphisms ¢@: C — P" for all n, where
@ (C) & hyperplane. Let us plot the locus of pairs (deg ¢ (C), n), where
¢ (C) is counted with multiplicity if ¢ is not birational. Note that, if ¢*@ (1)
is non-special, then by Riemann-Roch on C:

n = dim H°(Op, (1)) — 1 = dim H® (p*0 (1)) — 1
= deg p*0(1) —g = degp (C) —g

while if @*@ (1) is special, then by Clifford’s Theorem on C:

n =dim H°(p*0 (1)) — 1

_degop*(0(1))  dege(C)
”“ 2 2
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This gives us the diagram

Al pairs (deg o (C) , n)
below broken line

d = deg o (C)
S

 The reduced degree of ¢ (C) is just d/n, the inverse of the slope of the
~ joining (0, 0) to the plotted point (n, d). In case (i), by assumption, the
* given curve C! < P¥ corresponds to a point on the upper bounding
segment, such as * in our picture. Any projection of C corresponds to a
 point (7', d’) in the shaded area with d’ = d, n’ < n. From the diagram it
"i"’f is clear that the slope decreases, or the reduced degree increases: this is
- exactly what linear stability means. In case (i), we allow the given curve C
to correspond to the vertex (2g, g) of the boundary, or allow g = 0, when
" the boundary line is just » = d. In these cases, the slope at least cannot

. Increase, or the reduced degree cannot decrease under projection.

| REMARK. Curves with ordinary double points are not, in general,
linearly stable since projecting from a double point lowers the degree by 2,
1 but decreases the dimension of the ambient space by only 1. In fact, linear
stability i1s somewhat too strong a condition for most moduli problems:
Chow stability for varieties of dimension r apparently allows points of
¢ multiplicity up to (r+1) ! while linear stability allows only points of multi-
plicity up to r !
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