
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 23 (1977)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ALTERNATIVE HOMOTOPY THEORIES

Autor: James, I. M.

Kapitel: 6. The exact sequence

DOI: https://doi.org/10.5169/seals-48928

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 24.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-48928
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


— 230 —

and so kq + 1s ~ kq+1t over X'\ Hence, by induction, we obtain (5.1). Of
course the value of r can often be improved in particular cases.

Corollary (5.2). Let E be a fibre bundle over X with locally compact
fibre F, which admits a cross-section. Choose a cross-section and so regard
E as an ex-space. Let f : E -> E be an ex-map such that g: F F is nul-

homotopic, where g — f\F. Then /r+1 ^ c, the trivial ex-map, where

r - reg (X).
To see this, take M MX(E,E), in (5.1), and define k: M -> M by

post-composition with /. We take s, t to be the cross-sections f',e'\ X
M determined by /, e, and obtain (5.2).
Now let a, ß e 7ix (E, E) be elements such that

(i) a2 ß2 and aß ßa,

(ii) - $*ß9

where nx (E, E) n (E, E) is given by restriction. Suppose that
E IE', for some ex-space E', and that a I^a', ß I*ß', for some
a', ß' e nx (E', E'). Take / in (5.2) to be a representative of a — ß. Then
fr+1 is a representative of (a-ß)r+1 2r (pu —ß) ar, and so (5.2) shows that

(5.3) 2ra 2rß

Applications will be given in §8 below.

6. The exact sequence

Let X be a CW-complex with basepoint x0 a 0-cell. Let p: M -> X be a

fibration with fibre N (x0), and let T denote the function-space of
cross-sections. By evaluating at x0 we obtain a fibration q: T -> A. It may
be noted that, under fairly general conditions, this fibration admits a cross-
section if and only if the original fibration is trivial, in the sense of fibre

homotopy type.
Now choose a basepoint y0 e N so that q~l (y0) T0, the space of

pointed cross-sections. Choose such a cross-section s as basepoint in T0

c= JH, and consider the homotopy exact sequence of the fibration as follows:

-> 7lr+1 (N) -> 7lr(r0) -> 7Tr(r) nr(N) ->

Note that T0 is a deformation retract of T0, the space of pointed maps
t : X M such that pt ~ 1.
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In particular, suppose that X — Sn (n > 1). Then s determines a homo-

topy equivalence k: Qn (N) -> T0 as follows. Consider the map /: Q (N)

-> r0 which transforms each pointed map / : Sn -> N into the track sum

s + j f, where j: N c M. Then / is a homotopy equivalence and k is obtained

by composing / with a deformation retraction T0 JT. In this case, therefore,

we can transform our exact sequence into

-+nr+1(N) -> 7ir+n(N) 4 nr(r) 4 7rr(N) ->

where ü* ufik* and D k^1 A. We refer to this as the modified exact

sequence of the evaluation fibration. The operator D has been determined

in §3 of [8]. Specifically, let o e nn (M) denote the class of f, and let

a g 7ir+1 (AT). Then

(6.1) j*Da [j#a,(7]

the Whitehead product in 7i;, (M).
We shall be particularly concerned with the tail end of this sequence,

which reads

ni(N) nn(N) 4 n (r) 4 7i (N).

Let t:Sn->M also be a cross-section. Suppose that we have a path X in
N from s (v0) to t (x0). We can regard 2 as a vertical homotopy of s into t

over { x0 }. The obstruction to extending this to a vertical homotopy over
Sn is an element

<5 (s, f; 2) g 7in (N).

If fi is another path in TV from s (v0) to t (x0) the track difference 2 — jn

forms a loop in TV and it is easy to check that the homotopy class a g ti1 (N)
of this loop satisfies the relation

Da ô (s, t; 2) — <5 (5, t; ju).

Hence ^ and t are vertically homotopic if and only if the obstruction is

contained in Dnl (N).
Now let Et (/= 1, 2) be a sectioned bundle over with locally compact

fibre Ft. We can apply the above to the function-space bundle M Mx
(E1,E2) with fibre N N(FuF2)i and obtain useful information about
the ex-homotopy groups %x (XE1, E2) (r= 1,2,...). Details are given in [9]
where the operator D is calculated, as follows, in case E1 and E2 are sphere-
bundles over X S".
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Given a representation 0: SO (m) -» SO (q) write

J$ J 0^:7zrSO(m) -> nr+q (Sq),

where J denotes the usual Hopf-Whitehead homomorphism. For example,
if q > m and <A is the inclusion then

(6.2) j, (-1
by (3.2) of [5] (cf. [8]). If q 2m and (j) =- 1 © 1 it is easily seen that

(6.3) Jt 2(-lniJ.
Consider the function-space N N (Sp, Sq) of pointed maps Sp

-> Sq. We identify n^N) (i 0, 1, with ni + p(Sq) in the standard way
(see [15]). Let G be a topological group and let

4>: G SO(p), (A: G - 50 (^)

be representations of G. We regard 5g as pointed G-spaces using 4>,

iA, respectively. Choose a principal G-bundle F over 5" with classifying
element 0 e nn_x (G), and take E1 P#(SP), E2 P#(Sq). Then the

operator D in our exact sequence is given

(6.4) Da a o Zr+P~q+1 J^O - Jß o a

where aE7ir+p+1 (5^). The case r 1 of this result will be needed in §8

below.

7. The adjoint G-bundle

Let X be any space and let F be a principal G-bundle over X. We regard P
as a (right) G-space in the usual way. By a principal automorphism we mean

an equivariant fibre-preserving map of P into itself. By the adjoint G-bundle

we mean the sectioned bundle Q P#G, where G acts on itself by conjugation.

Note that g is a group ex-space since G is a group G-space. We can

construct Q from G x P by identifying

(7.1) (gag'1, ft) ~ (a,bg) (aeG,beP)

for all g eG. The group ex-structure is given by

{ al,b}• { a2,b}{ ax}

where { } denotes the equivalence class of Every principal
automorphism / of P determines a cross-section f':X-+ Q as follows.
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