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and so k%"'s ~ k"'t over X". Hence, by induction, we obtain (5.1). Of
course the value of r can often be improved in particular cases.

COROLLARY (5.2). Let E be a fibre bundle over X with locally compact
Jibre F, which admits a cross-section. Choose a cross-section and so regard
E as an ex-space. Let f:E — E be an ex-map such that g: F — F is nul-
homotopic, where g = f|F. Then f'™"' ~ ¢, the trivial ex-map, where
r = reg (X).

To see this, take M = My (E, E), in (5.1), and define k: M — M by
post-composition with f. We take s, ¢t to be the cross-sections [/, e': X
— M determined by f, e, and obtain (5.2).

Now let o, f € ny (E, E) be elements such that

(i) o* = p* and «ff = fua,
(i) Py = Pp,

where @, :7ny(E,E) > n(F, F) is given by restriction. Suppose that
E = XE’, for some ex-space E’, and that o = X, o', f = 2,p’, for some
o', ' eny (E', E"). Take fin (5.2) to be a representative of & — 5. Then
S 1is a representative of («—B)"*! = 2" (a—p) o, and so0 (5.2) shows that

(5.3) 2y = 2B

Applications will be given in §8 below.

6. THE EXACT SEQUENCE

Let X be a CW-complex with basepoint x, a O-cell. Let p: M — X be a
fibration with fibre N = p~! (x,), and let I' denote the function-space of
cross-sections. By evaluating at x, we obtain a fibration ¢: I' — N. It may
be noted that, under fairly general conditions, this fibration admits a cross-
section if and only if the original fibration is trivial, in the sense of fibre
homotopy type.

Now choose a basepoint y, € N so that ¢~ (y,) = I'y, the space of
pointed cross-sections. Choose such a cross-section s as basepoint in I’y

< I', and consider the homotopy exact sequence of the fibration as follows:

4y

A4 u,
..—>TC,.+1(N) —* Tcr(FO) — nr(F) — TC,.(N) AR

Note that I', is a deformation retract of I'y, the space of pointed maps
t: X - M such that pr ~ 1.
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In particular, suppose that X = S" (n > 1). Then s determines a homo-
topy equivalence k: Q" (N) — I'y as follows. Consider the map [: Q" (N)

— I~“ , which transforms each pointed map f: S” — N into the track sum
s + jf,wherej: N c M. Then /is a homotopy equivalence and k is obtained

by composing / with a deformation retraction I'y — I'. In this case, therefore,
we can transform our exact sequence into

D v, 4
o T (N) S e (N) S (D) S 2, (N) - e,

where v, = u,k, and D = k' A. We refer to this as the modified exact
sequence of the evaluation fibration. The operator D has been determined
in §3 of [8]. Specifically, let o en, (M) denote the class of s, and let
v€m,.q (N). Then

(6]) ]*DOC = V[j*a, O-] s

the Whitehead product in n, (M).
We shall be particularly concerned with the tail end of this sequence,

which reads

D Uy %

m(N) = 7, (N) S a(l) S a(N).

Let : S" — M also be a cross-section. Suppose that we have a path 4 in
N from s (x,) to # (x,). We can regard A as a vertical homotopy of s into ¢
over { x, }. The obstruction to extending this to a vertical homotopy over
S" is an element

o(s,t; )emn,(N).

If u is another path in N from s (x,) to ¢ (x,) the track difference 4 — u
forms a loop in N and it is easy to check that the homotopy class o € 7, (N)
of this loop satisfies the relation

Do = 8(s,t;2) — (s, t; 1) .

- Hence s and ¢ are vertically homotopic if and only if the obstruction is

- contained in D, (N).

Now let E; (i=1, 2) be a sectioned bundle over X with locally compact
~ fibre F;. We can apply the above to the function-space bundle M = M,
- (E,, E,) with fibre N = N (F,, F,), and obtain useful information about
- the ex-homotopy groups ny (X"E,, E,) (r=1, 2, ...). Details are given in [9]

- where the operator D is calculated, as follows, in case E; and E, are sphere-
- bundles over X = S".
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Given a representation ¢: SO (m) — SO (g) write
Jo = J o, n,SO(m) - m,., (SS9,

where J denotes the usual Hopf-Whitehead homomorphism. For example,
if ¢ > m and ¢ is the inclusion then

(6.2) | J, = (=1m-agn-ay,
by (3.2) of [5] (cf. [8]). If ¢ = 2mand ¢ = | @ 1 it is easily seen that
(6.3) Jy =2(=1"zmJ.

Consider the function-space N = N (S?, S%) of pointed maps S?
— SS9 We identify n;(N) (i=0, 1, ...) with n;; ,(S?) in the standard way
(see [15]). Let G be a topological group and let

¢:G —SO(p), Y:G - SO (q)

be representations of G. We regard S?, S? as pointed G-spaces using ¢,
Y, respectively. Choose a principal G-bundle P over S" with classifying
element O emn,_; (G), and take E; = P, (S?), E, = P, (S%. Then the
operator D in our exact sequence is given

(6.4) Do = oo Zr*+P—q+1 Jl]lg _ J¢0 o Zr;:rp—q_l %,

where aen, ;4 (S9. The case r = 1 of this result will be needed in §8
below.

7. THE ADJOINT G-BUNDLE

Let X be any space and let P be a principal G-bundle over X. We regard P
as a (right) G-space in the usual way. By a principal automorphism we mean
an equivariant fibre-preserving map of P into itself. By the adjoint G-bundle
we mean the sectioned bundle Q = PG, where G acts on itself by conjuga-
tion. Note that Q is a group ex-space since G is a group G-space. We can
construct Q from G %X P by identifying

(7.1) (gag™',b) ~ (a,bg)  (aeG, beP)
for all g € G. The group ex-structure is given by
{a,b}-{ayb} ={a - a,,b} (a;,a,€0),

where { , } denotes the equivalence class of ( , ). Every principal
automorphism f of P determines a cross-section f': X — Q as follows.
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