Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	23 (1977)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	ALTERNATIVE HOMOTOPY THEORIES
Autor:	James, I. M.
Kapitel:	6. The exact sequence
DOI:	https://doi.org/10.5169/seals-48928

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 09.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

and so $k^{q+1}s \simeq k^{q+1}t$ over X^n . Hence, by induction, we obtain (5.1). Of course the value of r can often be improved in particular cases.

COROLLARY (5.2). Let E be a fibre bundle over X with locally compact fibre F, which admits a cross-section. Choose a cross-section and so regard E as an ex-space. Let $f: E \to E$ be an ex-map such that $g: F \to F$ is nulhomotopic, where g = f | F. Then $f^{r+1} \simeq c$, the trivial ex-map, where r = reg(X).

To see this, take $M = M_X(E, E)$, in (5.1), and define $k: M \to M$ by post-composition with f. We take s, t to be the cross-sections $f', e': X \to M$ determined by f, e, and obtain (5.2).

Now let α , $\beta \in \pi_X(E, E)$ be elements such that

(i)
$$\alpha^2 = \beta^2$$
 and $\alpha\beta = \beta\alpha$,

(ii)
$$\Phi_*\alpha = \Phi_*\beta$$
,

where $\Phi_*: \pi_X(E, E) \to \pi(F, F)$ is given by restriction. Suppose that $E = \Sigma E'$, for some ex-space E', and that $\alpha = \Sigma_* \alpha'$, $\beta = \Sigma_* \beta'$, for some $\alpha', \beta' \in \pi_X(E', E')$. Take f in (5.2) to be a representative of $\alpha - \beta$. Then f^{r+1} is a representative of $(\alpha - \beta)^{r+1} = 2^r (\alpha - \beta) \alpha^r$, and so (5.2) shows that

 $(5.3) 2^r \alpha = 2^r \beta .$

Applications will be given in §8 below.

6. The exact sequence

Let X be a CW-complex with basepoint x_0 a 0-cell. Let $p: M \to X$ be a fibration with fibre $N = p^{-1}(x_0)$, and let Γ denote the function-space of cross-sections. By evaluating at x_0 we obtain a fibration $q: \Gamma \to N$. It may be noted that, under fairly general conditions, this fibration admits a cross-section if and only if the original fibration is trivial, in the sense of fibre homotopy type.

Now choose a basepoint $y_0 \in N$ so that $q^{-1}(y_0) = \Gamma_0$, the space of pointed cross-sections. Choose such a cross-section s as basepoint in $\Gamma_0 \subset \Gamma$, and consider the homotopy exact sequence of the fibration as follows:

$$\dots \to \pi_{r+1}(N) \xrightarrow{\Delta} \pi_r(\Gamma_0) \xrightarrow{u_*} \pi_r(\Gamma) \xrightarrow{q_*} \pi_r(N) \to \dots$$

Note that Γ_0 is a deformation retract of Γ_0 , the space of pointed maps $t: X \to M$ such that $pt \simeq 1$.

In particular, suppose that $X = S^n$ $(n \ge 1)$. Then *s* determines a homotopy equivalence $k: \Omega^n(N) \to \Gamma_0$ as follows. Consider the map $l: \Omega^n(N) \to \widetilde{\Gamma}_0$ which transforms each pointed map $f: S^n \to N$ into the track sum s + jf, where $j: N \subset M$. Then *l* is a homotopy equivalence and *k* is obtained by composing *l* with a deformation retraction $\widetilde{\Gamma}_0 \to \Gamma$. In this case, therefore, we can transform our exact sequence into

$$\dots \to \pi_{r+1}(N) \xrightarrow{D} \pi_{r+n}(N) \xrightarrow{v_*} \pi_r(\Gamma) \xrightarrow{q_*} \pi_r(N) \to \dots,$$

where $v_* = u_*k_*$ and $D = k_*^{-1}\Delta$. We refer to this as the *modified exact* sequence of the evaluation fibration. The operator D has been determined in §3 of [8]. Specifically, let $\sigma \in \pi_n(M)$ denote the class of s, and let $\alpha \in \pi_{r+1}(N)$. Then

(6.1)
$$j_*D\alpha = [j_*\alpha, \sigma],$$

the Whitehead product in $\pi_*(M)$.

We shall be particularly concerned with the tail end of this sequence, which reads

$$\pi_1(N) \xrightarrow{D} \pi_n(N) \xrightarrow{v_*} \pi(\Gamma) \xrightarrow{q_*} \pi(N).$$

Let $t: S^n \to M$ also be a cross-section. Suppose that we have a path λ in N from $s(x_0)$ to $t(x_0)$. We can regard λ as a vertical homotopy of s into t over $\{x_0\}$. The obstruction to extending this to a vertical homotopy over S^n is an element

$$\delta(s, t; \lambda) \in \pi_n(N)$$
.

If μ is another path in N from $s(x_0)$ to $t(x_0)$ the track difference $\lambda - \mu$ forms a loop in N and it is easy to check that the homotopy class $\alpha \in \pi_1(N)$ of this loop satisfies the relation

$$D\alpha = \delta(s, t; \lambda) - \delta(s, t; \mu).$$

Hence s and t are vertically homotopic if and only if the obstruction is contained in $D\pi_1(N)$.

Now let E_i (i=1, 2) be a sectioned bundle over X with locally compact fibre F_i . We can apply the above to the function-space bundle $M = M_X$ (E_1, E_2) with fibre $N = N(F_1, F_2)$, and obtain useful information about the ex-homotopy groups $\pi_X (\Sigma^r E_1, E_2)$ (r=1, 2, ...). Details are given in [9] where the operator D is calculated, as follows, in case E_1 and E_2 are spherebundles over $X = S^n$. — 232 —

Given a representation $\phi: SO(m) \rightarrow SO(q)$ write

$$J_{\phi} = J \circ \phi_* : \pi_r SO(m) \to \pi_{r+q}(S^q) ,$$

where J denotes the usual Hopf-Whitehead homomorphism. For example, if q > m and ϕ is the inclusion then

(6.2)
$$J_{\phi} = (-1)^{m-q} \Sigma_{*}^{m-q} J$$

by (3.2) of [5] (cf. [8]). If q = 2m and $\phi = 1 \oplus 1$ it is easily seen that

(6.3)
$$J_{\phi} = 2(-1)^m \Sigma_*^m J.$$

Consider the function-space $N = N(S^p, S^q)$ of pointed maps $S^p \to S^q$. We identify $\pi_i(N)$ (i=0, 1, ...) with $\pi_{i+p}(S^q)$ in the standard way (see [15]). Let G be a topological group and let

$$\phi: G \to SO(p), \quad \psi: G \to SO(q)$$

be representations of G. We regard S^p , S^q as pointed G-spaces using ϕ , ψ , respectively. Choose a principal G-bundle P over S^n with classifying element $\theta \in \pi_{n-1}(G)$, and take $E_1 = P_{\#}(S^p)$, $E_2 = P_{\#}(S^q)$. Then the operator D in our exact sequence is given

(6.4)
$$D\alpha = \alpha \circ \Sigma_*^{r+p-q+1} J_{\psi} \theta - J_{\phi} \theta \circ \Sigma_*^{n+p-q-1} \alpha,$$

where $\alpha \in \pi_{r+p+1}(S^q)$. The case r = 1 of this result will be needed in §8 below.

7. The adjoint G-bundle

Let X be any space and let P be a principal G-bundle over X. We regard P as a (right) G-space in the usual way. By a principal automorphism we mean an equivariant fibre-preserving map of P into itself. By the adjoint G-bundle we mean the sectioned bundle $Q = P_{\#}G$, where G acts on itself by conjugation. Note that Q is a group ex-space since G is a group G-space. We can construct Q from $G \times P$ by identifying

(7.1)
$$(gag^{-1}, b) \sim (a, bg) \quad (a \in G, b \in P)$$

for all $g \in G$. The group ex-structure is given by

$$\{a_1, b\} \cdot \{a_2, b\} = \{a_1 \cdot a_2, b\} \quad (a_1, a_2 \in G),$$

where $\{,\}$ denotes the equivalence class of (,). Every principal automorphism f of P determines a cross-section $f': X \to Q$ as follows.