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(g (x, ) pi(x,y)=0 on e(g,t) n D. If we had C,(¢) = 0 for some &,
then it would turn out that ¢ € §,. Consequently, C, (¢) # 0 for any k. We
show that for every t € 0* the numbers { C, (¢) } are uniquely determined.
Assume the contrary. Then there are numbers { Cy (1) } (max ] C, (¢) l= 1)

such that Y G (g (x, V) (x, ) =0 on e(q,t)n D and C, # C,
k_1

for some k. Then

Y [C) CLt) = Ce) CL (] pe(x,) = Y Colt) pi(x, y) = 0

k#1 k#1

on e (g, t)’n D and in addition, C, # 0 for some k. Consequently, t € ;.
So we have obtained a contradiction, and the uniqueness of the choice of the
numbers C, (¢) is proved. Further, we may regard { C, (¢) } as single-valued
functions of ¢t on the portion 6*. By Lemma 4.3.3, the functions C, (¢)
are continuous and, as noted above, C, (t) # O for any ¢ € 6*. Then

py(x,y) = _Z —hgc%yg pe(x, ), (x,))eq™ " (6¥)nD.
. Cy (1) . -
Putting f (1) = /i (1) — - (t)fl (1), € 6%, we have 3 £ (q (x, ) pi(x, )
- =z Ck
= ka((ﬂpk(x,y) - Z . EZ; pi (x, )

|
i

= k;fk (@) pr(x, ¥) + f1(q) py (x, p)

l

S (@) pe(x,y), (x, ) eq (8% D.

k=1

This proves the lemma.

§ 4. Reduction of linear superpositions to a form
with independent terms

We fix the continuous functions pf (x, ») and continuously differentiable
functions ¢; (x, y) (1=0,1,2, ..., n; k=1, 2, ..., m;) n > 2, where { g; (x, y) }
satisfy in D conditions (1) and (3) of Lemma 4.2.2, and we consider in D
superpositions of the form

YOS A0S (4 xs 09)

i=0 k=1

where { 1% (¢) } are arbitrary continuous functions of one variable.
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We call a bounded closed region G = D polyhedral if the boundary of G
consists of a finite number of mutually non-intersecting simple closed
contours that are unions of a finite number of segments of level curves
of the functions ¢; (x, y) i=1,2,..,n). Let G = D be a polyhedral region.
We denote by I'; the set of those t € g; (G) for which the set e (g;, )N G
contains a segment of a level curve belonging to the boundary of G. For
any i the set I'; consists of a finite number of points. By property (1) of the
functions { g; (x, )} for every i and for all points 7, € g; (G\I'; there

exists lim e (q;, 1) = e (qq, to). If 1o €', then the last assertion need not
t—1tg

hold, but in any case there exists lim e (g, 1) < e(q;, to) and lim e (g;, 7)
t— +ig t——1g

< e (g, t,) where the limit is taken over the points € g; (G). Here the
limit is understood in the sense of the distance p (e (¢;, 1), e (¢;, t0))-

LEMMA 4.4.1. There is a region G <= D and a system of numbers
=0 or 1(i=0,1,2,..,n;, k=1,2,...,m;) such that

(4) for any i and for any continuous functions {(p’f (t)} there exist
continuous functions { f§ (1) } such that in G

my

fi PE(x, 1) 05 (q:(x, ) = kZV s (x, ) fi(q; (x, )
k=1

(5%) for any polyhedral region G* < G and any i, the set
{t:2(t, G*, q;, piy ..., pF*) = 0}
is nowhere dense in q;(G*), where
ky = ki (@), ky = ky (i), .oy kg = k(i)

is the set of all values of k for which % = 1.

Proof. 1f i = 0, then by (1) the set g, (D) consists of only one point.
We choose a region G, = D and number 75 (k=1, 2, ..., m,) such that in G,
the functions pfl, ..., pks are a basis for the linear hull of the functions
{ ps } (condition (4) for i =0) and in any region G* = G, these functions are .
linearly independent (condition (5*) for i =0). Let G* = D be an arbitrary
polyhedral region. Then A (¢, G*, q, { pt }) as a function of t has, for
any i > 0, a finite number of points of discontinuity (of the first kind)
on the set g; (G*), which consists of a finite number of segments (see Lemma
4.3.1). Hence it follows that if the set { 7: A (#, G*, ¢;, {p§}) = 0} is not




294 —

nowhere dense on ¢; (G*), then the function A (¢) = 0 on some segment
0 < g;(G*) not containing points of I';. By Lemma 4.3.4, there is a segment

6* = 9 such that in the expression Y pf(x, ) /% (q; (x, »)) one of the
k=1

terms can be deleted, without narrowing the class of the functions represent-
able in the region ¢~ ' (6*%) n G* as superpositions of the given form.
Carrying out all possible deletions we can find a region G = G, < D for
which the assertion of the lemma is satisfied.

A region G < D is called regular if, firstly, it is polyhedral and, secondly,
there is a number y; > 0 such that for every i > 0 and every ¢ € ¢, (G)
the set e (g;, t) n G is the union of a finite number of simple arcs, each of
which has length not less than y;. A point 4 of the boundary of the poly-
hedral region G is called a vertex if it belongs simultaneously to two segments
of the level curves of g; (x, y) and ¢; (x, y) (i # j) on the boundary of G.
Every polyhedral region has a finite number of vertices.

LeEMMA 4.4.2. For every polyhedral region G and every neighbourhood
U of the vertices of this region we can construct a regular region G* < G
such that G\U < G*,

Proof. Let A, A,, ..., A, be the vertices of the polyhedral region G;
U,, U,, ..., U, suitably small neighbourhoods of these vertices. Let k,,

= k,, (4,) be the number of all those functions { g; (x, y) } for each of |

which the level curve passing through the point 4, does not contain any
other points of the set U, n G. Let ¢;, (x, y) be one of these functions.
We put £k (G) € g; (G). If kK (G) = 0, then for any i/ and any t € g, (G) the
length of any component of the set e (g;, ) N G is greater than zero and
consequently the region G is regular. Suppose that k& (G) > 0 and m such
that k,, # 0. :

We fix ¢ > 0 and put

Gﬁlsm = G l {(xa y) |Qim(x9y) — Q(A;r)l < 8} M Um'

If U, and ¢ are sufficiently small, then inside U,, the region G{,, has two
vertices A, and A,,, while the region G has only one vertex A4,, there, but
k, (4,) = k, (4,) = k, (4,) — 1. We now put G} = n G,, where
the intersection is taken over all m such that k,, # 0. Then k£ (G Y = k(G)
— 1. Repeating this construction k (G) times, we obtain a polyhedral
region G* for which G\G* <« U and k (G*) = 0. Consequently, G* is
regular. This proves the lemma.

:
4
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LEMMA 4.4.3. There exists a set G <= D, a number A > 0, and a set
of numbers =0 or 1(i=0,1,..,.nk=1,2,..,m) such that condition
(4) of Lemma 4.4.1 is satisfied, and also the conditions

(5) for every i and te q;(G) and for any functions {f’ﬁ (1) |

.
2

e ‘ i ok (x, )T (g:(x, ) | > A max |15‘jf‘ (1)
k

(x,y)ee{q;,t)nG k=1

(6) G is a regular region.

Proof. By Lemma 4.4.1 there exists a region G* < D and a set of
numbers % such that for every polyhedral subregion G** = G* and for
every i the set {t:2(t, G**, q;, pi', ..., pi*) = 0} is nowhere dense in
g, (G**), where ki, k,, ..., k, is the set of all values of k for which § = 1;
moreover, on the set G*, for any i the property (4) of Lemma 4.4.1 is sat-
isfied. In order not to change the notation unnecessarily, we assume that
all T8 = 1. We now construct a system of regular regions G, > G; © G,
> ..>G, =G, having the following property: for every j < I,

inf A(¢, G, g, {pf }) >2;,>0. For G, we choose any regular
teqi(G;
reg]ion)GO e G*. Suppose that the regular regions G, Gy, ..., G;_; have
been constructed. We now construct the set G;. We denote by o4 the set
{t:3(t qs Gy, {P5)) > ). Since the functions 4 (1, ¢;, G;—1, { P }),
have only finitely many points of discontinuity (of the first kind) on the
set g, (G,_,), which consists of a finite number of segments (see Lemma
4.3.1), any component of «; is either an interval, or a half-interval, or a
segment, or a point. Suppose that the set o} = o5 consists of the N longest
components of non-zero length of the set o (if o5 has only Ny, (< N) com-
ponents of non-zero length, then let oy = }°). We denote by &5 the closure
of the set of. We put G,*, = G,_, n ¢~} (&@y). We fix ¢ > 0. Since G,_,
is regular, for every j the length of any component of e(g;, 1) n G,_, is
greater than yg > 0. And since the set {7:1(t,¢, Gy, {p5}) = 0} is
nowhere dense in ¢; (G;_,), for sufficiently small 0 and sufficiently large N
the set G, forms a ¢/2-net on every set e(q;,t) N G,_, j < i. The set
G, is a polyhedral region. We denote by U (¢) the set of points (x, y)
each of which is at a distance of no more than ¢/4 from one of the vertices
of the set G ;. By Lemma 4.4.2 there exists a regular region G, = G |
such that G |\G; = U (¢). The set G, forms an e-net on every set e (g;, 1)
N G,_y,j < iand forms an ¢/2-net on every set e (q;, ) N G;*,. By Lemma
4.3.2, for sufficiently small &,
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1 0
A = min inf  A(t, G, q;, {pf)) > imin {5, min AJ}.

J=i teqj(Gy) J<i

Thus, the regular regions' Gy, G,, ..., G, can be constructed. The regular
region G = G, satisfies all the requirements of our lemma (1=21,), which
i1s now proved.

§ 5. The set of linear superpositions in the space
of continuous functions is closed

THEOREM 4.5.1. Suppose that continuous functions p,, (x,y) and
continuously differentiable functions q,, (x,y) (m=1,2,..., N) are fixed.
Then in any region D of the plane of the variables x, y. there exists a closed
subregion G < D such that the set of superpositions of the form

N

Y P (X ¥) oo (@ (X, ),

m=1
where {f,, (t)} are arbitrary continuous functions, is closed (in the uniform
metric) in the set of all functions continuous on the set G.

By Lemma 4.2.2 and 4.4.3 we can find a subset G < D, determine cons-
tants y > 0 and A > 0, and renumber the functions {p, (x,»)} and
{ ¢ (x, y) } with two indices so that the functions obtained after the renum-
bering, {pi(x,»)} and {q¢%(x,»)} (i=0,1,2,...,n; k=1,2,..,my;

Y m; << N) that is, some functions may be omitted in the renumbering)
i=0

satisfy conditions (1), (2), (3) of Lemma 4.2.2, and also the conditions:

(4') for any continuous functions {f, (#)} there exists continuous
functions { f%(¢) } such that on G

Y pn (60 ulan () = 3 3 pECe S 0k (5, 2):

i=0

(5') for every i and 7€ ¢} (G) and for any functions { £ (¢) }

max | Y pr(x, 0 fi(qi (x, )| = A max |[fi(0)];
(x,y)ee(q %,t)nG = k

(6) G is a regular region with respect to the functions { ¢% (x, ») }.

P i e
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