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§ 3. Theorem on superpositions of smooth functions

We will denote by C, (#") the space of n times differentiable functions
of n variables defined on the cube .#" with the norm

' s ak1+...+knf(x)
= 2 T, ™| G o

p=1 ki+ko+ ..+kp,=p xegn
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THEOREM 2.3.1. Let the numbers s > 1, s" > 1 and natural n and n’

/

non
be such that — > — . Then the set of functions from C (F") not representable
s s

on J" by superpositions of S’ times differentiable functions of n’ variables
is a set of second category.

The space C, (#") is complete and consequently the set mentioned in the
theorem is not empty. The theorem is true for any s > 1, s" > 1 but we will
assume for simplicity that s and s" are integers.

LemMA 2.3.1. Let f and f' be g-fold superpositions composed of the

functions { ¢}, }oand { g,

,...,ap

,,,,, ap > } where all functions composing the
superpositions satisfy the condition Lip 1 with the constant L and for any

collection p, oy, ..., o,

< &

max I (pa]’,,_,ap - @al,...ap
Then

max | f(x) —f() | < (L+1)7
xegn

The lemma can easily be proved by induction in g.

Lemma 2.3.2. Let Q be an open subset of C,(F") and Q* < C(S").

If every fe Q allows uniform approximations on #" with any accuracy by
n/s

functions from Q*, i.e. the closure of Q* contains 2, then H, (Q*) >C <—> ;
e

where C > 0 is independent of e.

The lemma is easily reduced to lemma 2.2.1 and lemma 2.2.2.

We denote by Q, the set of all functions of C(#") which are k-fold
superpositions composed of s times differentiable functions of »’ variables
with partial derivatives bounded by the same constant k.
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LEMMA 2.3.3. ]fE > n—, then for any natural k the set Q0 C (F")
s S

is nowhere dense in Cg (S").
By lemma 2.3.1 and the theorem 2.2.1 for any natural k H,(2,)

n'/s’
< C(—) , where C does not depend on ¢. Hence, it follows from the
€

n n' ' ,
inequality — > — and lemma 2.3.2 that the set Q, n C, (/") is nowhere
s S

dense in C, (S").
Now to prove the theorem we have to notice only that the set of func-

o8]

tions from C, (#") representable by superpositions coincides with U (£,
k=1

N C; (A"). By lemma 2.3.3 the sets {Q.n Cy(F") } are nowhere dense and
consequently the set of not representable functions is a set of second cat-

egory.

CHAPTER 3. — SUPERPOSITIONS OF CONTINUOUS FUNCTIONS

In this chapter we present the proof of the theorem of Kolmogorov
given by Kahane [36]. This proof which is based on Baire’s theory contains a
minimum of concrete constructions and shows that there exists a wide
choice of inner functions for Kolmogorov’s formula.

§ 1. Certain improvements of Kolmogorov’s theorem

By the theorem of Kolmogorov any function defined and continuous
on the cube #" can be represented as

2n+1

f(xla"‘bxn) - Z gq( q)p,q(xp)):
qg=1 p=1

where {¢,,} are specially chosen continuous and monotonic functions

which do not depend on £, and where { g, } are continuous functions.
Lorentz [12] has noticed that in the theorem of Kolmogorov the func-

tions { g, } can be chosen independently of ¢. In fact, by adding constants

n

to the functions 7, = ) ®,4(x,) (=1, .., 2n+1) one can make the ranges
p=1
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